
A New Paradigm for Verifiable Secret Sharing

Sourav Das∗, Zhuolun Xiang†, Alin Tomescu†, Alexander Spiegelman†, Benny Pinkas†, and Ling Ren∗
∗University of Illinois at Urbana-Champaign, †Aptos

{souravd2, renling}@illinois.edu, {xiangzhuolun, tomescu.alin, sasha.spiegelman}@gmail.com, benny@pinkas.net

Abstract—Verifiable Secret Sharing (VSS) is a fundamental
building block in cryptography. Despite its importance and
extensive studies, existing VSS protocols are often complex
and inefficient. Many of them do not support dual threads,
are not publicly verifiable, or do not properly terminate in
asynchronous networks. This paper presents a new and simple
paradigm for designing VSS protocols in synchronous and
asynchronous networks. Our VSS protocols are optimally fault-
tolerant, i.e., they tolerate a 1/2 and a 1/3 fraction of malicious
nodes in synchronous and asynchronous networks, respectively.
They only require a public key infrastructure and the hardness
of discrete logarithms. Our protocols support dual thresholds
and their transcripts are publicly verifiable. We implement our
VSS protocols and measure their computation and communi-
cation costs with up to 1024 nodes. Our evaluation illustrates
that our VSS protocols provide asynchronous termination
and public verifiability with minimum performance overhead.
Compared to the existing VSS protocol with similar guarantees,
our protocols are 5-15× and 8-13× better in computation and
communication cost, respectively.

1. Introduction

A Verifiable Secret Sharing (VSS) scheme lets a party
holding a secret, commonly referred to as a dealer, share
the secret in a verifiable manner among a set of nodes
where a fraction of the nodes, including the dealer, could
be malicious [26], [34], [56]. The secret sharing process is
verifiable in the sense that each node can verify the validity
and correctness of its share. VSS is a fundamental building
block for secure-multiparty computation (MPC) [7], [51],
threshold cryptography [60], Byzantine fault tolerant algo-
rithms [17], distributed key generation (DKG) [37], [33],
randomness beacon [25], and so on.

Over the years, numerous works have studied VSS with
different properties and in different settings, such as differ-
ent cryptographic assumptions, network conditions, fault-
tolerance, and so on [26], [34], [56], [37], [48], [49], [10],
[32], [4], [64], [66], [65], [61]. In this paper, we focus
on VSS protocols that use Shamir secret sharing [60], are
secure against a computationally bounded adversary, and
have optimal fault tolerance in both synchronous and asyn-
chronous networks. We also seek to achieve a few extra nice
properties of VSS that we briefly go over next.

A desirable property of VSS protocols is completeness
which ensures every honest node receives its share of the

secret. Applications such as DKG, MPC, and proactive
secret sharing crucially rely on the completeness property.

Another desirable property of VSS, especially asyn-
chronous VSS (AVSS), is the support for dual thresh-
olds [16]. Briefly, in an asynchronous network of n ≥ 3t+1
nodes where at most t nodes are malicious, a dual-threshold
AVSS scheme with parameter ℓ ∈ [t, n − t) guarantees se-
crecy against any coalition of up to ℓ nodes. Dual-threshold
AVSS with ℓ = n − t − 1 is used to design high-threshold
asynchronous DKG [33], which is in turn used to achieve
better secrecy in threshold cryptosystems [62] and better
efficiency in Byzantine fault tolerant (BFT) algorithms [17],
[18], [63]. Dual-threshold VSS is also useful in designing
optimal fault-tolerant BFT systems that rely on sampling
for scalability, an approach that is getting wide adoption in
recent proof-of-stake blockchains [38], [24], [5].

Finally, some randomness beacon [10], [30] and DKG
protocols [44], [41], [47] also require the VSS transcript to
be publicly verifiable by any external entity. A VSS scheme
with a publicly verifiable transcript is also called a Publicly
Verifiable Secret Sharing (PVSS) scheme.

In this paper, unless stated otherwise, we always con-
sider VSS protocols with the completeness property, and we
primarily study VSS protocols that support dual thresholds
in asynchrony and provide publicly verifiable transcripts.
Existing works. Despite years of efforts, there are no VSS
schemes that satisfy all our requirements (see §2 for a
detailed discussion). For example, the historically dominant
approach of designing synchronous VSS protocols relies
on interactive complaints [34], [56], [36], [37], [46], [10],
[8]. This approach incurs high latencies, is fairly complex,
and is not publicly verifiable. Moreover, when extended to
asynchronous networks, this approach suffers from a subtle
termination issue* [64], [32], [43], [61], and does not support
dual thresholds. Several recent asynchronous VSS designs
deviate from the interactive complaint framework. But these
schemes rely on trusted setups and bilinear pairing for
efficiency [49], [4], [3], [66], and they also do not support
dual thresholds or public verifiability. On the other hand,
existing publicly verifiable VSS uses verifiable encryption
schemes to let the dealer prove statements over encrypted
data, making them expensive [35], [41], [33], [47] or suitable
only for limited applications [59], [22], [23].

*In these protocols, parties may never terminate the sharing phase,
even if they already output. Malicious nodes can prevent honest nodes
from terminating by not sending acknowledgments or complaints. More
details can be found in §2.

1

Our contributions. In this paper, we present a new
paradigm for designing VSS protocols for synchronous and
asynchronous networks. Our VSS protocols are optimally
fault-tolerant, i.e., they tolerate 1/2 and 1/3 fractions of
malicious nodes in synchronous and asynchronous networks,
respectively. Our VSS protocols guarantee completeness
and have efficient publicly verifiable transcripts. Our asyn-
chronous protocol also guarantees asynchronous termination
without relying on additional cryptographic setups or bilin-
ear pairings and only assumes public key infrastructure.

Our VSS protocols achieve the above-mentioned proper-
ties while maintaining the same asymptotic communication
and computation costs of best-known VSS protocols. More
precisely, in a synchronous network with n nodes, our VSS
protocol incurs a communication cost of O(κn2+CBB(κn)).
Here κ is a computational security parameter, and CBB(x)
is the communication cost of broadcasting a message of
size x via a Byzantine broadcast channel. Similarly, our
asynchronous VSS (AVSS) protocol incurs a communication
cost of O(κn2).

We then augment our AVSS to support dual thresholds
for any secrecy threshold ℓ ∈ [t, n − t). Our augmented
AVSS protocol maintains the total communication cost of
O(κn2) without relying on a trusted setup. Our dual-
threshold AVSS protocol has the following nice properties:
(i) The best-case performance with any ℓ is the same as
our low-threshold AVSS, where the best-case is when the
network is synchronous and the number of malicious nodes
is less than 2t − ℓ; and, (ii) the worst-case performance
degrades gradually with ℓ where it is the same as our
low-threshold AVSS for ℓ = t. In contrast, existing dual-
threshold AVSS protocols [33], [42], [47] incur a high cost
regardless of ℓ, and their performance does not improve even
under the best-case scenario.

Another useful property of our VSS scheme is that nodes
only need to communicate with the dealer. This also means
that assuming the presence of a broadcast channel, the
synchronous timing assumption needs to apply only between
the dealer and other nodes. This assumption is less stringent
than requiring bounded communication delays between all
pairs of nodes. This property also makes the implementation
simpler, as only the dealer needs to establish communication
with the other nodes.

As an independent contribution, we design an efficient
verifiable encryption scheme for Pedersen commitments.
Existing verifiable encryption schemes are designed for
the non-hiding Feldman commitment scheme and can not
be used to encrypt messages with low entropy [35], [19],
[42], [47]. Our verifiable encryption scheme addresses this
limitation and supports arbitrary message distribution and is
thus more suitable for general applications, including VSS.
Evaluation. We implement our VSS protocol in Rust and
measure its computation and communication costs with up
to 1024 nodes. Our evaluation illustrates that our AVSS
protocol has comparable performance to [64], [32] while
additionally achieving asynchronous termination and public
verifiability. Compared to the existing VSS protocol with
these properties [42], our protocol requires 5-15× and 8-

13× less computation and communication.
Paper organization. The rest of the paper is organized
as follows. First, we review related work in more detail
in §2. In §3, we formally define the problem of Verifiable
Secret Sharing and provide an overview of our new VSS
paradigm. We describe the required preliminaries in §4. We
then describe our synchronous VSS in §5, asynchronous
VSS in §6, and dual-threshold asynchronous VSS protocol
in §7. We then present our implementation and evaluation
results in §8. Finally, we conclude with a discussion in §9.

2. Related Work

VSS protocols consist of two phases: Sharing and Re-
construction. During the sharing phase, nodes along with the
dealer run a protocol so that each node receives its share of
the secret at the end of the sharing phase. In the recon-
struction phase, nodes interact to recover the shared secret.
We categorize existing VSS schemes into three approaches
based on the design of their sharing phase. We describe
each approach and outline its core idea, advantages, and
disadvantages below.
Complaint-based VSS. Historically, the most common ap-
proach to designing VSS protocols is to rely on interactive
complaints [34], [56], [36], [37], [46], [10], [8]. Briefly, in
these protocols, the dealer embeds the secret into a univari-
ate low degree polynomial and publishes a commitment to
the polynomial via a broadcast channel. The dealer addition-
ally sends each node its share using a private channel. Upon
receiving its share and the commitment, each node validates
them for correctness. Nodes that receive no share or invalid
shares from the dealer publish complaints against the dealer
using the broadcast channel. The dealer responds to the
complaints by revealing the share of each complaining node.
Intuitively, these protocols rely on complaints to ensure
completeness, i.e., prevent malicious dealers from sending
valid shares to a subset of honest nodes and not to others.

While this approach provides reasonable efficiency in
synchronous networks, they do not extend well to the more
realistic partially synchronous and asynchronous networks.
Asynchronous VSS (AVSS) protocols that rely on com-
plaints to provide completeness [64], [32], [43], [61] suffer
from a subtle termination issue that prevents honest nodes
from terminating the protocol, even after outputting their
shares. More concretely, these protocols have a step where
honest nodes (after outputting their share) wait for either
acknowledgments or complaints from all other nodes before
terminating. This step is crucial because, in the case of
complaints, nodes must assist the complaining nodes in
recovering their shares. This allows malicious nodes to pre-
vent honest nodes from terminating by simply not sending
acknowledgments or complaints.

Finally, complaint-based VSS protocols have other lim-
itations: they are not publicly verifiable, and they do not
support dual thresholds.
Verifiable Encryption-based VSS. One approach to VSS
design that addresses the above issues is to use verifiable

2

encryption (VE). Briefly, in a VE-based VSS scheme, the
dealer locally generates a transcript that includes encryptions
of the shares of all nodes, each under the public key of
the corresponding node, along with a non-interactive zero-
knowledge (NIZK) proof of the correctness of the encrypted
shares. The dealer then publishes the transcript to all the
nodes using a broadcast channel. Upon receiving the tran-
script over the broadcast channel, each node validates the
correctness of all encrypted shares using the NIZK proof and
recovers its own share by decrypting its encrypted share.

Existing VE-based schemes achieve several nice prop-
erties. First, they are non-interactive, i.e., only the dealer
broadcasts a single message in the entire protocol. Second,
they are also publicly verifiable. Third, the same protocol
paradigm, with appropriate instantiations of the broadcast
channel, works in both synchronous and asynchronous net-
works. However, VE-based protocols are generally inef-
ficient, particularly due to their reliance on NIZK over
encrypted data [35], [41], [42], [33], [47]. Some works [59],
[22], [23] bypass this efficiency issue by weakening the VSS
functionality. More precisely, these schemes require the VSS
secret to be an elliptic curve group element. Hence, they
are not compatible with off-the-self threshold cryptosystems
whose keys are field elements [37], [15].
Bivariate polynomial-based AVSS. A more recent ap-
proach to designing AVSS is to rely on a bivariate polyno-
mial [49], [4], [3], [66]. In these schemes, the dealer embeds
its secret as the constant term of a random low-degree
bivariate polynomial. The dealer then publishes a commit-
ment to the bivariate polynomial using reliable broadcast.
Additionally, the dealer privately sends partial evaluations of
the polynomials to each node. Each node, upon receiving its
partial evaluation, communicates with others to recover its
share of the secret. Intuitively, the sharing phase terminates
only when the dealer sends valid partial evaluations to
a majority of the honest nodes. By sending valid partial
evaluations to the majority of the honest nodes, the dealer
provides these nodes with sufficient information to assist
each other in recovering their shares.

