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Abstract. Physical side-channel attacks are powerful attacks that exploit a device’s physical em-
anations to break the security of cryptographic implementations. Many countermeasures have been
proposed against these attacks, especially the widely-used and efficient masking countermeasure. Nev-
ertheless, proving the security of masked implementations is challenging. Current techniques rely on
empirical approaches to validate the security of such implementations. On the other hand, the theoret-
ical community introduced leakage models to provide formal proofs of the security of masked imple-
mentations. Meanwhile, these leakage models rely on physical assumptions that are difficult to satisfy
in practice, and the literature lacks a clear framework to implement proven secure constructions on a
physical device while preserving the proven security.

In this paper, we present a complete methodology describing the steps to turn an abstract masking
scheme proven secure in a theoretical leakage model into a physical implementation satisfying provable
security against side-channel attacks in practice. We propose new tools to enforce or relax the physical
assumptions the indeal noisy leakage model rely on and provide novel ways of including them in a
physical implementation. We also highlight the design goals for an embedded device to reach high
levels of proven security, discussing the limitations and open problems of the practical usability of the
leakage models. Our goal is to show that it is possible to bridge theory and practice and to motivate
further research to fully close the gap and get practical implementations proven secure against side-
channel attacks on a physical device without any ideal assumption about the leakage.
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1 Introduction

Cryptographic algorithms’ security is usually studied in the black-boxr model, where the adversary is
limited to the knowledge of some inputs and outputs. However, as revealed in the late nineties [51],
their implementation on physical devices can be vulnerable to the more powerful side-channel
attacks. Such attacks exploit the underlying device’s physical emanations, such as the execution
time [51]], device temperature [48], power consumption [52], or electromagnetic radiation [65] during
the algorithm execution.

Since the discovery of side-channel attacks, several countermeasures have been studied to protect
cryptographic algorithms. Among the different approaches, one of the most widely used is known
as masking, simultaneously introduced by Chari, Jutla, Rao, and Rohatgi [29], and by Goubin and
Patarin [45] in 1999. It consists in splitting a sensitive variables x into n random shares, among
which any combination of n — 1 shares does not reveal any secret information. This can be achieved
by generating n—1 shares uniformly at random x1, . .., x,_1 and computing the last share z,, so that
T = X1%...%Tp_1 %I, according to some group law x. The motivation is to make it more difficult for



an attacker to recover a secret by manipulating the shares instead of the sensitive value. Indeed, the
adversary must recombine noisy leakage information from all the shares to learn something about
the sensitive value. It has then been observed that it becomes exponentially harder to recover the
secret as the number of shares grows [10/24/47].

Meanwhile, proving or validating such security levels in practice is not trivial. Generally, pro-
viding security guarantees against side-channel attacks is tricky, and several works tackle this is-
sue [39J50/4624]. The approaches currently found in the literature range from purely qualitative solu-
tions such as leakage detection (e.g., ISO17825 [1J73]) or test vector leakage assessment (TVLA) [44],
which aims to detect information leakage using statistical analysis, to more quantitative solutions
such as mounting known attacks on the implementation and inferring the security level from the
best attacks. For instance, common-criteria certification procedures currently follow this empirical
approach to validate the security of implementations against side-channel attacks [2425].

Having more formal and quantified security guarantees would be more satisfying but complicated
as it needs to rely on physical assumptions and mathematical arguments. The community introduced
so-called leakage models to theoretically reason on the security of masked implementations. They
aim to define the attacker’s capabilities to counteract the subsequent side-channel attacks formally.
The most famous is the ¢-probing model, introduced by Ishai, Sahai, and Wagner in 2003 [49].
In this model, the leakage is modeled as the exact values of ¢t intermediate variables chosen by
the attacker for ¢ < n, the number of shares. A circuit is then secure in this model if no such
leakage of t variables reveals information about the sensitive variables. Despite its wide use by the
community [7TJ66/34/T2/35] thanks to its convenience to build security proofs, the probing model
sometimes fails to reflect the reality of embedded devices. For instance, it does not capture horizontal
attacks [9], which exploit the repeated manipulation of variables within an execution.

These issues motivated the formalization of the noisy leakage model [64]. This model well cap-
tures the reality of embedded devices by assuming that each intermediate variable leaks a noisy
function of its value. Meanwhile, proving security in the noisy leakage model [ITJ60] is more com-
plex than in the probing model. Later, Duc, Dziembowski, and Faust [37J38] proposed a security
reduction from the noisy model to the t-probing model. The reduction relies on an intermediate
model, the random probing model, which benefits from a tighter reduction with the noisy leakage
model. In a nutshell, it assumes that every wire in the circuit leaks with some constant leakage
probability. This leakage probability is related to the amount of side-channel noise in practice. The
random probing model captures the powerful horizontal attacks, and has been studied recently in
many works [3U5J4IT3IT5IT6/27].

The noisy leakage, random probing, and probing models have proven helpful for the community
to model side-channel attacks theoretically and provide formal security proofs on masked implemen-
tation. Meanwhile, applying these security proofs to real-world implementations to achieve proven
security levels is still challenging.

First, the theoretical literature lacks a proper methodology to implement proven secure construc-
tions in the leakage models on a physical device while preserving the proven security levels. Second,
these leakage models rely on two assumptions about the physical device, for which a systematic
investigation is lacking: the leakage of an elementary operation only depends on its inputs (i.e. the
data independence assumption), and the noise in the leakage of an operation is independent of the
previous and following noises (i.e. the noise independence assumption).

The first assumption (data isolation) can be quickly broken, for instance, due to physical effects
on a device. In particular, transitions occurring on memory buses or CPU registers between a pre-



viously processed value x;_; and the current one x; usually leak some information correlated to
x;_1PDx;, which invalidates the data isolation principle [336]. At the hardware level, glitches further
make the successive gates’ leakages mutually dependent on their respective inputs [55/56/57]. At the
software level, CPU synchronization limits, but does not eliminate, the issue of glitches. These issues
can be avoided by adding registers and conrolling transitions [4228] in hardware, and by trying to
avoid transitions using assembly programming tricks in software [43/20/17]. However, these tech-
niques still rely on abstract models for the leakage, and current techniques in the literature test this
assumption only indirectly, by estimating the statistical security order of an implementation [769].
As for the second assumption (noise independence), the noise in the side channel leakage of a
device is multivariate, and the noises occurring during successive operations likely include some
dependency. This assumption is only currently studied at a high level in a few works [47/31].

Contributions. In this paper, we contribute to the problem mentioned above by providing a
detailed and precise analysis of the necessary steps to explicitly link physical implementations to
the proofs in the random probing and noisy leakage models. Our contributions can be summarized
as follows.

— First, we present a complete methodology describing the steps to turn an abstract masking
scheme proven secure in the random probing model into a physical implementation satisfying
provable security against side-channel attacks in practice. For this purpose, we discuss the dif-
ferent steps to use the reduction from the noisy leakage model to the random probing model
on physical implementations. While this reduction is well-studied in theory, our methodology
summarizes all hypotheses that need to be satisfied in practice and highlights the technical dif-
ficulties that need to be addressed before implementing formally secure circuits on a physical
device.

— Then, we propose new tools to solve these technical difficulties. Namely,

e we describe how to enforce data independence and propose a novel practical test to validate
it on a physical implementation. Our test is a direct approach to test data independence,
as opposed to current techniques in the literature. We also run our test on a real target
to validate it, a STM32F3 MCU, using NewAFE’s ChipWhisperer-Lite CW1173 board. While
our test does not provide formal proof for the assumption, it is the first in the literature to
directly tackle validating this hypothesis with a practical, dedicated procedure.

e We offer a first method to integrate the noise independence assumption into the analysis,
making it possible to quantify the loss of security implied by a lack of independence. We
specifically discuss a relaxation of the assumption aiming to split the noise occurring during
the execution of the algorithm into independent noises on each of the operations. We first
show a trivial way of doing the split and then express it as a constrained optimization problem
that better scales with the size of the circuit. We propose a direct non-optimal solution to
the problem and leave the question of optimally and efficiently solving it as an open problem.

— Finally, we highlight the design goals that this security reduction involves and measure the
amount of noise that should be added to an implementation embedded in a commercially avail-
able component in order to reach high levels of proven security. We also exhibit the remaining
limitations and open problems of the practical usability of the leakage models. Our goal is to
show that it is possible to bridge theory and practice and to motivate further research on remain-
ing issues to fully close the gap, that is to get practical implementations proven secure against
side-channel attacks on a physical device without any ideal assumption about the leakage. For



instance, one could quantify the impact of a lack of signal independence on security or find an
optimal solution for the noise split relaxation to achieve the best security levels.

The organization of the paper is as follows. In[Section 2 we provide the necessary background to
understand the concepts of the paper. In[Section 3] we present all the steps of our methodology while
leaving some important details to be discussed in later sections. Namely, in we discuss
the data independence assumption and present the proposed test. Then, in we discuss
the noise independence assumption and present our security relaxation. In[Section 6, we discuss the
estimation of the noisiness metrics for the noisy leakage model, which leads to the computation of
the leakage probability in the random probing model. Finally, in we present an example
of a concrete AES implementation with complexity bounds given the security parameters estimated

in [Section 6| before concluding and providing discussions and perspectives in [Section 8

2 Technical Background

2.1 Notations

In the following, we shall denote V as a finite set called the variable space. For instance, we have
Y = F9 when working with boolean values. We also denote X as the input space for the leakage,
which differs from the variable space V. For example, when considering 2-input operations, the input
space is X = V2. We also denote ) as the leakage distribution.

Finally, we use capital letters to denote random variables over a set or a distribution. For instance,
X denotes a random variable over X', and Y (x) denotes a random variable (or equivalently a leakage
function) over the distribution Y, taking as input @, a value over the input space X. We also denote
y to be a leakage trace, i.e. a realization of Y (x).

2.2 Abstract Circuits

Definition 1 (Abstract Circuit Family). An abstract circuit family is a pair C = (V,G) such
that

— V is a finite set called the variable space,
— G ={g} called the gate family is a set of functions. For each function g € G, there exists {,m € N
such that g : V¢ — V™.

An abstract circuit C belonging to the family C = (V,G), which is written C' € C, is defined
as an acyclic directed graph whose edges are wires carrying values over V, and vertices are gates
processing operations over V.

An abstract circuit is further formally composed of input gates of fan-in 0 and fan-out 1 and
output gates of fan-in 1 and fan-out 0. Evaluating an ¢-input m-output circuit C' consists in writing
an input € V! in the input gates, processing the gates from input gates to output gates, then
reading the output z € V™ from the output gates. This is denoted by z = C(x). During the
evaluation process, each wire in the circuit is assigned with a value on V. We call the tuple of all
these wire values a wire assignment of C' (on input ).

Definition 2 (Circuit Compiler). A circuit compiler is a triplet of algorithms (CC,Enc, Dec)
defined as follows:



— CC (circuit compilation) is a deterministic algorithm that takes as input an abstract circuit C
from a family of circuits C = (V,G) and outputs a randomized circuit C.

— Enc (input encoding) is a probabilistic algorithm that maps an input © € V¢ to an encoded input
z eV

— Dec (output decoding) is a deterministic algorithm that maps an encoded output z € V™ 1o a
plain output z € V™.

These three algorithms satisfy the following properties:

— Correctness: For every circuit C of input length £, and for every & € V¢, we have
P[Dec(é’(i)) =C(z) | @« Enc(z)] =1,

where C = CC(C).

— Efficiency: For some security parameter X € N, the running time of CC(C) is poly(\,|C|),
the running time of Enc(zx) is poly(X, |&|) and the running time of Dec(Z) is poly(, |Z]), where
poly (), q) = O(NF1¢*2) for some constants ky, ks.

2.3 Random-Probing Model

Let p € [0,1] be some constant leakage probability parameter, usually called leakage rate. The
random probing leakage can be defined in two ways depending on whether we consider leakage on
the wires or the gates of an abstract circuit C' from a family C = (V, G).

Wire leakage In this setting, the p-random probing model states that during the evaluation of a
circuit C' each wire leaks its value with probability p (and leaks nothing otherwise), where all the
wire leakage events are mutually independent. In order to formally define this leakage, we consider
two probabilistic algorithms:

— The leaking-wires sampler takes as input an abstract circuit C' and a probability p € [0, 1], and
outputs a set W, denoted as

W <« LeakingWires(C,p) ,

where W is constructed by including each wire label from the circuit C' with probability p to W
(where all the probabilities are mutually independent).

— The assign-wires sampler takes as input an abstract circuit C, a set of wire labels W (subset of
the wire labels of C)), and an input € V¢, and it outputs a |W|-tuple w € VW denoted as

w < AssignWires(C, W, x) ,

where w corresponds to the assignments of the wires of C' with label in W for an evaluation on
input .

By convention, we do not consider leakage on the output wires (i.e. input wires of the output gate) of
a circuit, since when composing several circuits, these wires become input wires to the next circuit.