Unlike complaint-based AVSS schemes, this approach
guarantees asynchronous termination, i.e., a node can ter-
minate the protocol after outputting its share. However,
these approaches require the dealer to perform O(n2) group
exponentiations. Moreover, these protocols require a trusted
setup and strong cryptographic assumptions in the Alge-
braic Group Model for efficient communication. More pre-
cisely, Haven [4] and Bingo [3] assume hardness of q-
SDH in a pairing-friendly group and require a powers-
of-tau setup [48] to achieve O(κn2) total communication.
Without the setup, the state-of-the-art protocol Haven in-
curs O(κn2 log n) total communication cost and has O(n2)
per-node computation cost. Lastly, these protocols are not
publicly verifiable.
Other related works. A number of works have studied VSS
protocols with information-theoretic security [29], [45], [7],
[21], [20], [54], [55], [27], [40], in both synchronous and
asynchronous networks. However, these have high worst-

case communication costs, only guarantee security with
abort, or have sub-optimal fault tolerance. A series of
works [16], [6], [32] study VSS protocols without complete-
ness, and the latest among them achieve [32] a communi-
cation cost of O(κn2) assuming collision resistance hash
functions and hardness of discrete logarithm.

3. Definition and Overview

3.1. Definition of Verifiable Secret Sharing

Definition 1 (Verifiable Secret Sharing). A verifiable secret
sharing (VSS) protocol consists of two phases: Sharing and
Reconstruction. During the sharing phase, a dealer L shares
a secret s ∈ F. During the reconstruction phase, nodes
interact to recover the secret. We say that a VSS protocol is
t-resilient if the following properties hold with probability
1−negl(κ) against any probabilistic polynomial time (PPT)
adversary A that corrupts up to t nodes:
• Correctness. If L is honest and has a secret s, then the

sharing phase will result in all honest nodes eventually
outputting a share of s. Once the sharing phase finishes,
if all honest nodes start the reconstruction phase, they will
output s.

• Completeness: If any honest node outputs in the sharing
phase, then there exists a secret s̃ ∈ F such that all honest
nodes eventually output a share of s̃. Also, s̃ is guaranteed
to be reconstructed during the reconstruction phase.

• Secrecy. If L is honest, there exists a PPT simulator S
which interacts with an ideal functionality FVSS and out-
puts a view of A, such that the A’s view in the real-world
protocol and the simulated protocol are indistinguishable.

• Termination. All honest nodes will eventually terminate
the Sharing phase.

We will define the functionality FVSS and its variants
when we analyze its Secrecy property.

VSS protocols in synchronous and asynchronous net-
works can tolerate up to 1/2 and 1/3 fractions of failures,
respectively [2]. It is well known that the standard Ter-
mination property is impossible in asynchronous networks
since it is impossible to tell apart a slow dealer from a
malicious one. Thus, AVSS protocols instead guarantee the
asynchronous termination property, similar to that of reliable
broadcast [14].
• Asynchronous termination. If any honest node outputs

in the sharing phase, then all honest nodes will eventually
terminate the sharing phase.

Many applications of VSS additionally require the VSS
scheme to be publicly verifiable, as defined below.

Definition 2 (Publicly verifiable). A publicly verifiable
secret sharing (PVSS) protocol outputs a transcript that
enables any third party, not just the original nodes, to verify
that the dealer has ensured each node receives its share.

Another desirable property of AVSS protocol is dual-
threshold, as defined below.

3

Definition 3 (Dual-threshold AVSS). A (n, ℓ, t) dual-
threshold AVSS for n ≥ 3t+1 is a t-resilient AVSS scheme
where for any given ℓ ∈ [t, n− t), the secrecy of the secret
holds against any coalition of up to ℓ nodes. We refer to ℓ
as the secrecy threshold.

Remark. The dual-threshold guarantees achieved by some
VSS and DKG protocols [4], [49], [3], [31] are weaker
than Definition 3. Those schemes achieve a secrecy thresh-
old of ℓ > t only after the protocol terminates. During the
protocol execution, their secrecy threshold is t. In contrast,
Definition 3 require a secrecy threshold of ℓ even during the
protocol execution.

3.2. Overview of Our Approach

Our starting point is the classical complaint-based syn-
chronous VSS schemes described in §2. In those schemes,
nodes publish complaints if they receive an invalid share or
no share from the dealer. The dealer responds to complaints
by publishing the shares of the complaining nodes. If the
dealer fails to do so, it is considered malicious, and nodes
output default values. This approach prevents a malicious
dealer from violating completeness while still ensuring
secrecy. This is because honest nodes will not complain
against an honest dealer, thereby safeguarding the shares
of honest nodes. Moreover, when the dealer is malicious,
secrecy is vacuous.

Note from §2 that the conflict is always between achiev-
ing completeness and ensuring secrecy. Without secrecy,
achieving completeness is trivial: the dealer simply broad-
casts shares of everyone (or even the secret) to all. With
this in mind, let us take another look at the complaint-
based schemes. Here, the dealer reveals shares of a subset
of parties, and the protocol ensures that an honest dealer
only reveals shares of malicious nodes. Our new paradigm
achieves a similar property but uses a different approach, as
we describe next.

The first crucial change we introduce is that, instead
of sending explicit complaints, we send explicit acknowl-
edgments instead. The absence of an acknowledgment is
in some way a complaint. Specifically, the dealer computes
the shares of its secret using a low-degree polynomial, along
with a commitment to the polynomial. The dealer, instead
of publishing the commitment, first privately sends each
node i the commitment along with the share of node i.
Each node, upon receiving its share of the secret, validates
it for correctness. Upon successful validation, the node
responds to the dealer with a signed acknowledgment. This
acknowledgment can serve as proof that node i has received
its valid share corresponding to the commitment.

The dealer waits to receive an appropriate number of
signed acknowledgments. (The dealer cannot wait for ac-
knowledgments from all nodes because malicious nodes
may never send acknowledgments.) Next is where our sec-
ond crucial change comes in. The dealer then publishes, us-
ing a broadcast channel, the VSS transcript, which consists
of the commitment to the polynomial, the signed acknowl-

edgments it has received, and the shares of nodes who did
not respond with a signed acknowledgment. Looking ahead,
we will argue that despite the dealer publicly revealing
shares of a subset of nodes, A does not learn enough points
on an honest dealer’s polynomial, so secrecy is maintained.

Upon receiving the transcript over the broadcast channel,
nodes validate it by checking that, for each node i ∈ [n],
either its signature or its share of the secret is included in
the transcript. Upon successful validation, each node outputs
the commitment and its share and terminates the sharing
phase. If the validation fails, a node outputs a default value.
Intuitively, completeness is satisfied because a node either
explicitly acknowledges receiving its share or will receive
its share from the validated transcript.

It is easy to see that the transcript the dealer broadcasts
is publicly verifiable. The public verification check of the
transcript is precisely the verification check each node per-
forms on the transcript before terminating the sharing phase.

Based on these insights, designing a synchronous VSS
protocol is straightforward. In a synchronous network of
n = 2t+1 nodes, with pair-wise latency ∆, the dealer shares
its secret using a degree t polynomial. The dealer then waits
for 2∆ time units to receive signed acknowledgments from
all honest nodes and reveal the remaining shares using a
broadcast channel.

However, this approach fails in asynchronous networks
with n = 3t + 1. Under asynchrony, the dealer needs to
make progress upon receiving n − t = 2t + 1 signed ac-
knowledgments. Note that t of these 2t+1 acknowledgments
could be from malicious parties. Now, if the dealer reveals
the remaining t honest shares, it would reveal a total of 2t
shares to A, which is sufficient to reconstruct the degree t
polynomial the dealer uses to share its secret. We address
this issue by requiring the dealer to share its secret using
a degree 2t polynomial. This prevents A from learning the
secret even after learning 2t shares.

Finally, to construct a dual-threshold AVSS with secrecy
threshold ℓ for ℓ ∈ [t, n− t), we combine ideas from veri-
fiable encryption-based VSS with our low-threshold AVSS,
i.e., AVSS with ℓ = t. More precisely, for any ℓ, the dealer
still uses a degree 2t polynomial to share its secret, but cru-
cially does not reveal all remaining t shares after receiving
2t+1 signed acknowledgments. Instead, the dealer publicly
reveals only 2t− ℓ of the remaining t shares, encrypts, and
broadcasts the remaining t − (2t − ℓ) = ℓ − t shares using
a verifiable encryption scheme. Intuitively, this ensures that
any coalition of at most ℓ nodes learns at most 2t points
on the polynomial. The protocol still ensures completeness
because the nodes whose shares are not revealed by the
dealer will receive their share from the verifiable encryp-
tions revealed by the dealer. Since the leader broadcasts
ℓ − t shares using verifiable encryption, the performance
degrades gradually with ℓ. And if the leader receives more
than 2t+ 1 signed acknowledgments (e.g., in the best case
with a synchronous network and few malicious parties), the
performance will further improve.

4

4. Threat Model and Preliminaries

Let G be an elliptic curve group of order q with F as
its scalar field. Let g, h ∈ G be two uniformly random and
independent generators. We use κ to denote the security
parameter. For example, when we use a signature scheme,
κ denotes the size of the secret key. Similarly, we also use κ
to denote the size of an element in F or G. For any integer
a, we use [a] to denote the ordered set {1, 2, . . . , a}. Also,
for two integers a and b where a < b, we use [a, b] to denote
the ordered set {a, a+ 1, . . . , b}.

4.1. Threat Model

We consider a network of n nodes denoted by
{1, 2, . . . , n}, where each node is connected with the dealer
via a pairwise private and authenticated channel. We assume
nodes have access to a broadcast channel with which the
dealer can send a value to all nodes. A broadcast channel
ensures that the dealer cannot send inconsistent values to
different nodes. We can efficiently realize such optimal
fault-tolerant broadcast channels in synchronous and asyn-
chronous networks by running a Byzantine broadcast [50],
[53] and reliable broadcast [14], [32], respectively. We will
give their interfaces in Appendix A.

We consider a static adversary A that can corrupt a
threshold fraction of the nodes upfront. For our synchronous
VSS protocol, we assume that A can corrupt less than half
of the nodes, i.e., at most t out of n ≥ 2t + 1 nodes.
Also, let ∆ be the upper bound on the delay between the
honest dealer and any honest node. For our AVSS and dual-
threshold AVSS protocols, we assume that for n ≥ 3t + 1,
at most t nodes are malicious. Each node i has its private
signing key ski and the corresponding public verification
key pki. We also assume a public key infrastructure (PKI),
i.e., all nodes have access to {pkj}j∈[n].

4.2. Threshold Secret Sharing

A (n, d + 1) threshold secret sharing scheme allows a
secret s ∈ F to be shared into n shares such that any
set of d + 1 shares are sufficient to recover the original
secret, but any set of d shares give no information about
the original secret [60], [11]. We use the common Shamir
secret sharing [60] scheme, where the secret is embedded in
a random degree d polynomial in the field F. Specifically,
to share a secret s ∈ F, a polynomial p(·) of degree d is
chosen such that s = p(0) and other coefficients of p(·),
a1, a2, · · · , at are chosen uniformly randomly from F:

p(x) = s+ a1x+ a2x
2 + · · ·+ adx

d

The i-th share of the secret is then p(i), i.e., the polynomial
evaluated at i. Given d+1 points on the polynomial p(·), one
can efficiently reconstruct the polynomial using Lagrange
interpolation. Also note that s is information-theoretically
hidden from an adversary that knows d or fewer evaluation
points on the polynomial other than p(0) [60].

4.3. Polynomial Commitment Scheme

The dealer in our VSS scheme commits to its secret
by committing to a degree d polynomial p(·). Let PC =
(PC.Setup,PC.Commit,PC.DegCheck,PC.Open,PC.Verify)
be a polynomial commitment scheme.
• PC.Setup(1κ) → pp. On input the security parameter κ,

outputs the public parameters for the polynomial commit-
ment scheme.

• PC.Commit(pp, p(·), n) → (v,w). On input the public
parameters pp, number of evaluations n, and the polyno-
mial p(·), outputs the commitment v of the polynomial
p(·) and witness w.

• PC.Open(pp,w, p(·), i)→ (p(i), π). On input the index i
and the polynomial p(·), outputs p(i), and a valid opening
proof π.

• PC.DegCheck(pp,v, d) → 0/1. On input the polynomial
commitment v and a degree d, outputs 1 if v is a com-
mitment to a polynomial of degree at most d, and outputs
0 otherwise.

• PC.Verify(pp,v, i, u, π)→ 0/1. On input the polynomial
commitment v to a polynomial p(i), outputs 1 if u = p(i),
and outputs 0 otherwise.