Gate leakage Analogously, in the gate leakage setting, each gate leaks its internal state with
probability p during the evaluation of a circuit C, where all the gate leakage events are mutually
independent. The internal state of the gate can be seen as a function which depends on its inputs.
Similarly to the wire leakage setting, we define the following leaking-gates sampler

G + LeakingGates(C, p) ,

which outputs a set G of gate labels instead of wire labels. We also define the following assign-gates
sampler
g < AssignGates(C, G, x) ,

which assigns to each gate of label in G, its internal state during the evaluation of C' (i.e. g is the
assignments of the internal states of the gates of C' with label in G for an evaluation on input x).

By convention, we do not consider leakage on the output gates of a circuit, since when composing
several circuits, these gates become input gates to the next circuit.

Fig. 1: Toy circuit illustrating RP leakage. Dashed circles (a, b, ¢) are input gates, while the dotted
circle (d) is the output gate. In the wire leakage setting, each wire leaks with probability p, while in
the gate leakage setting, each gate leaks its internal state with probability p?. states that
if the circuit is (p, e)-RP secure in the wire setting, then it is (p?, )-RP secure in the gate setting.

We can now formally define the (wire or gate) random probing leakage of a circuit.
illustrates the wire and gate leakage on a toy circuit.

Definition 3 (Random Probing Leakage). The p-random probing wire leakage of an abstract
circuit C with £ inputs, on input © € V¢ is the distribution E;’"‘E(C,w) obtained by composing the
leaking-wires and assign-wires samplers as

wire id . . . .
Ly"(C, x) = AssignWires(C, LeakingWires(C,p), x) .
For the p-random probing gate leakage, Egate(C, x) is obtained as
ate id ; :
L5%(C, z) = AssignGates(C, LeakingGates(C, p), ) .

We can define the random probing security of an abstract circuit C.

Definition 4 (Random Probing Security). An abstract circuit C with ¢ inputs, from a family
of circuits C = (V,G), is (p, e)-random probing secure (RPS) in the wire leakage setting with respect
to encoding Enc if there exists a simulator Sim such that for every « € V¢:

Sim(C) ~¢ LY"*(C, Enc(x)) . (1)



A circuit compiler (CC, Enc, Dec) is (p,e)-random probing secure in the wire leakage setting if for
every circuit C' the compiled circuit C = CC(C) is (p,|C| - €)-random probing secure in the wire
leakage setting where |C| is the size of original circuit.

We equivalently define (p,e)-random probing security for a circuit and a circuit compiler in the

gate leakage setting, where we use Eg“te instead of E;"m. In other words, only|Equation 1| changes

where we consider a simulator Sim such that
Sim(C) ~. Eg“te(C, Enc(x)) . (2)

We have the following reduction of security which states that if a circuit is random probing
secure in the wire leakage setting, then it is secure in the gate leakage setting.

Lemma 1. Let C be an abstract circuit with ¢ inputs, from a family of circuits C = (V,G) such that
each gate g € G has at most two input wires. If C' is (p,e)-random probing secure with respect to
encoding Enc in the wire leakage setting, then C is (p',€’)-random probing secure in the gate leakage
setting, with p' = p? and ' = «.

Proof. Let C be an abstract circuit with ¢ inputs and suppose that C is (p,e)-RPS in the wire
leakage setting. Then, there exists a simulator that we shall denote Simyize such that Simyire(C) ~¢
E;j"ire(C, Enc(x)). We now construct another simulator Simgate as follows. Simgate starts by running
SiMyire, and if Simyire fails (or aborts), then Simgate aborts too. Otherwise, for each gate g in C, if
all input wires to g are simulated and output by Simyize, we let Simgate output a simulation of the
inner state of g using the simulation of its input wires by Simyire. Note that this is possible since the
inner state of g only depends on its input wires. Since we have that Simyire(C) ~¢ L}’)Vire(C’, Enc(x)),
then each wire in C is simulated by Simyire with probability p independently of all the other wires.
Consequently, each gate in C' is simulated by Simgate With probability at least p? independently of
all the other gates. Finally, since Simgate aborts if and only if Simy;e aborts with probability e, we
get that Simgate(C) ~ L5™°(C, Enc(x)). Hence, C'is (p?,)-RPS in the gate leakage setting, which
concludes the proof. O

2.4 Noisy Leakage Model

The noisy leakage model was formalized in [64]. In this model, a leaking computation is modeled by
a sequence of elementary operations (g;); accessing a common memory called internal state. Each
elementary operation reads its input and writes its output on the internal state. When processed
on some input x, an elementary operation g; reveals f;(x) to the adversary for some noisy leakage
function f;. A noisy leakage function is defined as a function that takes two arguments: the value
x held by the accessed part of the internal state and a random string p long enough to model
the leakage noise. Each execution leaks the values ( fi(x;, pz))Z where the x;’s are the successive
intermediate values (from the internal state) in input of the elementary operations g;’s and p;’s are
fresh random strings. We stress that all the p;’s involved in successive executions are uniformly and
independently drawn (independent noise assumption).

We note that from a formal point of view, there is an equivalence between the circuit model
used by the gate-leakage random probing model and the internal state model used by the noisy
leakage model. In both cases the computation is divided into sub-computations (either gates or
elementary operations) and the full leakage is composed of the outputs of leakage functions (either



random probing functions or a noisy functions) applied to all the sub-computation input in the
computation. The internal state model has the advantage of being cosmetically closer to a real
software implementation, moreover it is useful to consider the order of operations while relaxing the
data isolation and noise independence assumptions (as discussed later).

For the sake of simplicity, we shall omit the random string parameter, which leads to the notation
fi(x) where @ is the accessed value. Note that f;(x) is not the result of a function but it can be
seen as the output of a probabilistic algorithm. In particular, f;(x) can take several values with
a given probability distribution, and can therefore be considered as a random variable. The noisy
property of f is captured by assuming that the bias introduced in the distribution of a uniform
random variable X given the leakage f(X) is bounded. This is formalized in the next definition:

Definition 5 (Noisy Function). Let X be a finite set and let 6 € R. A d-noisy leakage function
f on X is a function of domain X x {0,1}7! for some |p| € N such that

BXIY):= > Pr(Y=y) A(X|Y =y;X) <4, (3)
yERange(f)

where A is a statistical distance measure, X is a uniform random variable over X and where Y =
f(X,R) for a uniform random variable R over {0, 1},

The above definition depends on the notion of statistical distance. In the original definition from [64],
the authors use the Lo norm. The authors of [37] then suggested to use L; norm (normalized
by %) It was later suggested in [63] to use a statistical distance notion based on the relative
error. Noisy functions based on this distance are referred to as average relative error (ARE) noisy
leakage functions in [63] since the relative error is averaged over the distribution of the leakage Y

in [Equation 3|

As recalled hereafter, the noisy leakage metrics based on the L statistical distance and the ARE
enjoy useful security reductions to the random probing model. We recall the definition of these two
metrics based on the pointwise mutual information.