Batch interfaces. As we briefly describe in §3.2, the dealer
in our VSS protocols provides opening proofs for a batch of
indices and each node verifying them locally. Thus, we use
the batched interfaces PC.BatchOpen and PC.BatchVerify
for better exposition. Briefly, PC.BatchOpen takes a set I
of indices along with (v,w) and outputs (s,π). Here s is
the vector of openings for each index in I , and π consists
of corresponding opening proofs. Similarly, PC.BatchVerify
takes as input a set I of indices along with (s,π), and out-
puts 1 if all the opening proofs are valid. We formally define
these interfaces in Appendix A.2 and present mechanisms
to verify a batch of polynomial evaluations more efficiently
than verifying each evaluation independently.

A polynomial commitment scheme PC is secure if it
satisfies the Completeness, Evaluation binding, and Hid-
ing [48]. Intuitively, the Completeness property ensures that
verification of honestly generated commitments and opening
proofs are always successful. The Evaluation binding prop-
erty prevents A from successfully opening to two different
values at the same index. Lastly, the Hiding property guar-
antees that the commitment v reveals no information about
the polynomial.
Constructions. Figure 1 gives a concrete polynomial com-
mitment scheme. The described scheme combines ideas
from the classic Pedersen’s polynomial commitment and
SCRAPE’s low-degree test [22]. The resulting scheme has a
linear-sized commitment and constant-sized opening proof.
The commitment includes n values of the polynomials in
the exponent, and the low degree is verified by multiplying
these values in the exponent with a random word from the
dual code and checking that the result is 1G, i.e., the iden-
tity element of G. The scheme is information-theoretically
hiding and evaluation binding assuming hardness of discrete
logarithm [56].

5

PC.Setup(1λ): Output pp = (G,F, g, h), for an elliptic
curve group G with scalar field F, and uniformly random
and independent generators g, h ∈ G.

PC.Commit(pp, p(·), d, n): Let p(·) be the polynomial of
degree d. Sample a random polynomial r(·) of degree d.
Let v be the commitment to p(·) where

v =
[
gp(1)hr(1), gp(2)hr(2), . . . , gp(n)hr(n)

]
Output (v,w) = (v, r(·)).

PC.Open(pp, i, p(·), r(·)): Output (u, π) = (p(i), r(i)).

PC.DegCheck(pp,v, d): Sample a random degree d = n −
t− 2 polynomial z(·) in F. Output 1 if∏

i∈[n]

v[i]z(i)·λi = 1G (1)

for λi =
∏

j∈[n],j ̸=i 1/(i− j); otherwise output 0.

PC.Verify(pp,v, i, u, π): Output 1 if v[i] = gzhπ; otherwise
output 0.

Figure 1: Pedersen’s polynomial commitment scheme combined
with SCRAPE’s low degree test.

Remark. An alternative approach would have been to com-
mit to d+1 coefficients of the polynomials in the exponent.
This would have made the commitment shorter and would
have eliminated the need for low-degree verification. On the
other hand, the opening phase would have become more
costly: verifying each opened value would have required
O(d) exponentiations instead of one.

5. Synchronous VSS

Our synchronous VSS protocol is given in Algorithm 1.
We assume n = 2t+ 1. The CRS (G,F, g, h) is the output
of the polynomial commitment’s setup phase PC.Setup(1κ).
Let ∆ be the upper bound on the delay between the honest
dealer and any honest node. For any node i ∈ [n], let ski, pki
be its private signing key and public verification key.

5.1. Design

Sharing phase. Let m ∈ F be the message the dealer L
wants to share. L samples a degree-t polynomial

s(x) = m+ s1x+ s2x
2 + · · ·+ stx

t (2)

with uniformly random si ∈ F for each i ∈ [n]. L then com-
putes the commitment of s(·) along with the commitment
witness as v,w ← PC.Commit(s(·), n).

At time τ = 0, L computes the opening proof πi =
PC.Open(s(·), i,w) for each i ∈ [n] and sends the tuple
⟨SHARE,v, s(i), πi⟩ to node i. Node i, upon receiving the
SHARE message from L, validates that v is a polynomial
of degree t by checking that PC.DegCheck(v, t) = 1, and
checks that its share is valid using PC.Verify(v, i, s(i), πi).

Algorithm 1 Synchronous VSS
PUBLIC PARAMETERS: n ≥ 2t + 1, {pki}i∈[n], maximum
network latency ∆, and public parameters (G,F, g, h) of the
polynomial commitment scheme.
PRIVATE INPUT: Signing key ski.

SHARING PHASE:
// Dealer L at time τ = 0 and with input m:

101: Sample a t-degree random polynomial s(·) with s(0) = m
102: v,w ← PC.Commit(s(·), n)
103: for i = 1, 2, ..., n do
104: Let πi = PC.Open(s(·), i,w)
105: send ⟨SHARE,v, s(i), πi⟩ to node i

// Each node i
106: upon receiving ⟨SHARE,v, s(i), πi⟩ from dealer L do
107: Check PC.DegCheck(v, t) = 1
108: Check PC.Verify(v, i, s(i), πi) = 1
109: if both checks are succesful then
110: Let σi = sign(ski,v)
111: send ⟨ACK, σi⟩ to L

// Dealer L at time τ = 2∆
112: Let σ be the set of received valid signatures on v.
113: Let I be the indices of nodes with missing signatures.
114: Let s,π = PC.BatchOpen(p(·), I,w).
115: send (v, I,σ, s,π) using the broadcast channel.

// Each node i once the broadcast outputs (v, I,σ, s,π).
116: Check if each σ ∈ σ is valid and |σ|≥ t+ 1.
117: Check if PC.BatchVerify(v, I, s,π).
118: Check that I includes all nodes with missing signatures.
119: if all the checks pass then
120: Output (v, s(i), πi); return
121: else
122: Output 0 as the default share.

RECONSTRUCTION PHASE:
// every node i after finishing the sharing phase

201: send ⟨RECON, s(i), πi⟩ to all.
202: upon receiving ⟨RECON, s(j), πj⟩ from node j do
203: if PC.Verify(v, s(j), πj) then
204: T = T ∪ {sj}
205: if |T |≥ t+ 1 then
206: output s(0) using Lagrange interpolation; return

If both these checks are successful, node i sends a message
⟨ACK, σi⟩ where σi is its signature on v.

L waits for 2∆ units of time to collect ACK messages.
Here, for ease of exposition, we assume ∆ has accounted
for the time required to validate v and check the validity
of a share. At time τ = 2∆, let σ be the set of valid
signatures L receives and let I be the set of nodes from
whom L does not receive valid signatures. L then computes
(s,π) = PC.BatchOpen(s(·), I,w) where s is of size |I|
and consists of s(k) for each k ∈ I , and π is the opening
proof. Then, L sends the message ⟨v, I,σ, s,π⟩ using the
broadcast channel.

When the broadcast channel outputs ⟨v, I,σ, s,π⟩, each
node locally checks that: (i) σ is a valid set of signa-
tures on v and |σ|≥ t + 1; (ii) I includes all nodes

6

Dealer waits for .
1. Let 𝛔
2. Let

𝛔Dealer

Given to share, dealer computes:
1.
2. PC.Commit
3. PC.Open

Each node checks:
 1. Signatures in 𝛔 are valid and 𝛔
 2. includes valid shares of nodes whose
 signatures are not in 𝛔

B
ro

ad
ca

st
C

ha
nn

el

𝛔

𝛔

𝛔

Output

Output

Each node checks:
1. is a commitment to
 polynomial of degree .
2. Check PC.Verify

Figure 2: Our synchronous VSS protocol involves three nodes, one of which is malicious (shaded red in the diagram).

whose signatures are not included in σ; and (iii) s in-
cludes valid shares of nodes in I with respect to v, i.e.,
PC.BatchVerify(v, I, s,π). If all these checks are success-
ful, node i outputs its share s(i), the commitment v, and
the opening proof πi. A node gets these from either the
broadcast message or the SHARE message it received from
the dealer.

Using multisignatures. One simple concrete optimiza-
tion is to have each node sign its ACK message using a
multisignature scheme. More precisely, the ACK message
from node i includes its partial signature on v. L then
broadcast the multisignature σ on v instead of broadcasting
a list of signatures. Concretely, in our experiments, we use
the BLS multisignature scheme from [12].
Reconstruction phase. Let T be a set of t + 1 nodes
(including itself) from which node i receives valid shares
s(j). Upon receiving t + 1 such valid shares, node i com-
putes the secret m using Lagrange interpolation as m =∑

k∈T µks(k), where µk =
∏

j ̸=k
j

j−k are the Lagrange
coefficients.

Optimized reconstruction. In certain situations, it is pos-
sible to optimize the reconstruction phase. A node may not
need to always wait for t + 1 RECON messages. If, during
the sharing phase, the dealer has already revealed k shares
as part of s, a node only needs to wait for t+1− k RECON
messages for shares not included in s.

5.2. Analysis

Correctness. An honest dealer, L, will receive signed ACK
messages from all honest nodes within 2∆ time due to the
synchrony assumption. Since there are at least t+ 1 honest
nodes, |σ|≥ t+1. Let ⟨v, I,σ, s,π⟩ be the transcript broad-
cast by L. Then, by the Validity property of Byzantine agree-
ment, each honest node will output ⟨v, I,σ, s,π⟩. Then,
by the Correctness property of the signature scheme and
the Completeness property of the polynomial commitment
scheme, every honest node will accept the VSS transcript
and output its share.

Finally, during the reconstruction protocol, each honest
node will multicast a valid RECON message. Thus, every
honest node will receive at least t + 1 valid shares, which
is sufficient to reconstruct the degree t polynomial s(·), and
hence s(0). Moreover, the Soundness of the polynomial
commitment ensures that honest nodes only accept valid

shares on the committed polynomial. This implies that all
honest nodes output the same unique secret s(0).
Termination. Follows directly from the Termination prop-
erty of the Byzantine broadcast scheme (cf. Definition 5).
Completeness. An honest party outputs its share only upon
receiving a valid transcript (v, I,σ, s,π) over the Byzantine
broadcast channel. The Agreement property of the Byzantine
broadcast guarantees that every honest node outputs the
same transcript, and hence the same polynomial commit-
ment. Successful validation of the transcript implies that at
least t + 1 node, hence at least one honest node, signed
the commitment. This implies with 1− negl(κ) probability,
v is a commitment to a polynomial of degree at most t.
Also, for each node i ∈ [n], either a signature of i or its
valid share is included in σ. In the former case, assuming
the existential unforgeability of the signature scheme, node
i already received its share. In the latter case, node i will
receive its valid share from s.

During the reconstruction phase, each honest node will
reconstruct the degree t polynomial p(·) corresponding to
the commitment v. Hence, each node will output the unique
secret s(0).
Secrecy. We prove Secrecy using simulatability: for every
probabilistic polynomial-time (PPT) adversary A that cor-
rupts up to t nodes, there exists an ideal world PPT simulator
SVSS that interacts with the ideal functionality FVSS (cf.
Figure 4) and produces a view such that A’s view in the
simulated world is identical to a run of the Sharing phase.
We formally prove Secrecy in Appendix C.
Performance. We will analyze our performance using Fig-
ure 1 as the polynomial commitment scheme. The dealer
performs O(n log n) field operations to compute shares of
each node (using FFT). The dealer then performs O(n)
group exponentiations to compute the commitments and
O(n) signature verifications. Since group exponentiation is
more expensive than log n field operations, we treat the
dealer’s computation cost as O(n) group exponentiations.
The running time of each node is as follows. Each node
performs O(n) group exponentiations to verify the polyno-
mial commitment, signatures of O(n) nodes, and shares of
O(n) nodes. Finally, the dealer privately sends an O(κn)-
bit commitment to each node and broadcasts an O(κn)-
bit transcript. Hence, the total communication cost of our
VSS protocol is O(κn2 + CBB(κn)) where CBB(a) is the
communication cost of broadcasting a message of length a.

Combining all the above, we get the following theorem.

7

Algorithm 2 Asynchronous VSS

PUBLIC PARAMETERS: n ≥ 3t+ 1 , {pki}i∈[n], and public
parameters of the polynomial commitment scheme pp.
PRIVATE INPUT: Signing key ski.

SHARING PHASE:
// Dealer L with input m:

101: Sample a 2t-degree random polynomial s(·) with s(0) = m

102: v,w ← PC.Commit(s(·), n)
103: for i = 1, 2, ..., n do
104: Let πi ← PC.Open(s(·), i,w)
105: send ⟨SHARE,v, s(i), πi⟩ to node i

// Each node i
106: upon receiving ⟨SHARE,v, s(i), πi⟩ from dealer L do
107: Check PC.DegCheck(v, 2t) = 1
108: Check PC.Verify(v, i, s(i), πi) = 1
109: if both the checks pass then
110: Let σi = sign(ski,v)
111: send ⟨ACK, σi⟩ to L

// Dealer L waits for 2t+ 1 valid signatures on v
112: Let σ be the set of valid signatures on v.
113: Let I be the indices of nodes with missing signatures.
114: Let s,π = PC.BatchOpen(p(·), I,w).
115: send (v, I,σ, s,π) using a reliable broadcast channel.

// Each node i once the broadcast outputs (v, I,σ, s,π).
116: Check if each σ ∈ σ is valid and |σ|≥ 2t+ 1 .
117: Check that I includes all nodes with missing signatures.
118: Check if PC.BatchVerify(v, I, s,π).
119: if all the checks pass then
120: Output (v, s(i), πi); return

RECONSTRUCTION PHASE:
// every node i after finishing the sharing phase

201: send ⟨RECON, s(i), πi⟩ to all.
202: upon receiving ⟨RECON, s(j), πj⟩ from node j do
203: if PC.Verify(v, s(j), πj) then
204: T = T ∪ {sj}
205: if |T |≥ 2t+ 1 then
206: output s(0) using Lagrange interpolation; return

Theorem 1 (Synchronous VSS). In a synchronous network
of n ≥ 2t + 1 nodes among which at most t nodes are
malicious, assuming a polynomial commitment scheme, a
signature scheme, and a Byzantine broadcast channel, Al-
gorithm 1 implements a t-resilient publicly verifiable VSS
protocol with O(κn2+CBB(κn)) communication cost. Here
κ is the security parameter, and CBB(a) is the communi-
cation cost of broadcasting a message of length a using the
broadcast channel.

6. Asynchronous VSS

In this section, we will describe the modifications to
make our protocol in an asynchronous or partial syn-
chronous network. As we mention in §3, we seek to design
an AVSS with the Completeness property. Since AVSS with

completeness implies an asynchronous RBC, n/3 is the
maximum number of failures any AVSS protocol can toler-
ate [14]. Throughout this section, we will assume n = 3t+1.
We summarize our protocol in Algorithm 2, where we
highlight in gray the changes on top of Algorithm 1.
Protocol intuition. The natural attempt to adapt the syn-
chronous VSS in an asynchronous network of n = 3t+1 is
to let the dealer share its secret using a degree t polynomial
and keep the rest of the protocol as is. However, as we
briefly mention in §3.2, this approach will not work. In asyn-
chrony, there is no fixed upper bound on the message delays,
so the dealer cannot wait to receive acknowledgments from
all honest nodes. Instead, the dealer must move on upon
receiving only n − t = 2t + 1 signed acknowledgments.
But t of these n − t signed acknowledgments could be
from malicious nodes, and the missing t acknowledgments
correspond to honest but slow nodes. In this case, an honest
dealer would reveal to A a total of 2t shares on a degree t
polynomial, which is sufficient for A to recover the secret.

We address this issue with the following key observation.
We let the dealer share the secret using a degree 2t polyno-
mial (instead of degree t). The rest of the protocol follows
a similar structure, with the following natural changes. The
dealer waits for n− t valid signed acknowledgments instead
of a pre-specified time bound, and publishes the t shares
from the t slow nodes. Intuitively, by using a degree 2t
polynomial, we ensure that A does not learn the secret even
after learning 2t shares on it. Finally, using a degree 2t
degree polynomial does not affect the reconstructability of
the secret as n− t ≥ 2t, i.e., there are enough honest nodes
to reconstruct the secret.

We want to note that although the dealer in Algorithm 2
shares its secret using a degree 2t polynomial, the protocol
is not dual-threshold. This is because A learns up to 2t
points on the polynomial by corrupting only t nodes.

6.1. Design

Sharing phase. During the sharing phase, the dealer L
embeds the secret m in a polynomial of degree 2t instead
of degree t. Let s(·) be the polynomial with s(0) = m.
Similarly to Algorithm 1, the dealer then computes the
commitment v along with witness w and an opening proof
πi for each node i ∈ [n], and sends ⟨SHARE,v, πi⟩ to each
node i.

Each node, upon receiving the SHARE message from L,
checks that v is a commitment to a polynomial of degree
2t, instead of degree t. Also, instead of waiting for 2∆ time
to receive ACK messages, L waits until it receives 2t + 1
valid ACK messages. L then broadcasts ⟨v, I,σ, s,π⟩ using
an asynchronous reliable broadcast (RBC) channel. Here,
I consists of the indices of nodes whose signatures are
missing, s consists of the shares of nodes in I , and π
consists of batch opening proofs of shares in s.

Once the RBC outputs, a node accepts the transcript only
if: (i) σ consists of at least 2t+1 valid signatures, (ii) v is
a commitment to a polynomial of degree 2t, (iii) s includes

8

valid shares of all nodes with missing signatures. Finally,
upon successful validation, each node i outputs v, s(i), πi.
Reconstruction phase. The only change from the syn-
chronous scheme is that each node waits for 2t + 1 valid
RECON messages because the secret is shared using a degree
2t polynomial. Similar to the synchronous scheme, nodes
can utilize the shares revealed as a part of s to speed up the
reconstruction phase.
Reducing the storage costs. In the AVSS scheme in Al-
gorithm 2, each node stores the entire v, which is O(κn)
for Pedersen polynomial commitment. We can reduce the
storage cost to O(κ), using error-correcting code [57] and
online error correction [21], similar to AVSS protocols such
as [64], [32]. More specifically, each node encodes v using
a [n, t, n − t] Reed-Solomon code. Let v̂ be the encoded
commitment. Each node i then stores v̂[i] and deletes the
rest of v̂. During the reconstruction phase, each node i
sends ⟨RECON, v̂[i], s(i), πi⟩ to all. Upon receiving RECON
messages, nodes first recover v using online error correc-
tion. Then, nodes use the reconstruction protocol described
in §6.1 to recover the polynomial.

6.2. Analysis

Correctness. Since n − t ≥ 2t + 1, an honest dealer L
will eventually receive 2t + 1 signed acknowledgments.
Then, using a similar argument as our synchronous VSS,
each honest node will eventually output and accept the
transcript broadcast by the honest dealer. Similarly, during
the reconstruction phase, each node will eventually receive
2t + 1 valid shares, which is sufficient to reconstruct the
degree 2t polynomial p(·), and hence s(0). Also, honest
nodes will accept only valid shares and hence will output
the same unique secret shared by the dealer.
Asynchronous Termination. Follows directly from the To-
tality property of the Byzantine RBC (cf. Definition 6).
Completeness. Follows using a similar argument as the
synchronous VSS protocol.
Secrecy. We will prove the Secrecy in Appendix C.
Performance. The computation cost of the dealer and nodes
are similar to that of the synchronous VSS protocol, except
the dealer uses a degree 2t degree polynomial to share its
secret. Precisely, both the dealer and nodes need to perform
O(n) group exponentiations. In terms of the bandwidth
cost, the dealer sends O(κn) length private message to
each node and O(κn) bit long message using a broadcast
channel. Thus, using the broadcast channel from [32], the
total communication cost is O(κn2).

Combining all the above, we get the following theorem.

Theorem 2 (Asynchronous VSS). In an asynchronous net-
work of n ≥ 3t+1 nodes among which at most t nodes are
malicious, assuming a polynomial commitment scheme, a
signature scheme, and a Byzantine reliable broadcast chan-
nel, Algorithm 2 implements a t-resilient publicly verifiable
asynchronous VSS protocol with O(κn2) communication
costs. Here κ is the security parameter.

7. Dual-threshold AVSS

In this section, we use our paradigm to design an (n, ℓ, t)
dual-threshold AVSS scheme.
Protocol intuition. For any given ℓ, the dealer in our dual-
threshold AVSS shares its secret using a degree 2t polyno-
mial and follows the AVSS protocol until it receives 2t+1
signed acknowledgments. Then, unlike the AVSS scheme,
the dealer does not reveal all remaining t shares. Instead, the
dealer publicly reveals only 2t− ℓ of the remaining t shares
and shares the remaining t− (2t− ℓ) = ℓ− t shares using
a verifiable encryption scheme. More precisely, for each of
the remaining t−(2t−ℓ) = ℓ− t shares, the dealer encrypts
it with the public key of the corresponding recipient node
and computes a NIZK proof of its correctness. Intuitively,
by publicly revealing only 2t − ℓ shares, we ensure that
any coalition of ℓ nodes learns at most 2t points on the
polynomial. The protocol still ensures Completeness, as the
nodes whose shares are not revealed by the dealer will
receive their share from the verifiable encryptions.

7.1. Verifiable Encryption of Committed Messages

Our dual-threshold AVSS scheme relies on verifiable en-
cryptions for the Pedersen commitment scheme, as defined
below.

Definition 4 (Verifiable Encryption of a Committed Mes-
sage). Verifiable encryption (VE) of a committed message
involves three parties: a prover P , a verifier V , and a receiver
R. The receiver R has a public-private key pair (pk, sk). Let
Cm be a commitment scheme. Given (v, c, pk), P wants to
convince V that c is a public key encryption of a message
s under public key pk, and that v is an commitment to s
and P knows s. A verifiable encryption scheme provides
the following interfaces.
• VE.Setup(1κ,Cm)→ ppVE. On input the security param-

eter κ, and the commitment scheme Cm, the algorithm
outputs the public parameters ppVE.

• VE.KeyGen(ppVE) → (pk, sk). The algorithm outputs a
public-private key pair for the encryption scheme.

• VE.EncProve(ppVE, pk, s, v, w) → (c, πVE): The algo-
rithm takes as input the message s, commitment v with
witness w, where v, w ← Cm.Commit(s). It outputs an
encryption c of the tuple (s, π = Cm.Open(v, s, w)) along
with a NIZK proof πVE of their correct encryptions.

• VE.Verify(ppVE, pk, v, c, πVE) → 0/1. The algorithm
outputs 1, if πVE is a valid proof that there exists α, π such
that α, π = VE.Dec(sk, c) and Cm.Verify(v, α, π) = 1.
Note that πVE needs to be verifiable without access to
the secret key or the underlying message α.

• VE.Dec(sk, c)→ s, π: Given the ciphertext c and a secret
key sk, the algorithm outputs a decryption of c using sk.

A verifiable encryption scheme is secure if it satisfies
the standard Completeness, Soundness, and Zero-knowledge
properties of verifiable computation schemes [39]. Intu-
itively, the Completeness property ensures that verification

9

of an honestly generated πVE is always successful, even if
a malicious node generates the public key. The Soundness
property prevents a malicious prover from convincing an
honest node about the correctness of an incorrectly gener-
ated ciphertext. Stating differently, if VE.Verify is successful
for a ciphertext c and public key pk, then a node with
secret key sk will always be able to recover its share
and the opening proof. Lastly, the Zero-knowledge property
guarantees that the ciphertext c and the proof πVE reveal no
information about the share other than whatever is revealed
by the polynomial commitment scheme.

Batch verifiable encryptions. Looking ahead, the dealer in
our dual-threshold VSS computes the verifiable encryptions
for a batch of shares. Thus, we define the VE scheme to
additionally support batched interfaces VE.BatchEncProve
and VE.BatchVerify. Trivially, every VE can be modified
to support VE.BatchEncProve and VE.BatchVerify by in-
ternally invoking the VE.EncProve and VE.Verify for each
index in the batch, respectively. The main reason for defining
this additional interface is to support the design of batch
encryption and verification that are more efficient than the
trivial approach.

• VE.BatchEncProve(ppVE, I, pkI , s,v,w) → (c, πVE).
On input a vector s of messages, their commitments v,
corresponding witness w, the algorithm outputs encryp-
tions c for each s ∈ s, along with a NIZK proof πVE that
satisfy VE.BatchVerify.

• VE.BatchVerify(ppVE, I, pkI ,v, c, πVE) → 0/1. The al-
gorithm outputs 1 if πVE is a valid proof that, for each i ∈
I there exists (αi, πi) such that αi, πi = VE.Dec(ski, ci)
and PC.Verify(v, αi, πi) = 1

Constructions. Only a few VE schemes are known for
discrete logarithm-based commitment schemes [35], [19],
[42], [47]. These VE schemes are designed to work with the
Feldman commitment scheme, where the dealer commits to
a secret s as gs. Note that the Feldman commitment scheme
is not hiding. For instance, if the secret has low entropy, an
adversary can recover the committed message by running
a brute-force search on possible messages. As a result,
these VE schemes cannot be directly used in general VSS
schemes with arbitrary message distributions. Indeed, these
VE schemes were designed for VSS schemes for Distributed
Key Generation (DKG) protocols [42], [33], [47], where the
shared secret is a random element from a large field.