Definition 6 (Pointwise Mutual Information). Let X,Y be random variables over X,Y re-
spectively. For any x € X,y € Y, the exponential form of the pointwise mutual information (PMI)
1s defined as:

PX =z,Y =y

PX=a PY =y

PMLyy (z,y) =

Definition 7. Let X,Y be random variables over X,) respectively. We can define the L1 statistical
distance (SD) as follows:

1
SD(X[Y) = 5 Ey—yEx— [[PMIxy (z,y)]] -

The average relative error (ARE) can also be expressed as:

ARE(X[Y) = Ey—, [ max|PMLyy (2, y)]] -



From random probing to noisy leakage security In [37], Duc, Dziembowski, and Faust show
the following security reduction: any circuit which is (p, €)-secure in the random probing model is
also (0, ¢)-secure in the noisy leakage model defined w.r.t. the metric 5(X|Y) = SD(X|Y’) and for
any 0 < p/|X|, where X is the input space of the abstract gates / elementary operationsm This
result was later extended to the noisy leakage model defined w.r.t. the metric S(X|Y) = ARE(X]Y)
in the work of Prest, Goudarzi, Martinelli, and Passelégue [63]. Those security reductions directly
hold from the following key lemma.

Lemma 2 ([37J/63]). Let ¢, : X = X U{L} the randomized function defined for every p € [0,1]
as

1L with probability 1 — p

Pp(x) = { (4)

Sz with probability p

Let f : X — Y be a §-noisy leakage function (w.r.t. SD or ARE). There exists a randomized function
/X U{L} = Y such that for every x € X we have

p<d-|X[ if SD(X[f(X)) <

1)
p<s  if ARE(X|f(X)) <6 ©)

f(@) = f(op(z)) with {

We recall that the ARE is a worst-case metric, contrary to the SD, which is an average-case
metric. This explains the tighter reduction (i.e. no loss induced by the size of the input space) using
the ARE from the noisy model to the random probing model since the latter is also a worst-case
model.

Besides this worst-case vs. average-case question, we note that the SD and ARE can be connected
to metrics that are used in practice to evaluate the security of a leaking implementation. For
example, the SD can be expressed using Mutual Information (MI) thanks to [36] and the Mutual
Information can (under some conditions) be expressed using the Signal-to-Noise Ratio (SNR) [53]
and the correlation coefficient [19] thanks to [54]. The MI is a standard metric to analyze multivariate
leakages while the SNR and correlation coefficient are among the most popular tools for univariate
security assessments.

In the following, we shall refer to the reduction from [37] using the SD metric as the DDF
reduction, and to that from [63] using the ARE metric as the PGMP reduction.

2.5 Physical Assumptions

The noisy leakage model has been argued to capture well power and electromagnetic leakages since
it does not impose any restriction on the form of the leakage distribution. In all generality, an
elementary operation processing a value x gives rise to a leakage trace Y (x) which is a multivariate
random variable (a.k.a random vector) following a distribution whose parameters depend on . In
most practical contexts, this distribution is well approximated by a multivariate Gaussian N (m, %)
for some parameters m, (mean vector) and X' (covariance matrix), see e.g. [30J67]. Such parameters
can be inferred in practice through a profiling of the device, from which we obtain the noisy leakage
metric ¢ by evaluating [Equation 3

We still need to stress that, as is, the noisy leakage model relies on two assumptions about the
underlying physical device which might not be verified in practice without further care:

7 Recall that the input space X is different than the variable space V for the variables in a circuit. Typically, when
the leakage is defined on the internal state of the gate, the latter can be described by both its input wires, and
hence the input space is X = V2.



— Data isolation. This assumption implies that a leakage function f; corresponding to the ele-
mentary operation g;(«;) only depends on the current state x; and not on previously accessed
parts of the state: ..., @;_o, ;1. The leakage is then assumed to respect some data isolation
between successive elementary operations. However, as mentioned in physical effects
such as glitches and transitions will likely break this implicit assumption. Hence, one should
take special care and enforce data isolation for our model to be valid.

— Independent noise assumption. The noisy leakage model assumes independence of the leak-
age noises from the successive elementary operations. Formally, the random tape p; in each
fi(xi, pi) is sampled as a fresh uniform string. In practice, this assumption does not easily hold:
if one cuts a leakage trace into several sub-traces corresponding to successive elementary op-
erations, the noises in the successive sub-traces would likely include some part of dependency.
Indeed, a correlation exists between successive leakage points, which makes multivariate statistics
particularly useful for side-channel attacks [30].

In the following, we shall refer to the original noisy leakage model, which relies on the two above
assumptions as the idealized noisy leakage model. We will see how to relax or enforce those physical
assumptions so that the security of a physical implementation can reduce to that of an abstract
implementation in the idealized model, which then reduces to the random probing security.

3 Metholodogy

The theoretical community introduced many construction proven secure in the (random) probing
and noisy leakage models with a quantified security level. Meanwhile, it is unclear how to implement
such constructions on physical devices while preserving the proven security. Current works in the
literature do not explain all stages nor state all of the hypotheses to allow proven security claims in
practice. In this section, we rigorously exhibit the steps to turn an abstract random probing secure
masking scheme into a physical implementation satisfying provable security against side-channel
attacks. To this purpose, the distribution of the side-channel leakage of the target device must first
be characterized. We also discuss the necessity to satisfy the ideal physical assumptions of the noisy
leakage model and propose some practical tools to relax or enforce them.

3.1 Overview
The proposed methodology relies on the following abstract and physical inputs:

— an abstract circuit family C = (V, G),

— an RPS circuit compiler for C,

— a cryptographic algorithm expressed as an abstract circuit C € C,
— a target device for the physical implementation,

— a target side-channel acquisition tool,

— a target security level A (in bits).

The output of the methodology is a physical implementation of the cryptographic algorithm C' on
the target device, which achieves A bits of proven side-channel security for the target side-channel
acquisition tool and under relaxed or empirically verified physical assumptions. The necessary steps
of our methodology are the following:

10



Implementing abstract gates;

Enforcing and testing data isolation;
Characterizing the leakage distribution;
Relaxing the noise independence;

Estimating the noisy leakage parameter;
Compiling the cryptographic implementation.