Our dual-threshold AVSS requires a VE scheme for
the Pedersen commitment scheme, where commitments are
gshr. To our knowledge, no such VE scheme has been
described. We present modifications to Groth’s VE [42] to
make it compatible with the Pedersen commitment scheme
in Appendix B.

Remark. If our dual-threshold VSS scheme is used to share
secrets with high entropy, we can also employ existing VE
schemes, such as those mentioned in [35], [19], [42], [47].

Algorithm 3 Dual-threshold AVSS
PUBLIC PARAMETERS: n ≥ 3t+ 1, ℓ ≥ t, {pki}i∈[n], polyno-
mial commitment PC and verifiable encryption VE.
PRIVATE INPUT: Signing key ski.

SHARING PHASE:
// Dealer L with input m:

101: Sample a 2t-degree random polynomial s(·) with s(0) = m
102: v, r(·)← PC.Commit(s(·), n)
103: for i = 1, 2, ..., n do
104: send ⟨SHARE,v, s(i), r(i)⟩ to node i

// Each node i
105: upon receiving ⟨SHARE,v, s(i), r(i)⟩ from dealer L do
106: Check PC.DegCheck(v, 2t) = 1
107: Check PC.Verify(v, i, s(i), r(i)) = 1
108: if both the checks pass then
109: Let σi = sign(ski,v)
110: send ⟨ACK, σi⟩ to L

// Dealer L waits for 2t+ 1 valid signatures
111: Let σ be the set of valid signatures on v.
112: Let I be the indices of nodes with missing valid signatures.
113: Partition I into subsets IR and IVE with |IR|= 2t− ℓ
114: s,π ← PC.BatchOpen(v, IR, p(·),w)
115: Let sIVE ← {p(i)} for all i ∈ IVE.
116: c, πVE ← VE.BatchEncProve(IVE, pkIVE , sIVE ,vIVE ,wIVE)
117: send (v, IR, IVE,σ, s,π, c, πVE) using a reliable broadcast.

// Node i upon broadcast outputs (v, IR, IVE,σ, s,π, c, πVE).
118: Check if each σ ∈ σ is valid and |σ|≥ 2t+ 1.
119: Check IR ∪ IVE includes all nodes with missing signatures.
120: Check if PC.BatchVerify(v, IR, s,π).
121: Check if VE.BatchVerify(IVE, pkIVE ,v, c, πVE).

122: if all the checks pass then
123: if received no valid SHARE message and (p(i), πi) /∈ s

then
124: Let p(i), πi ← VE.Dec(c[i], ski)

125: output (v, p(i), πi); return

RECONSTRUCTION PHASE:
// every node i after finishing the sharing phase

201: send ⟨RECON, p(i), πi⟩ to all.
202: upon receiving ⟨RECON, p(j), πj⟩ from node j do
203: if PC.Verify(v, j, p(j), πj) then
204: T = T ∪ {p(j)}
205: if |T |≥ 2t+ 1 then
206: output p(0) using Lagrange interpolation; return

7.2. Dual-threshold AVSS Design

Let L be the dealer of the (n, ℓ, t) dual-threshold AVSS
scheme (cf. Definition 3). Let PC and VE be the polynomial
commitment and verifiable encryption scheme, respectively.
We summarize our scheme in Algorithm 3 where we high-
light the changes with respect to Algorithm 2 in gray .
Sharing phase. The first part of the Sharing phase is the
same as the AVSS protocol in Algorithm 2. L shares its
secret using a degree 2t polynomial p(·), computes its
commitment v,w ← PC.Commit(p(·), n), and then sends

10

⟨SHARE,v, p(i)⟩ to each node. Each node i upon receiving
the SHARE message, validates it as in Algorithm 2, computes
σi = sign(ski,v), and responds to L with ⟨ACK, σi⟩.

L waits for 2t+ 1 valid signed acknowledgements. Let
σ be the set of valid acknowledgments, and let I ⊂ [n]
be the set of nodes from whom L does not receive ACK
messages. Note that these include nodes who sent invalid
ACK messages as well as nodes whose messages have not
arrived. Next, L arbitrarily partitions I into two disjoint
subsets IR and IN , such that |IR|= 2t− ℓ and |IVE|= ℓ− t.
L then computes s,π ← PC.BatchOpen(p(·), IR,w) and
c, πVE ← VE.BatchEncProve(p(·),v, IVE).

L then reliably broadcast the dual-threshold AVSS tran-
script (v, IR, IVE,σ, s,π, c, πVE) to all nodes. Upon re-
ceiving the transcript, nodes validate it by checking that:
(i) σ is a valid set of signatures on v and |σ|≥ 2t + 1;
(ii) IR ∪ IVE includes all nodes whose signatures are not
included σ; (iii) s includes of valid shares of nodes in IR
with respect to v i.e., PC.BatchVerify(v, IR, s,π); (iv) c
includes verifiable ciphertexts using VE.BatchVerify.

Upon successful verification, each node i locally outputs
the commitment v, its share p(i), along with the commit-
ment opening proof πi to be used during the reconstruction
phase. Node i either receives p(i), πi from SHARE message,
or computes p(i), πi ← VE.Dec(c[i], ski).
Reconstruction phase. The reconstruction phase is identical
to the reconstruction phase of our AVSS scheme.

7.3. Optimization for Common Case Execution

In the dual-threshold AVSS we have described so far,
the dealer L always verifiably encrypts ℓ− t of the remain-
ing shares, which can be expensive for both L and other
nodes. The following optimizations can significantly lower
the number of shares L needs to encrypt in the common
case: when the number of active failures is low and the
network between L and most honest nodes is synchronous.

In the optimized design, in addition to waiting for
2t + 1 signed acknowledgments, the dealer L also waits
for the network latency 2∆, whichever occurs later. Let
2t + 1 + k for k ≥ 0 be the number of signed acknowl-
edgments the dealer receives. L then verifiably encrypts
shares of max{0, ℓ − (t + k)} nodes. This implies that
with more signed acknowledgments, L needs to verifiably
encrypt fewer shares. In the best-case scenario, i.e., when L
receives ℓ − t additional signed acknowledgments, it need
not compute any verifiable encryptions. Thus, in the best
case, we get the dual-threshold property for free.
Remark. The optimization we describe above is also ap-
plicable to the AVSS scheme in §6. Also, the storage cost
optimization we describe in §6.1 also applies to our dual-
threshold AVSS scheme.

7.4. Analysis

Correctness and Asynchronous termination. Follows
from similar arguments as the AVSS protocol.

Completeness. The soundness guarantees of the VE scheme
ensure that nodes whose signature or share is not included
in the VSS transcript will still receive its valid share upon
decryption. This, combined with an argument similar to the
synchronous VSS protocol, guarantees Completeness.
Secrecy. We prove Secrecy in Appendix C.
Performance. The computation cost of the dealer and nodes
is similar to that of the AVSS protocol, except the transcript
includes verifiable encryptions for a subset of nodes. Since
the (amortized) computation cost of both computing verifi-
able encryptions and verifying them is linear in the number
of encrypted shares [42], [47], both the dealer and nodes
need to perform O(n) group exponentiations. Additionally,
the dealer sends a private message of length O(κn) to each
node and a broadcast channel message of length O(κn)
bits. Thus, using the broadcast channel from [32], the total
communication cost is O(κn2).

Combining all the above, we get the following theorem.

Theorem 3 (Dual-threshold AVSS). In an asynchronous
network of n ≥ 3t+ 1 nodes among which at most t nodes
are malicious, assuming a polynomial commitment scheme,
a signature scheme, a Byzantine reliable broadcast channel,
and a Verifiable Encryption scheme, Algorithm 3 implements
a t-resilient publicly verifiable (n, ℓ, t) dual-threshold AVSS
protocol for any ℓ ∈ [t, n− t) with O(κn2) communication
costs. Here κ is the security parameter.

8. Implementation and Evaluation

We evaluate our VSS schemes by implementing them
in Rust. Our implementation is publicly available at https:
//github.com/sourav1547/vss . Our implementation uses the
blstrs library [1], which implements efficient finite field
and elliptic curve arithmetic. We also use (for both our
implementation and the baselines) the multi-exponentiation
of group elements using Pippenger’s method [9, §4] for
efficiency. For our dual threshold AVSS, we implement the
verifiable encryption scheme we describe in Appendix B.
Our experiments focus on the computation component, ex-
cluding any networking aspects. We will separately calculate
the bandwidth usage of our scheme and the baselines. Our
implementation supports two different signature schemes:
the Schnorr signature using Ed25519 elliptic curve [58]
scheme and the BLS signature using the BLS12-381 ellip-
tic curve [13]. The Schnorr signature has faster signature
verification time but requires interactive aggregation. The
BLS signature scheme supports non-interactive aggregation
but requires two pairings per signature verification. In the
context of our VSS, the dealer needs to perform 2n pairings
to verify the signatures.

8.1. Evaluation Setup

We evaluate VSS schemes using four key metrics: deal-
ing time, verification time, bandwidth usage, and reconstruc-
tion time. We explain each of these metrics below:

11

https://github.com/sourav1547/vss
https://github.com/sourav1547/vss

Table 1: Evaluation of AVSS schemes. Dealing runtime measures the computation cost of the dealer. Verification time refers to the
per-node computation cost. Bandwidth usage is the amount of data the dealer sends over the broadcast channel. Our low-threshold AVSS
(ℓ = t) is a special case of our dual-threshold AVSS with ℓ = t, so they share the same performance numbers. The worst-case performance
of our dual-threshold AVSS with ℓ ∈ [t, 2t] degrades linearly as ℓ increases, and the best-case performance is similar to the ℓ = t case.

Dealing time (in ms) Verification time (in ms) Bandwidth usage (in KBytes)

Scheme ℓ n = 256 512 1024 n = 256 512 1024 n = 256 512 1024

Yurek et al. [64] (best case)† t 48.44 96.04 191.78 1.91 3.80 8.11 28 56 112
VE-based VSS [42]+§B [t, 2t] 845.37 1685.20 3419.30 316.31 611.94 1224.01 243.43 482.50 963.43

Ours (w/o multisig) t 48.70 104.66 235.97 48.70 104.66 235.97 28.03 55.95 112.12
Ours (w/ BLS multisig) t 156.84 311.43 630.78 6.16 11.30 22.42 17.39 34.68 69.48

Ours (w/o multisig) (worst case) 2t 319.22 650.05 1294.90 117.65 236.08 490.25 102.08 200.61 398.83
Ours (w/ BLS multisig) (worst case) 2t 419.01 836.41 1676.00 113.89 221.03 430.95 91.42 179.32 356.17
† In the worst-case scenario, each node is required to verify shares from t+1 other nodes and also reconstruct the secret during the sharing phase. This

leads to a significant increase in the per-node verification time. The Dealing time and the bandwidth usage remain unchanged.

Dealing time. The dealing time measures the computation
cost of the dealer in preparing the transcript. Specifically, it
refers to the time dealer takes to compute the polynomial
commitment, the opening proofs for each node, verify the
signed acknowledgments from all nodes, and aggregate them
into a BLS multisignature or a list of Schnorr signatures. For
our dual-threshold AVSS, the dealing time also includes the
computation time required to generate verifiable encryptions
of a subset of shares. The dealing time does not include the
computation cost of sending messages, such as broadcasting
the VSS transcript.
Verification time. This metric measures the computation
cost experienced by the nodes. It refers to the time a node
takes to verify the degree of the committed polynomial,
sign the polynomial commitment, verify the signatures on
the polynomial commitment, validate the revealed shares
(including its own), and the verifiable encryptions (appli-
cable only to dual-threshold AVSS) provided by the dealer.
The verification time does not include the computation cost
associated with networking.
Bandwidth usage. We measure bandwidth usage as the
amount of data the dealer sends over the broadcast channel.
We only include the data sent over the broadcast channel
as broadcasting is more expensive than sending private
messages. Furthermore, the data the dealer sends privately
to each node and the responses of the nodes are smaller than
the data sent over the broadcast channel.
Reconstruction time. The reconstruction time measures the
computation cost of reconstructing a secret from its shares.
This consists of the cost of verifying shares from each node,
computing appropriate Lagrange coefficients, and the final
inner product. Note that the reconstruction time of a VSS
scheme depends on the degree of the polynomial used to
share the secret and the cost of verifying each share.
Baselines. The first baseline VSS protocol we compare with
is the AVSS protocol of [64] with optimizations from [32].
Recall from §2, this scheme relies on complaints and does
not terminate even with a single faulty node. Thus, as our
baseline, we measure the dealing and verification time as the
computation cost in the best case, i.e., without any faulty
nodes. Similarly, we also measure the bandwidth usage of
this scheme as the amount of data the dealer sends using

an RBC in the best case. We choose this as one of our
baselines as it is the most efficient AVSS scheme, and by
comparing it with this scheme, we seek to demonstrate that
our AVSS guarantees asynchronous Termination and public
verifiability with minimal overhead. For the Yurek et al. [64]
scheme, we implement the polynomial commitment scheme
in Figure 1 instead of standard Pedersen commitment to
coefficients. Although committing to the evaluation points
increases the dealing time, we adopt this approach as it
lowers the computation cost during the complaint and re-
construction phase.