SN el

Remark 1. Our methodology is described in the context of a software implementation. The physical
elementary calculation corresponds to elementary software routines. We discuss a generalization of

the methodology to the case of hardware implementations in [Section §

3.2 Step 1: Implementing Abstract Gates

The first step of our methodology is correctly implementing abstract gates in the form of software
routines. A physical elementary operation abstracted as a gate by the noisy leakage model (see
Section first looks up its operands from memory (the computation state), then executes a se-
quence of arithmetic instructions (implementing the gate functionality g € G), and finally writes
back the result to memory. This process generates some side-channel leakage depending on the exe-
cuted instructions and the processed data, which is the leakage of the physical elementary operation
abstracted by the noisy leakage model. A developer must first translate this behavior into a software
routine on a physical device. We propose to implement such a routine in assembly as follows (with
the xor operation as an example):
operation_xor:

ldr r0, [r0]

ldr r1, [ri]

eor rO, rl1 r0 // For other operations, change ALU instruction.
str r0, [r2]

with the following C signature:

void operation_xor(const uint32* aPtr,
const uint32* DbPtr,
uint32* cPtr);

We define a routine for each abstract gate g € G. When executed on the target device, the compiled
code corresponding to such a routine behaves as a physical elementary operation abstracted by
the noisy model. From these implementations of the abstract gates, any circuit C' € C can be
compiled into a physical implementation on the target device. This implementation takes the form
of a sequence of calls to the elementary operations, looking like the following C-syntax example:
operationl (alPtr, biPtr, ci1Ptr);

operation2 (a2Ptr, b2Ptr, c2Ptr);
operation3(a3Ptr, b3Ptr, c3Ptr);

The routines operationl, operation2, operation3, ... are all among the implemented gate routines
which are mapped from the gates of the circuit. The pointer arguments (alPtr, b1Ptr, c1Ptr),
(a2Ptr, b2Ptr, c2Ptr), (a3Ptr, b3Ptr, c3Ptr), ... are constant addresses triplets which encode the

data dependency of the implementation, i.e., the wires in the abstract circuitﬁ

8 The proposed implementation style is admittedly not very efficient. This paper mainly targets security and sim-
plicity, translating the definition of a circuit in the leakage models to a physical implementation and leaving
optimization to future works.
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3.3 Step 2: Enforcing and Testing Data Isolation

Once the syntax of elementary operations is fixed, the physical assumptions made in the noisy leak-
age model must be satisfied by the implementations to use the security reduction. Our methodology
first focuses on the data isolation assumption, which requires that the leakage of an elementary oper-
ation only depends on its inputs, i.e., is independent of the inputs of the previous and the following
operations. Indeed, this is rarely true in practice, as elementary operations successively executed
might leak jointly on their manipulated data. After the execution of an elementary operation, the
data it has processed might have changed the physical state of the CPU. The leakage of the following
elementary operation will then be a (probabilistic) function of the data it processes and the phys-
ical state of the CPU, which depends on the previously processed data. This is a well-known issue
in the side-channel literature. In particular, this data non-isolation implies the so-called transition
leakage observed and analyzed in many works [6158]. These pitfalls have a direct practical impact,
typically leading to losing security orders in the masking scheme [6]. In the provable security setting,
this translates to breaking the data isolation assumption: assuming that each elementary operation
leaks a (probabilistic) function of the accessed part of the state is incorrect. It would further leak
on the state’s previously accessed part(s). Hence, a developer can not simply implement a circuit
as a sequence of the routines introduced in Section [3.2] as the side-channel security can no longer
be reduced to the random probing model.

Since data isolation is essential for the security proofs to hold and is a crucial step for the
methodology, a developer needs to ensure it on a physical device. Since data isolation is essential
for the security proofs to hold and is a crucial step for the methodology, a developer must ensure it
on a physical device. In our work, we tackle this issue by proposing a way of enforcing it inspired
by previous works in the literature (for instance [20/28]), and then propose a novel way of testing it
on a given device.

Enforcing data isolation. We use data whitening to enforce the data isolation assumption in our
methodology. The principle is to call a routine on constant or random data whose sole purpose is
to clean the CPU state from any dependency on the previously processed data. Specifically, after
each call to an elementary operation routine, we insert one or more calls for which the arguments
point to random or constant data in memory. The intuition is that by relying on a call to a similar
elementary operation routine, we expect to clean the data path, namely to write random or constant
data in any hardware register containing data-dependent information from the previous call. Such
an approach is a non-exact science, so we need to assess the soundness of the inserted whitening
empirically. Although natural, the above way might not suffice to ensure data isolation on some
devices. The effectiveness of a whitening routine depends on the microarchitecture of the device’s
CPU. Therefore, a developer might have to test several approaches before reaching successful and
efficient isolation.

Even with an isolation that avoids all transition and glitches effects across operations, it might
not be possible to partition the leakage trace in time intervals whose leakage corresponds to only
a single operation. Indeed, the leakage is often subject to low-pass filtering inside the target chip
or the measurement chain. As a result, the independent intrinsic leakage of the operations will be
linearly combined in the measured trace. We propose to relax the noisy leakage model to allow the
leakage to be composed of linear combinations of independent noisy leakage functions. In this case,
we aim at ensuring that a leakage function f; corresponding to the elementary operation g;(x;) does
not jointly depend on the current state x; and previously accessed parts of the state: ..., &;_o, ®;_1.
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In other words, f; depends on the current state and has at most linear dependencies on the previous
parts ..., ®;_9, x;_1. With this relaxation, we still provide independence between the inputs of the
different operations, i.e. data isolation.

Testing data isolation. In we propose a novel way to test the effectiveness of a data
whitening routine. The principle is to suppose that the leakage distribution can be modeled as a
sum of a deterministic function of the first operation’s inputs, a deterministic function of the second
operation’s inputs, and some noise value. In other words, we test that in the leakage distribution,
no function jointly depends on the inputs of both operations. We refer to for a formal
description of the test and some experimental results.

3.4 Step 3: Characterizing the Leakage Distribution

Once data isolation is enforced and tested, one can safely infer the leakage distribution of each phys-
ical elementary operation. This is a classical problem in the side-channel literature, and we can rely
on a solid theoretical and practical ground for this step. We rely on the common assumption [32//67]
that given the leakage distribution ) of an elementary operation with inputs & € V¢ takes the form
of a deterministic function of Y (x) plus an additive Gaussian noise:

yﬂ: = d(x) +N(072) ’ (6)

where the deterministic part of the leakage can be written as a linear combination of a predetermined
basis of functions H = {h1,...,hn}, i.e.:

d(z) =) aihi(x) . (7)
=1

In our methodology, we propose relying on linear regression to estimate the deterministic leakage
d(-). It consists in acquiring a first set of ¢ traces which measure the leakage during the execution of
the operation on ¢ inputs generated uniformly at random and using this set to infer the coefficients
{a;}i=1,..m of the leakage. Then, we can compute the sample covariance matrix using a new set of
¢5 traces on uniform random inputs, allowing us to recover (an estimation of) the covariance matrix
X

The choice of the basis of functions H is determined for each elementary operation routine
depending on its internal variables. The basis should at least contain one function for each internal
variable bit but might also include monomials of higher degrees due to possible coupling effect [42].