Our second baseline is the verifiable encryption-based
VSS scheme, which works as follows: The dealer computes
shares of each node using a polynomial of degree d (typi-
cally d = t), computes the commitment to the polynomial,
and verifiably encrypts shares of each node. The dealer
then broadcasts the commitment and ciphertexts to all nodes
using a broadcast channel. Concretely, we implement a
VSS scheme based on the verifiable encryption scheme we
describe in Appendix B, as existing VSS schemes based on
verifiable encryption [42], [33], [47] only achieve a weaker
Secrecy property. This baseline achieves similar properties
to our scheme: it supports dual-threshold, is publicly verifi-
able, and works in synchronous and asynchronous networks.

We want to note that the VE in Appendix B has a
parameter m that indicates the number of chunks we divide
a secret into. A smaller value of m results in quicker dealing
times but also leads to longer worst-case decryption times.
For our evaluations, we opt for m = 16 to favor the baseline,
i.e., to give it faster dealing and verification time in the
absence of failures. However, with m = 16, in the worst
case, a node would have to perform more than 221 group
exponentiations to decrypt its shares.

8.2. Evaluation Results

All experiments are run using a single thread on an Ap-
ple M2 Pro device with 16 GB RAM and 12 cores. We report
our results in Table 1. Recall that our scheme and VE-based
VSS [42] both provide asynchronous termination, public
verifiability, and dual-threshold, while Yurek et al. [64] does
not. We want to show through the evaluation that our scheme
only adds a small overhead compared to Yurek et al. [64]

12

Table 2: AVSS reconstruction time (in milliseconds). For syn-
chronous VSS, our reconstruction time is the same as the baseline.

Scheme n = 256 n = 512 n = 1024

Baseline 16.42 32.61 65.49

Ours 32.57 65.16 131.60

to achieve these properties while significantly improving the
performance over VE-based VSS [42].
Dealing time. For low threshold, ℓ = t, compared to Yurek
et al. [64], our AVSS dealing time is slightly larger as our
dealer additionally needs to validate the signature on the ac-
knowledgment messages. With BLS multisignature scheme,
the dealer performs two pairings per signature verification;
hence the dealing time is 3 times higher. Compared to VE-
based VSS, our shortens the dealing time (without multisig-
nature) by more than 15×. For high threshold, ℓ = 2t or
dual-threshold, compared to VE-based VSS [42]+§B, our
AVSS dealing time is better by about 2×, with or without
BLS multisignature. This is because the dealer in our dual-
threshold AVSS scheme verifiably encrypts ℓ − t shares
instead of all n shares. We reiterate that for ℓ > t, in the
best-case scenario, our dual-threshold AVSS has a dealing
time comparable to our low-threshold AVSS. Hence, in
the best case, our dual-threshold AVSS also improves the
performance by 5-15×.
Verification time. As we report in Table 1, for low threshold
ℓ = t, our verification with BLS multisignature is about
3× larger than the best case verification time of [64]. This
is because each node in our schemes needs to additionally
validate the signatures and shares of other nodes revealed by
the dealer. However, the absolute verification time is very
small, e.g., only 22 milliseconds for 1024 nodes. Also, it
is 60× smaller than the VE-based VSS scheme. For high
threshold ℓ = 2t, compared to VE-based VSS schemes, our
verification time of our protocol is 3× and 60× better in
the worst and best case, respectively.
Bandwidth usage. For low threshold ℓ = t, our scheme has
similar (without multisignature) or better (with multisigna-
ture) bandwidth cost compared with Yurek et al. [64], and
is significantly better than VE based VSS scheme. For dual
threshold with ℓ = 2t, our bandwidth usage is about 2×
better (in the worst case) than the VE-based VSS scheme.
Reconstruction time. Recall from §8.1 that the reconstruc-
tion time depends only on the degree of the polynomial
used to share the secret and the cost of verifying each
share. Since our synchronous VSS protocol uses the same
polynomial degree and the same share verification procedure
as the baseline, its reconstruction time is identical to the
baseline protocol. On the other hand, the dealer in our
AVSS scheme uses a degree 2t polynomial, compared to
degree t polynomial used by existing AVSS schemes. We
report the reconstruction time (in milliseconds) in Table 2.
As expected, our reconstruction time is twice as expensive
as the baseline. Nevertheless, the absolute values are very
small, e.g., 132 milliseconds for 1024 nodes.
Comparison with Class-group based VSS [47]. Very

recently, Kate et al. [47] improved the efficiency of [42]
for high-entropy secrets using a non-standard class-group
assumption. Since their implementation is not publicly avail-
able, we only estimate how it compares to our scheme. The
bandwidth usage of [47] is 219(n+1)+48n bytes (assuming
we commit to evaluation points instead of coefficients),
which is approximately 3× higher than our bandwidth us-
age. Regarding dealing and verification time, [47] reports
2.7× improvement over [42]. Since our dealing time is
15× better than [42], we anticipate that our dealing time
is 5× better than that of [47]. Similarly, we expect our
verification time to be 2-3× better. Note that we achieve
these improvements while relying on the standard discrete
logarithm assumption.

9. Discussion and Conclusion

Interactive vs. non-interactive protocols. In existing VE-
based VSS [33], [42], [47] the dealer sends a single message
over the broadcast channel. On the other hand, our VSS
protocols require interaction between the dealer and the
other nodes (but not among the nodes). As a result, our
protocols are slightly more complex to implement. Yet,
we believe that the substantial performance improvements
offered by our protocols outweigh the added complexity.
Designing a more efficient non-interactive public verifiable
secret sharing scheme remains a fascinating open question.
Applications with polynomials of an arbitrary degree.
Although our AVSS scheme shares the secret using a degree
2t polynomial, applications of AVSS such as asynchronous
DKG, asynchronous proactive secret sharing, etc., need not
use a degree 2t polynomials. Instead, these applications can
share their secret using an arbitrary degree polynomial, using
the degree switching trick of [31].
Conclusion. We have presented a simple paradigm to design
three efficient verifiable secret sharing protocols for vari-
ous settings, i.e., under synchrony, asynchrony, and asyn-
chrony with dual-threshold. All our protocols are optimal
fault-tolerant, i.e., we can tolerate n/2 and n/3 failures
in synchrony and asynchrony, respectively. Unlike existing
schemes, our VSS protocols do not rely on complaints
and require only a single broadcast. Our protocols output
efficient publicly verifiable transcripts and support dual-
threshold in asynchrony. Moreover, our asynchronous VSS
protocols ensure natural termination, a shortcoming in many
existing asynchronous VSS schemes.

Our VSS protocols maintain the same asymptotic per-
formance as state-of-the-art counterparts while relying on
milder cryptographic assumptions and setups. Furthermore,
our scheme also results in significant concrete improvements
compared to existing VSS protocols with similar properties.
Future research directions. Several recent VSS schemes
support batching [64], [43], [8], [3]. Very recently, the Bingo
protocol [3] achieved security of the AVSS scheme in the
presence of an adaptive adversary [3]. Extending our VSS
to support these properties while maintaining its simplicity
and performance is a fascinating research direction.

13

Acknowledgments

This work is funded in part by a VMware early career
faculty grant, a Chainlink Labs Ph.D. fellowship, and the
National Science Foundation award #2240976.

References

[1] blstrs library. [Online]. Available: https://docs.rs/blstrs/latest/blstrs/

[2] I. Abraham, D. Dolev, and G. Stern, “Revisiting asynchronous fault
tolerant computation with optimal resilience,” in Proceedings of the
39th Symposium on Principles of Distributed Computing, 2020, pp.
139–148.

[3] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, and G. Stern,
“Bingo: Adaptively secure packed asynchronous verifiable secret
sharing and asynchronous distributed key generation,” in Annual
International Cryptology Conference. Springer, 2023.

[4] N. Alhaddad, M. Varia, and H. Zhang, “High-threshold avss with
optimal communication complexity,” in International Conference on
Financial Cryptography and Data Security. Springer, 2021, pp.
479–498.

[5] O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen, “Practical large-
scale proof-of-stake asynchronous total-order broadcast,” Cryptology
ePrint Archive, 2023.

[6] M. Backes, A. Datta, and A. Kate, “Asynchronous computational vss
with reduced communication complexity,” in Cryptographers’ Track
at the RSA Conference. Springer, 2013, pp. 259–276.

[7] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness the-
orems for non-cryptographic fault-tolerant distributed computation,”
in Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, ser. STOC ’88, New York, NY, USA, 1988, p. 1–10.

[8] F. Benhamouda, S. Halevi, H. Krawczyk, A. Miao, and T. Rabin,
“Threshold cryptography as a service (in the multiserver and yoso
models),” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 323–336.

[9] D. J. Bernstein, J. Doumen, T. Lange, and J.-J. Oosterwijk, “Faster
batch forgery identification,” in Progress in Cryptology-INDOCRYPT
2012: 13th International Conference on Cryptology in India, Kolkata,
India, December 9-12, 2012. Proceedings 13. Springer, 2012, pp.
454–473.

[10] A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak, “Randpiper–
reconfiguration-friendly random beacons with quadratic communi-
cation,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 3502–3524.

[11] G. R. Blakley, “Safeguarding cryptographic keys,” in 1979 Interna-
tional Workshop on Managing Requirements Knowledge (MARK).
IEEE, 1979, pp. 313–318.

[12] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures
for smaller blockchains,” in Advances in Cryptology–ASIACRYPT
2018: 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2–6, 2018, Proceedings, Part II. Springer, 2018, pp. 435–
464.

[13] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Advances in Cryptology—ASIACRYPT 2001: 7th Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security Gold Coast, Australia, December 9–13, 2001
Proceedings 7. Springer, 2001, pp. 514–532.

[14] G. Bracha, “Asynchronous byzantine agreement protocols,” Informa-
tion and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[15] L. T. Brandao, L. T. Brandao, M. Davidson, and A. Vassilev, “Nist
roadmap toward criteria for threshold schemes for cryptographic
primitives,” 2020.

[16] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asyn-
chronous verifiable secret sharing and proactive cryptosystems,” in
Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security, 2002, pp. 88–97.

[17] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols,” in Annual International
Cryptology Conference. Springer, 2001, pp. 524–541.

[18] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constan-
tipole: practical asynchronous byzantine agreement using cryptogra-
phy,” in Proceedings of the nineteenth annual ACM symposium on
Principles of distributed computing, 2000, pp. 123–132.

[19] J. Camenisch and V. Shoup, “Practical verifiable encryption and de-
cryption of discrete logarithms,” in Annual International Cryptology
Conference. Springer, 2003, pp. 126–144.

[20] R. Canetti, “Studies in secure multiparty computation and applica-
tions,” Ph.D. dissertation, Citeseer, 1996.

[21] R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement
with optimal resilience,” in Proceedings of the twenty-fifth annual
ACM symposium on Theory of computing, 1993, pp. 42–51.

[22] I. Cascudo and B. David, “Scrape: Scalable randomness attested by
public entities,” in International Conference on Applied Cryptography
and Network Security. Springer, 2017, pp. 537–556.

[23] ——, “Albatross: publicly attestable batched randomness based on
secret sharing,” in Advances in Cryptology–ASIACRYPT 2020: 26th
International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Daejeon, South Korea, December 7–11,
2020, Proceedings, Part III 26. Springer, 2020, pp. 311–341.

[24] P. Chaidos and A. Kiayias, “Mithril: Stake-based threshold multisig-
natures,” Cryptology ePrint Archive, 2021.

[25] K. Choi, A. Manoj, and J. Bonneau, “Sok: Distributed randomness
beacons,” in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2023.

[26] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable
secret sharing and achieving simultaneity in the presence of faults,”
in 26th Annual Symposium on Foundations of Computer Science (sfcs
1985). IEEE, 1985, pp. 383–395.