We stress that although we propose linear regression for the leakage estimation, any other
estimation method could be used with our methodology. Template attacks [30] and their combination
with dimensionality reduction [72J26] are natural candidates for this purpose. Recent progresses
towards exploiting machine learning as a modeling tool for side-channel analysis are eligible as
well [59/62].

To validate our method, we test it on a STM32F3 MCU using NewAE’s ChipWhisperer-Lite
CW1173 board and measure the efficiency of our estimation by comparing the inferred distribution
Ve and the actual leakage. More details and experimental results are given in
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3.5 Step 4: Relaxing the Noise Independence

Next, we consider the noise independence assumption needed for the reduction from the noisy
leakage to the random probing model. Namely, in the idealized noisy leakage model, the noise
that occurs during the execution of an elementary operation is drawn independently of the noise
that occurs during the execution of the previous ones. Hence, this assumption must be satisfied in
practice. Meanwhile, it is hard to enforce and test as no clear separation of the noise occurs during
a leakage trace. In our methodology, we propose a novel way to relax this assumption. Namely, we
keep the Gaussianity hypothesis, but we allow the leakage of the different operations to overlap.
We characterize this relaxation and directly reflect it on the security level by providing a reduction
from the noisy leakage model with potential noise dependence to the idealized noisy leakage model.

Our methodology suggests relaxing the noise independence hypothesis by splitting the noise
distribution into several distributions while minimizing the leakage on each operation. In other
words, given k successive elementary operations of inputs {(x;)}i=1.. %, we can express the global

leakage distribution as
k

Y=> di(w:) + N(0,5) (8)
i=1
where d;(x;) are the different deterministic signals of the operations, and N is the global noise.
Thanks to the data isolation enforcement and test from the deterministic signals are
mutually data independent. Specifically, while the d;’s might overlap on some time samples, they
independently apply to the inputs a;. This ensures that the global deterministic leakage can be
expressed as a sum in
In order to relax the noise independence, our approach consists in finding a set of covariance
matrices {X;}ie() such that ) ; X = Y. This way, we can split the Gaussian noise distribution
N(0,%) into k independent Gaussian distributions N(0, X1), ..., N(0, X%). This representation
enables us to split the leakage distribution into several functions Y; = d;(x;) + N (0, X;) for every
i € [k]. An adversary given a leakage sample of each ); is more powerful than an adversary given
a sample of the global leakage ) because the former can always sum the ); samples to get an Y
sample. More details on the security reduction and the formal description are given in
We aim to find such matrices X;, which sum to the original covariance matrix 2 while minimizing
the mutual information between the leakage and the signals.

3.6 Step 5: Estimating the Noisy Leakage Parameter

The noisy leakage model is defined with a security parameter representing the noise level on a leaking
device. We refer to this parameter as the noisy leakage parameter ¢ of the §-noisy leakage model. As
explained in reducing the noisy leakage model to the random probing model provides the
leakage probability in the latter. More precisely, to achieve (4, €)-security in the noisy leakage model,
an abstract circuit/implementation should achieve (p, €)-security in the random probing model with
p = - ¢ for some constant factor v depending on the noisy leakage metric (y = |X| for the SD;
metric, v = 1 for the SDrp metric).

The factor v depends on the chosen noisy leakage metric. There are different options available.
The original security reduction [37] (DDF reduction) relies on the statistical distance between a
(uniform) variable X and the same variable conditioned on its leakage Y: § = Ey[SD{((X|Y =
y); X)]. When reducing to the random probing model, this value is multiplied by the size of the
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input space X (i.e., the definition set of inputs @ of an elementary operation), hence losing tightness
in the tolerated leakage rate through the reduction. In a more recent work [63] (PGMP reduction),
the authors express 0 using different noisiness metrics from the pointwise mutual information. The
most interesting metric is the average relative error (ARE), a worst-case metric, contrary to the
statistical distance, which is an average-case metric. When computing § = ARE(X; X|Y), the
reduction to the random probing model yields tighter results with p = §. The tighter result comes
from the random probing model being a worst-case model, which better matches the definition of
ARE.

In order to estimate the noisy leakage parameter in our methodology, we compute both ARE
and SD metrics using the inferred leakage model to compare both reductions to the random probing
model. We rely on the pointwise mutual information to compute both metrics as in
Since, in both cases, we need to compute expected values over the set of possible leakage values, we
propose to use a Monte Carlo method to empirically compute the expected value and conclude when
it starts to converge towards a fixed value. More details on the evaluation are given in

3.7 Step 6: Compiling the Cryptographic Implementation

At this stage, we have estimated the leakage parameter of each isolated noise-independent elementary
operation. As defined this parameter can be computed using the SD or ARE metric. We
obtain an equivalent leakage probability p in the random probing model in both cases by applying
the reduction. The reduction is tighter in the case of ARE, where the same leakage parameter is
the leakage probability in the random probing model.

Different vs. maximum leakage probabilities. As we might obtain different noisy leakage pa-
rameters d; for the different elementary operations, leading to different leakage probabilities in the
random probing model, we consider that all the gates leak with the maximum probability corre-
sponding to maximum noisy metric 6 = max; d;. A random probing secure circuit with maximum
leakage probability is straightforwardly random probing secure with different leakage probabilities.

Gate vs. wire leakage model. In our characterization, we rely on the leakage of the elementary
operations abstracted as gates in a circuit. Meanwhile, most random probing secure constructions
suppose leakage on wires instead. Our methodology applies an additional transition from the gate to
the wire leakage model to circumvent this issue. As proved in LemmalI] we can reduce the security of
a circuit in the gate random probing model with leakage probability p, to the wire random probing
model with leakage probability |/p, assuming that each gate has at most two inputs.

Compiling a cryptographic implementation. The final step consists of a two-stage compi-
lation process applied to the input abstract circuit C € C representing the target cryptographic
implementation:

— One first applies the target RPS compiler which, for the obtained leakage probability p and the
target security level ¢ = 27*, transforms C into a randomized circuit C' functionally equivalent
to C' achieving (p, e)-random probing security.

— One then serializes C' into a physical implementation, making a sequence of calls to the (whitened)
elementary operation routines on the target device. Each elementary operation in the sequence
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corresponds to a gate in C whose output is written in a fresh memory cell. The circuit wiring is
hardcoded in the pointer arguments passed to the successive calls to the elementary operation
routines.

The obtained physical implementation achieves A-bit of side-channel security for the target side-
channel acquisition tool and under relaxed or empirically verified physical assumptions. The overall
process and provable security guaranty are wrapped up hereafter.

3.8 Wrapping up

gives a global picture of our methodology. We assume that each elementary operation has
at most two inputs and denote such inputs as (a;, b;). After we implement the abstract gates (Step
1) and enforce and test data isolation (Step 2), we can characterize the leakage for each elementary
operation (Step 3). We thus get a global leakage model ) for any sequence of elementary operations.
Next, we can apply the noise-splitting strategy to obtain separated leakages ); with independent
noises for the different elementary operations. We can then estimate the noisy leakage metrics 9; of
the different elementary operations (Step 5) and apply the DDF/PGMP reduction which yields a
leakage probability pgL = v - max; d; in the gate-leakage random probing model. Finally, we get a
leakage probability pwi = /pcL in the wire-leakage random probing model.

@ Implementing
elementary operations

Physical leakage ® Data isolation Isolated physical leakage
* No data isolation — » Data isolation
* Noise dependence ¢ Noise dependence

characterisation

l @ Leakage

Model I: Noisy leakage

Marellillkiealizedicsy N Ao . model w. noise dependence
leakage model @ Noise splitting

—_—
= dfa,b) + N (0.5,
{¥:=da.b) ¢ )}' (®) Estimating the

"', Noise metric

k
Y = 2 da, b) + ¥ (0,5)
i=1

DDF / PGMP .
reduction { 51 } i
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Model lli: Gaiie-leakage ¥ random probing model

random probing model K

- o Leakage probability
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\__.——'

Fig. 2: Tllustration of the methodology.

We can go up the methodology path from [Figure 2] to formally prove the security of the compiled
physical implementation. Consider C the randomized circuit output by the RPS compiler and which
achieves (pwi, €)-security in the wire-leakage random probing model (Model IV). From the argument
given above, we have that C achieves (pGL, €)-security in the gate-leakage random probing model
(Model ITI). Then, let us consider the abstract physical implementation (API) corresponding to Cin
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the idealized noisy leakage model with operation leakage {);} and corresponding noisy metrics {d; }
(Model II). By application of the DDF/PGMP reduction, we get that this API achieves ({d;},¢)-
security in this idealized noisy leakage model. This further translates to the security of the API with
global leakage ) (Model I) thanks to the noise splitting reduction. The physical implementation,
which is an instantiation of the API on the target device, thus achieves ¢ = 27 security against
side-channel attacks under the following assumptions:

1. (Step 2) The data isolation effectively ensures that the deterministic signal can be expressed as
asum S di(a;, by);

2. (Step 3) The leakage characterization yields the exact leakage distribution (i.e., the exact de-
terministic functions {d;} and covariance matrix X').

While those ideal assumptions might not be perfectly met in practice, they can be naturally relaxed.
The assumption is that an adversary cannot effectively exploit the approximation error between this
ideal world and the actual leakage to increase the advantage beyond e = 277

While our methodology exhibits the necessary steps to implement theoretically proven circuits
in the random probing model on physical devices, it raises many questions and limitations of the
current security reductions and their usability in practice. In the following sections, we discuss our
proposed methods of relaxing or enforcing the physical assumptions and computing the noisy leakage
parameter on the targeted device before finally exhibiting some possible applications. As we tackle
these issues, we discuss the limitations of our approach and demonstrate the need for more efforts
to bridge the gap between the theoretical and practical communities.

4 Enforcing and Testing Data Isolation

Masking security proofs require independence between the leakage of all operations. However, en-
forcing and testing this independence assumption is challenging, leading to another approach in
practice based on the test vector leakage assessment (TVLA) [70]. This approach verifies the sta-
tistical security order (i.e. the smallest statistical moment that leaks) of a masked implementation
by detecting secret-dependencies in the statistical moments of the leakage [40]. While dependence
in the moment corresponding to the security order is expected due to dependence in inputs of the
leakage functions (e.g., all the shares of a value), lower-order moments in a threshold-probing secure
implementation with independent leakage functions are independent of the secret. This test can
indeed detect typical leakage independence violations due to physical defaults like glitches [56/57]
or transitions [33l6] when they lead to a security order reduction. Due to the difficulty in enforcing
strict independence in the implementation and to verify it, a commonly accepted relaxation is to
ensure that if there are detectable lower-order leakages, they are of significantly lower amplitude
than those at the target security order [40].

While this heuristic works reasonably well in practice, it has two significant limitations. First, by
verifying only a security order, it cannot detect leakage dependence issues that would result in other
kinds of weaknesses than security order reductions, e.g., easing horizontal attacks. Second, while
this approach is always applicable in theory, it requires testing all the mixed statistical moments
corresponding to all the tuples of leakage points in the traces of a masked implementation [8], and
it is therefore computationally impractical (it scales exponentially with the length of the trace) at
large security orders (even the second order can be challenging).

Therefore, we propose another approach with much improved practical efficiency, which can
detect leakage dependencies that do not reduce the security order. Our approach is based on testing
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the independence between the leakage of pairs of operations. We develop a method to test the
independence of the leakage functions associated with these operations. Then, we use an argument
based on physics to extend the result of this test to long sequences of operations.

4.1 Leakage independence for adjacent operations

Let us consider two operations op; and opa, each of them operating on two inputs (say x; and x3).
We assume that these two operations are executed sequentially, giving rise to a leakage trace Y.
We say that the operations have independent leakage if

Y(wl, :132) = dl(ml) + dg(wg) + N (9)

where d; and dp are the deterministic functions (like in [68]) and N follows a Gaussian noise
distribution N. This definition indeed ensures independence, as it is possible to decompose N into
two independent Gaussian noises N; and Na, giving Y = (di(x1) + N1) + (d2(x2) + N2). Despite
the sequential execution context, we cannot assume that the leakage is a sequential combination of
the leakage of the operations (e.g., Y = (di(x1) + N1, d2(x2) + N2)) due to data dependency effect
between successive operations (e.g. transitions in CPU buses/registers) and low-pass filtering in the
measured circuit.

We use the following statistical test to verify that holds:

1. Fix the inputs of the two operations to (@1, x2) and (2}, 2)}) (similarly to fized-vs-fized leakage
assessment).

2. Acquire a set T{y gy of £ traces corresponding to executing the operations with the inputs set to
(x1,0) and compute the average trace T(I,O)-

3. Do the same thing for T(y ¢y with inputs (27,0), Tg,1) with inputs (0,2), T(o2) With inputs
(0,23), T(1,1) with inputs (x1,x2) and T3y with inputs (2, z3). We hence acquire in total 6- ¢
traces.