[27] A. Choudhury, “Optimally-resilient unconditionally-secure asyn-
chronous multi-party computation revisited,” Cryptology ePrint
Archive, Report 2020/906, 2020. https://eprint. iacr. org . . . , Tech.
Rep., 2020.

[28] I. Damgård, “On σ-protocols,” Lecture Notes, University of Aarhus,
Department for Computer Science, p. 84, 2002.

[29] I. Damgård and J. B. Nielsen, “Scalable and unconditionally secure
multiparty computation,” in Annual International Cryptology Confer-
ence. Springer, 2007, pp. 572–590.

[30] S. Das, V. Krishnan, I. M. Isaac, and L. Ren, “Spurt: Scalable
distributed randomness beacon with transparent setup,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 2502–
2517.

[31] S. Das, Z. Xiang, L. Kokoris-Kogias, and L. Ren, “Practical asyn-
chronous high-threshold distributed key generation and distributed
polynomial sampling,” in 32st USENIX Security Symposium (USENIX
Security 23). USENIX Association, 2023.

[32] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination
and its applications,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021.

[33] S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias, and L. Ren,
“Practical asynchronous distributed key generation,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 2518–
2534.

[34] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer
Science (sfcs 1987). IEEE, 1987, pp. 427–438.

14

https://docs.rs/blstrs/latest/blstrs/

[35] P.-A. Fouque and J. Stern, “One round threshold discrete-log key
generation without private channels,” in International Workshop on
Public Key Cryptography. Springer, 2001, pp. 300–316.

[36] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold
dss signatures,” in Advances in Cryptology—EUROCRYPT’96: Inter-
national Conference on the Theory and Application of Cryptographic
Techniques Saragossa, Spain, May 12–16, 1996 Proceedings 15.
Springer, 1996, pp. 354–371.

[37] ——, “Secure distributed key generation for discrete-log based cryp-
tosystems,” Journal of Cryptology, vol. 20, no. 1, pp. 51–83, 2007.

[38] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,” in
Proceedings of the 26th symposium on operating systems principles,
2017, pp. 51–68.

[39] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complex-
ity of interactive proof-systems,” in Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, ser. STOC ’85, p.
291–304.

[40] V. Goyal, Y. Song, and C. Zhu, “Guaranteed output delivery comes
free in honest majority mpc,” in Annual International Cryptology
Conference. Springer, 2020, pp. 618–646.

[41] J. Groth, “Short pairing-based non-interactive zero-knowledge argu-
ments.” in Asiacrypt, vol. 6477. Springer, 2010, pp. 321–340.

[42] ——, “Non-interactive distributed key generation and key resharing.”
IACR Cryptol. ePrint Arch., vol. 2021, p. 339, 2021.

[43] J. Groth and V. Shoup, “Design and analysis of a distributed ecdsa
signing service,” Cryptology ePrint Archive, 2022.

[44] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and
A. Tomescu, “Aggregatable distributed key generation,” in Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 2021, pp. 147–176.

[45] M. Hirt, J. B. Nielsen, and B. Przydatek, “Asynchronous multi-
party computation with quadratic communication,” in International
Colloquium on Automata, Languages, and Programming. Springer,
2008, pp. 473–485.

[46] A. Kate and I. Goldberg, “Distributed key generation for the internet,”
in 2009 29th IEEE International Conference on Distributed Comput-
ing Systems. IEEE, 2009, pp. 119–128.

[47] A. Kate, E. V. Mangipudi, P. Mukherjee, H. Saleem, and S. A. K.
Thyagarajan, “Non-interactive vss using class groups and application
to dkg,” Cryptology ePrint Archive, 2023.

[48] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commit-
ments to polynomials and their applications,” in International con-
ference on the theory and application of cryptology and information
security. Springer, 2010, pp. 177–194.

[49] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous
distributed key generation for computationally-secure randomness,
consensus, and threshold signatures.” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security,
2020, pp. 1751–1767.

[50] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” in Concurrency: the works of leslie lamport, 2019, pp.
203–226.

[51] Y. Lindell, “Secure multiparty computation (mpc),” Cryptology ePrint
Archive, 2020.

[52] A. Momose and L. Ren, “Optimal communication complexity of
authenticated byzantine agreement,” in 35th International Symposium
on Distributed Computing, 2021.

[53] K. Nayak, L. Ren, E. Shi, N. H. Vaidya, and Z. Xiang, “Improved
extension protocols for byzantine broadcast and agreement,” in 34th
International Symposium on Distributed Computing, DISC 2020,
2020.

[54] A. Patra, A. Choudhary, and C. P. Rangan, “Efficient statistical
asynchronous verifiable secret sharing with optimal resilience,” in In-
ternational Conference on Information Theoretic Security. Springer,
2009, pp. 74–92.

[55] A. Patra, A. Choudhury, and C. P. Rangan, “Efficient asynchronous
verifiable secret sharing and multiparty computation,” Journal of
Cryptology, vol. 28, no. 1, pp. 49–109, 2015.

[56] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Annual international cryptology conference.
Springer, 1991, pp. 129–140.

[57] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” Journal of the society for industrial and applied mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[58] C.-P. Schnorr, “Efficient identification and signatures for smart cards,”
in Advances in Cryptology—CRYPTO’89 Proceedings 9. Springer,
1990, pp. 239–252.

[59] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in Annual International
Cryptology Conference. Springer, 1999, pp. 148–164.

[60] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[61] V. Shoup and N. P. Smart, “Lightweight asynchronous verifiable
secret sharing with optimal resilience,” Cryptology ePrint Archive,
2023.

[62] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani, “Cobra:
Dynamic proactive secret sharing for confidential bft services,” in
2022 IEEE symposium on security and privacy (SP). IEEE, 2022,
pp. 1335–1353.

[63] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed
Computing. ACM, 2019, pp. 347–356.

[64] T. Yurek, L. Luo, J. Fairoze, A. Kate, and A. Miller, “hbacss: How
to robustly share many secrets,” in Proceedings of the 29th Annual
Network and Distributed System Security Symposium, 2022.

[65] H. Zhang, S. Duan, C. Liu, B. Zhao, X. Meng, S. Liu, Y. Yu,
F. Zhang, and L. Zhu, “Practical asynchronous distributed key gener-
ation: Improved efficiency, weaker assumption, and standard model,”
Cryptology ePrint Archive, 2022.

[66] J. Zhang, T. Xie, T. Hoang, E. Shi, and Y. Zhang, “Polynomial
commitment with a {One-to-Many} prover and applications,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 2965–
2982.

Appendix A.
Additional Preliminaries

A.1. Broadcast Channel

Our synchronous VSS and AVSS protocols make black
box invocations to a Byzantine broadcast and Byzantine reli-
able broadcast protocol, respectively. We use state-of-the-art
broadcast extension protocols, i.e., for long messages [53],
[32]. For completeness, we include the definitions of Byzan-
tine (reliable) broadcast below.

Definition 5 (Byzantine Broadcast). A protocol for a set of
nodes {1, . . . , n} including a designated broadcaster who
holds an initial input, is a Byzantine broadcast protocol if
the following properties hold
• Agreement. If an honest node outputs a message M and

another honest node outputs M ′, then M = M ′.

15

PC.BatchOpen(pp,w, p(·), I = {i1, . . . , ik}): Output
(s,π) where

s = [p(i1), . . . , p(ik)]; and π = [r(i1), . . . , r(ik)] (3)

PC.BatchVerify(pp,v, I = {i1, . . . , ik}, s,π): Given a sub-
set I ⊆ [n], let k = |I|. Assert k = |v|= |π|. Sample a uni-
form random vector [γ1, . . . , γk] ∈ Fk. Let s =

∑
j∈[k] γjsj

and π =
∑

j∈[k] γjπj . Output 1, if the following holds,
otherwise output 0. ∏

j∈[k]

v[ij]
γj = gshπ (4)

Figure 3: Batched interfaces for the Polynomial commitment.

• Validity. If the sender is honest and has input M , all
honest nodes output M .

• Termination. Every honest node outputs a message.

Definition 6 (Byzantine Reliable Broadcast). A protocol for
a set of nodes {1, . . . , n} including a designated broadcaster
who holds an initial input, is a Byzantine reliable broadcast
protocol if the following properties hold

• Agreement and Validity. Same as Byzantine broadcast.
• Totality. If an honest node outputs a message, then every

honest node eventually outputs a message.

The optimal fault-tolerant synchronous Byzantine broad-
cast [53], [52] achieves O(n|M |+κn2) communication cost
for a message M assuming powers-of-tau [48] and q-SDH,
and O(n|M |+κn2 log n) communication cost assuming col-
lision resistant hash function. The optimal fault-tolerant
asynchronous Byzantine reliable broadcast [32] achieves a
communication cost of O(n|M |+κn2) for a message M
assuming collision-resistant hash functions.

A.2. Batched interface for polynomial commitment

As we briefly describe in §3.2, in our VSS schemes,
the dealer reveals shares for a list of nodes for everyone to
verify. Thus, we introduce the following additional interface
for batched opening and verification. Specifically, for any set
I ⊆ [n], we require the polynomial commitment to provide
the following interfaces.
• PC.BatchOpen(pp,w, p(·), I = {i1, . . . , ik}) → (u,π).

On input the set of indices I , the polynomial p(·) and
witness w, outputs u = [p(i1), . . . , p(ik)] along with
batch opening proof π = [πi1 , . . . , πin].

• PC.BatchVerify(pp,v, I = {i1, . . . , ik},u,π) → 0/1.
On input the commitment v to a polynomial p(i), outputs
1 if u[j] = p(ij) for all ij ∈ I , and outputs 0 otherwise.

We describe the concrete instantiations of the batched
interfaces in Figure 3. Here we use a random linear com-
bination to verify all the openings using a single multi-
exponentiations of width k instead of 2k exponentiations.

Appendix B.
Verifiable Encryptions of Discrete Logarithm

B.1. Verifiable Encryption Scheme of [42]

The VE scheme of Groth [42] works with Feldman com-
mitment where a message s ∈ F is committed as gs for some
pre-specified generator g ∈ G. We can not use it to design
a VSS protocol as the Feldman commitment scheme is not
hiding for messages with small entropy; an adversary can
exhaustively search the message space to derive a matching
commitment. Nevertheless, we will use Groth’s VE to design
a VE that works with the Pedersen commitment scheme.
Next, we will briefly describe the relations P in Groth’s
VE proves and discuss how our modifications require P to
prove a similar relation.

Let v = gs be the commitment to the secret s. P
computes, among other things, the ElGamal encryption of
v, i.e., cv = (cv,0, cv,1) = (ga, vpka). Here pk = gsk is
the public key of the recipient with secret key sk. P then
computes the NIZK proof in two parts: Proof of correct
sharing and Proof of correct chunking.
Proof of correct sharing. In the first part, for the tuple
(v, cv, pk), P proves, using a Σ-protocol, that cv is an
ElGamal encryption of v for the public key pk.
Proof of correct chunking. In the second part, P proves
that the ciphertext is decryptable. Let cv be a vector of
ElGamal ciphertexts where each ciphertext encrypts a small
number of bits (called chunks) of s. Let (pk, cv, cv) be the
entire ciphertext (of commitment and each chunk of s), then
P proves that s ← Dec(sk, cv, cv). We refer the reader
to [42, §6.5]) for more details.

B.2. VE for Pedersen commitments

Our new VE for Pedersen commitment maintains the
two-part structure of Groth’s VE. Looking ahead, we pro-
vide support for the Pedersen commitment scheme only by
changing the protocol for proof of correct sharing. More-
over, our modification adds only two group elements and
a single field element to the Groth’s VE proof. We discuss
our changes next.
Proof of correct sharing. Let gshr be the Pedersen commit-
ment to s. Let v = gs and u = hr, hence the commitment
to s is v · u. In our scheme, the ciphertext also contains the
ElGamal encryption of u, i.e. cu = (cu,0, cu,1) = (gb, upkb),
along with cv = (cv,0, cv,1) = (ga, vpka). Now, P and V
locally computes cvu, where,

cvu = (cv,0 · cu,0, cv,1 · cu,1) = (ga+b, vu · pka+b)

P in our VE then uses the protocol for proof of correct
sharing of Groth’s VE (with standard modifications [28])
for the tuple (vu, cvu, pk) to prove that cuv is an ElGamal
encryption of vu for public key pk.
Proof of correct chunking. Since the ciphertext of our VE
remains unchanged (with the exception of one additional
ElGamal encryption), a tempting approach is to directly use

16

the protocol for proof of correct chunking of Groth’s VE
protocol as the second part of our VE scheme. Intuitively,
proof of correct chunking protocol of Groth’s VE guarantees
that a node with secret sk will be able to decrypt s as
Dec(sk, cv, cv). Although it is true, there is one subtle issue.

Eventually, to reconstruct the secret, we require each
node to reveal its share along with a opening proof. For
Pedersen commitment gshr, the natural opening proof is r.
This implies that to fully support Pedersen commitments, we
need to add additional information cu to the ciphertext and
the NIZK proof such that (s, r)← Dec(sk, cu, cv, cv, cu).

The obvious approach is to repeat the protocol to prove
the decryptability of cv for cu, as well. However, this would
increase the computation cost of dealing and verifying the
transcript and the transcript size by a factor of 2. Next, we
describe our approach that addresses this issue without in-
creasing the ciphertext size, thus avoiding the 2× overhead.

Our key observation is that the opening proof of a
Pedersen commitment gshr need not be r. Instead, it can be
(u = hr, πu) where πu proves that u is correctly computed.
Thus, in our VE, we let R recover (u, πu), where R uses
πu to convince others regarding the correctness of u.

Computing u is trivial as it is the ElGamal decryption
of cu using the secret key sk. We define πu as the tuple
(pkb, πpk) where πpk is a discrete logarithm equality (DLEq)
proof for the tuple (g, pk, cu,0, pk

b). More precisely, πpk

convinces any verifier that logg pk = logcu,0
pkb.

Each node upon receiving πu = (pkb, πpk), checks the
correctness of the DLEq relation using πpk and cu,0. Upon
successful validation, the node computes hr = cu,1/pk

b.
Finally, the node checks the correctness of s by checking
whether gshr = vu.

Appendix C.
Secrecy Proofs

We prove Secrecy of our VSS protocols using sim-
ulatability: for every probabilistic polynomial-time (PPT)
adversary A that statically corrupts up to t nodes, there
exists an ideal world PPT simulator that interacts with the
ideal functionality and produces a view such that A’s view
in the simulated world is indistinguishable to a run of the
Sharing phase.
Secrecy of Synchronous VSS. We prove Secrecy of our
synchronous VSS with respect to FVSS ideal functionality
(cf. Figure 4). Let SVSS be corresponding simulator. SVSS

simulate A’s view using the Pedersens’ polynomial commit-
ment scheme. We summarize SVSS in Figure 5, and prove
the following theorem.

Lemma 1 (Synchronous VSS Secrecy). A’s view in its
interaction with SVSS is identically distributed to its view
in the real protocol.

Proof. Let h = gα for some non-zero α ∈ F. For any fixed
commitment v, consider the probability of outputting v and
s(i) for each i ∈ C in a real protocol. For a fixed polynomial
s(·), there exists a unique polynomial r(·) that outputs v as

Functionality FVSS

Parameters: Maximum number of malicious nodes t, the
total number of nodes n ≥ 2t+1. Let G be an elliptic curve
group of order q with scalar field F.
1) Wait for secret s from the dealer.
2) Wait for C with |C|≤ t, the set of nodes A will corrupt.
3) Compute (n, t) Shamir secret shares of s over the field

F. Let s(x) be the degree t polynomial with s = s(0).
4) Send s(j) to each honest node j. Send {s(i)}i∈C to A.

Figure 4: Functionality for the Sharing phase of synchronous VSS.

Inputs. C, F and G. Notation. Let H = [n] \ C
1) Sample signing and public key (skj , pkj) for each j ∈ H.

Send the public keys to A.
2) Send C to FVSS and receive {s(i)}i∈C .
3) Sample uniformly random generators g, h← G.
4) Sample a polynomial ŝ(·) of degree t such that ŝ(i) =

s(i) for each i ∈ C. Additionally, sample a uniform
random polynomial r̂(·) of degree t.

5) Compute the commitment v = [v1, v2 . . . , vn] where
vi = gŝ(i)hr(i) for each i ∈ [n].

6) Simulate the dealer by sending v = [v1, v2, . . . , vn] as
the polynomial commitment. Participate in the rest of the
protocol on behalf of the honest parties.

Figure 5: Synchronous VSS simulator SVSS

the commitment. Since the dealer in the honest protocol
samples r(·) uniformly at random, in the real protocol
Pr[v, {s(i)}i∈C]real = 1/|F|t+1.

Now consider the probability of the same event in the
simulated view. For a fixed ŝ(·), a unique degree t poly-
nomial r̂(·) exists that results in v as the commitment. In
particular, the unique r̂(·) is:

r̂(x) = r(x) +
s(x)− ŝ(x)

α
(5)

Since SVSS samples r̂(·) uniformly at random,

Pr[v, {ŝ(i)}i∈C]id = Pr

[
r̂(x) = r(x) +

s(x)− ŝ(x)

α

]
id

= 1/|F|t+1 (6)

Equation (6) implies that the polynomial commitment and
shares seen by A are identically distributed in real and sim-
ulated view. Since SVSS simulates the rest of the protocol as
per protocol specification, the distribution of the remaining
messages seen by A is also identical in both the real and
simulated world.

Secrecy of Asynchronous VSS. We prove Secrecy of our
AVSS scheme with respect to FAVSS ideal functionality (cf.
Figure 6). Let SAVSS be corresponding simulator. SAVSS

also uses the polynomial commitment scheme from Figure 1
to simulate A’s view. We summarize SAVSS in Figure 7, and
prove the following.

Lemma 2 (Asynchronous VSS Secrecy). A’s view in its
interaction with SAVSS is identically distributed to its view
in the real protocol.

17

Functionality FAVSS

Parameters: Maximum number of malicious nodes t, the
total number of nodes n ≥ 3t+1. Let G be an elliptic curve
group of order q with scalar field F.
1) Wait for secret s from the dealer.
2) Wait for C and HR from A. Here C is the set of nodes
A will corrupt and HR is the set of honest nodes whose
shares the the functionality will reveal. Check that |C|≤ t,
|C ∪ HR|≤ 2t. Let C0 = C ∪ HR.

3) Compute (n, 2t) Shamir secret shares of s over the field
F. Let s(x) be the degree 2t polynomial with s = s(0).

4) Send s(j) to each honest node j. Send {s(i)}i∈C0 to A.

Figure 6: Functionality for the Sharing phase of our AVSS.

Inputs. C,HR, F and G. Notation. Let H = [n] \ C and let
C0 = C ∪ HR.
1) Sample signing and public key (skj , pkj) for each j ∈ H.

Send the public keys to A.
2) Send (C,HR) to FAVSS and receive {s(i)}i∈C0 .
3) Sample uniformly random generators g, h← G.
4) Sample a polynomial ŝ(·) of degree 2t such that ŝ(i) =

s(i) for each i ∈ C0. Additionally, sample a uniform
random polynomial r̂(·) of degree 2t.

5) Compute the commitment v = [v1, v2 . . . , vn] where
vi = gŝ(i)hr(i) for each i ∈ [n].

6) Simulate the dealer by sending v = [v1, v2, . . . , vn] as
the polynomial commitment. Participate in the rest of the
protocol on behalf of the honest parties.

Figure 7: Asynchronous VSS simulator SAVSS

Proof. Follows using a similar argument as the proof of
Lemma 1.

Secrecy of the dual-thresold AVSS. We prove Secrecy of
our dual-threshold AVSS scheme with respect to FDtAVSS

ideal functionality (cf. Figure 8). Let SDtVSS be correspond-
ing simulator. SDtVSS also uses Pedersens’ polynomial com-
mitment from Figure 1 and the VE scheme from Appendix B
to simulate A’s view. We summarize SDtVSS in Figure 9,
and prove the following.

Lemma 3 (Dual-threshold AVSS). A’s view in its interac-
tion with SDtVSS is computationally indistinguishable from
its view in the real protocol.

Proof. We will prove this using a sequence of hybrids using
the verifiable encryption scheme from Appendix B.
Hybrid 0. This corresponds to the real-world execution.
Hybrid 1. Same as Hybrid 0, except we will change the
NIZK proof of correct sharing of the VE scheme with a
simulated proof. Hybrid 1 is indistinguishable from Hybrid
0 due to the zero-knowledge property of the NIZK scheme.
Hybrid 2 to Hybrid k + 1. Without loss of generality let
HE = 1, 2, . . . , k. Hybrid i+1 for any i ∈ [1, k] is the same
as Hybrid i, except it swaps out VE of s(i) and with VE of
ŝ(i). For each i ∈ [1, k], Hybrid i + 1 is indistinguishable
from Hybrid i due to the CPA security of the VE scheme.

Functionality FDtAVSS

Parameters: The maximum number of malicious nodes t, the
total number of nodes n ≥ 3t + 1, and maximum coalition
size ℓ ∈ [t, n− t). Let G be an elliptic curve group of order
q with scalar field F.
1) Wait for secret s from the dealer.
2) Wait for C, HR, and HC from A. Here C is the set of

nodes A will corrupt and HR is the set of honest nodes
whose shares the the functionality will reveal. Also, let
HC is the set of honest nodes who will collude with A
to learn the secret. Let C0 = C ∪ HC ∪HR

3) Assert that |C|≤ t, |C∪HC |≤ ℓ, and |C∪HC∪HR|≤ 2t.
4) Compute (n, 2t) Shamir secret shares of s over the field

F. Let s(x) be the degree 2t polynomial with s = s(0).
5) Send s(j) to each honest node j. Send {s(i)}i∈C0 to A.

Figure 8: Dual-threshold AVSS functionality.

Inputs. C,HC ,HR, F and G.
Notation. Let H = [n] \ C and let C0 = C ∪ HR ∪HC .
1) Sample signing and public key (skj , pkj) for each j ∈ H.

Send the public keys of all nodes to A. Additionally, send
skj for each j ∈ HC to A.

2) Send (C,HR,HC) to FDtAVSS and receive {s(i)}i∈C0 .
3) Sample uniformly random generators g, h← G.
4) Sample a polynomial ŝ(·) of degree 2t such that ŝ(i) =

s(i) for each i ∈ C0. Additionally, sample a uniform
random polynomial r̂(·) of degree 2t.

5) Compute the commitment v = [v1, v2 . . . , vn] where
vi = gŝ(i)hr(i) for each i ∈ [n].

6) Simulate the dealer by sending v = [v1, v2, . . . , vn] as
the polynomial commitment. Simulate the dual-threshold
VSS protocol on behalf of honest nodes up until receiving
2t+ 1 signed acknowledgments.

7) Let HE be the set of nodes whose shares SDtVSS will
verifiably encrypt. For each node j ∈ HE , use ŝ(j) and
r̂(j) as inputs to the VE scheme.

Figure 9: Dual-threshold AVSS simulator SDtVSS

Hybrid k + 2 to Hybrid 2k + 1. Hybrid k + i+ 1 for any
i ∈ [1, k] is the same as Hybrid k + i, except it swaps out
the encryption of r(i) and with encryption of r̂(i). For each
i ∈ [1, k], Hybrid k+ i+1 is indistinguishable from Hybrid
k + i due to the CPA security of the ElGamal encryption
scheme
Hybrid 2k+ 2. Same as Hybrid 2k+ 1, except change the
Pedersen commitment {gs(i)hr(i)}i∈[n] to {gŝ(i)hr̂(i)}i∈[n].
Using a similar argument as Proof of Lemma 1, Hybrid
2k + 2 is identically distributed to Hybrid 2k + 1.
Hybrid 2k + 3. Same as Hybrid 2k + 2, except we will
change the simulated NIZK proof of correct sharing of
the VE scheme with a real NIZK proof. Hybrid 2k + 3
is indistinguishable from Hybrid 2k + 2 due to the zero-
knowledge property of the NIZK scheme. Moreover, Hybrid
2k + 3 is the simulated transcript.

18

	Introduction
	Related Work
	Definition and Overview
	Definition of Verifiable Secret Sharing
	Overview of Our Approach

	Threat Model and Preliminaries
	Threat Model
	Threshold Secret Sharing
	Polynomial Commitment Scheme

	Synchronous VSS
	Design
	Analysis

	Asynchronous VSS
	Design
	Analysis

	Dual-threshold AVSS
	Verifiable Encryption of Committed Messages
	Dual-threshold AVSS Design
	Optimization for Common Case Execution
	Analysis

	Implementation and Evaluation
	Evaluation Setup
	Evaluation Results

	Discussion and Conclusion
	References
	Appendix A: Additional Preliminaries
	Broadcast Channel
	Batched interface for polynomial commitment

	Appendix B: Verifiable Encryptions of Discrete Logarithm
	Verifiable Encryption Scheme of groth2021non
	VE for Pedersen commitments

	Appendix C: Secrecy Proofs