4. Compute the following

Ty =Tany —Tao — T

2) = T20) = Ti0)

(i.e., from each trace in T{y 1) (resp.T{22)) , we substract T(l,O) + T(O,l) (resp. T(ZO) + T(Og))).
5. Compute the statistical mean equality test on the sets T(’Ll) and T(’Q’Q) as
T'an — T

+—
\/8?1,1)+S?0,1>+5%1,0>+5%2,2)+5<22,0)+5%0,2>
7

(10)

where s?i 7 is the unbiased estimator for the population variance of T(; ;). If no significant

difference pops up (e.g., |[t| < 4.5), conclude that holds (at least, we could not

contradict it).

The motivation for this test is that under the null hypothesis (i.e., [Equation 9| holds), T(l,o)
converges to dy (21)+d2(0) and T'(g 1 to d1(0)+da(x2). Therefore, the distribution of T(’1 ) converges
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to the distribution of N +d;(0,0) + d2(0,0), and likewise for T(,2,2)' We finally compute ¢ such that,
under the null hypothesis, it follows a standard normal distribution.

Since the noise comes from physical, electronic phenomena, its Gaussianity is a reasonable
assumption. However, in case of doubt, further statistical tests can be performed. For instance,
the methodology can be extended to tests capturing noise dependencies [22], even though we do
not see a physical reason why a dependency could appear as the covariance between noise samples
(that would mean that the noise is multiplicative of the leakage).

Finally, we note that such a statistical test can only show that dependencies cannot be spotted
with a given number of measurements, which does not demonstrate independence. However, if the
test cannot spot a dependency between leakages for a given /¢, it seems safe to assume that this
dependency cannot be exploited to mount an attack in significantly less than ¢ traces. Compared to
classical higher-order TVLA, our test has more statistical power: as a first-order test (independently
of the order), it is less sensitive to noise than higher-order tests.

4.2 Independence in longer operation sequences

Let us now discuss the dependencies between operations that are not adjacent. We argue that,
based on knowledge of the structure of the evaluated processor and under some reasonable physi-
cal assumptions, the absence of dependency for adjacent operations guarantees that non-adjacent
operations have independent leakage.

Considering the processor (excluding the memory), we first assume that the “core” leakage for
any clock cycle is a function of all the state stored in the processor (and the input data, e.g., on the
memory bus). This “core” leakage may then get filtered (i.e., undergo a linear transformation) before
it is measured (linear physics hypothesis, denoted LP). Next, given a sufficiently simple processor, we
may assume that when the processor executes m identical non-branching/conditional instructions,
the microarchitectural state of the processor does not depend on the state computed by the first of
these operations (provided that the other operations do not also compute this state, and a few cycles
after the last instruction retires) — m-state-erasing (denoted m-SE) hypothesis. Concretely, for an
elementary processor whose state is only the architectural state, the 2-SE hypothesis is satisfied.
For more complex processors, m might be larger (or even not exist). For a simple in-order processor,
m-SE with m close to the pipeline depth appears as a reasonable assumption.

Our operations all follow the same structure: load the operands in two registers, perform a
logic instruction, and store the result (always using the same registers). Then, between two opera-
tions, we execute several “cleaning” operations that operate on constant public data (i.e. whitening
operations). The m-SE hypothesis, combined with LP, implies independent leakage when m — 1
cleanings separate the operations. Our two operations test presented in the previous section is a
way to validate the hypotheses (and the m parameter).

Finally, regarding the memory leakage, it is reasonable to assume LP for the static leakage from
the memory cells and m-SE for the remaining logic. Let us conclude this section by remarking that if
an open-source processor is used, the analysis of leakage independence is greatly simplified. Indeed,
as the hardware is known, we may apply the robust-probing leakage model to instructions sequences
(or to verify the m-SC hypothesis).

4.3 Experimental Validation

We perform the data isolation test on a real target, a STM32F3 MCU based on an ARM Cortex-M4.
Such targets are cheap and readily available.
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For the side-channel acquisition setup, we used NewAE’s ChipWhisperer-Lite CW1173 board
together with a CW308 UFO board to connect an NAE-CW308T-STM32F3 target board (embed-
ding the STM32F3). The STM32F3 clock frequency is set to 7.37TMHz. A simple way to set up the
acquisition is to follow a NewAE tutorial’}

Thanks to ChipWhisperer-Lite, one can easily acquire the power consumption of the target
board with an ADC synchronized with the STM32F3 clock. That way, the acquisition sampling rate
can be as low as four samples per CPU cycle and capture informative side-channel traces. To ease
the acquisition and trace processing, we use NewAE’s trigger mechanism.

We implement operations as routines described in Section [3.2] Since the cost of the data isolation
test is quadratic in the number of elementary operations, we limit ourselves to four elementary
operations for this proof-of-concept: 8-bit XOR, 8-bit AND, 8-bit Right Shift, and 8-bit Left Shift.

These operations would be enough to implement a masked bit-sliced AES at any chosen order.
Of course, more elementary operations would make the implementation more efficient but would
imply a higher cost in side-channel characterization.

In our example, each elementary operation relates to a single ARM-CortexM4 instruction, simpli-
fying the analysis (listing the intermediate variables of each operation is trivial) but is not mandatory
for the methodology. We implement the four operations in assembly as shown in Figure [3]

xor_func: and_func:
ldr r0, [ro0] 1dr r0, [ro0]
ldr r1, [r1] ldr r1, [r1]
eor rO0O, rl1l r0 and rO0O, rl rO
str r0, [r2] str r0, [r2]
left_shift_func: right_shift_func:
1ldr r0, [rO] ldr r0, [r0]
mov r0O, rO, LSL 1 mov r0O, r0O, LSR 1
str r0, [ri] str r0, [ri1]

void whitening(void) {
xor_func (alPtr, biPtr, cilPtr);
xor_func (a2Ptr, b2Ptr, c2Ptr);
xor_func (a3Ptr, b3Ptr, c3Ptr);
}

Fig. 3: Elementary Operations (xor, and, left shift, right shift) and whitening as implemented on
the STM32F3 MCU

To perform our data isolation test, we need to capture the side-channel execution traces of two
consecutive elementary operations separated by a whitening process and use the test to validate or
not data isolation between the two operations. This approach must be re-iterated for all combinations
of two successive elementary operations.

The whitening process does not have to be the same for all pairs of elementary operations, but
for our operations selection, the acquisition setup, and the chip, a single whitening process allows
us to pass all tests: three consecutive xor operations with constant public inputs. The corresponding

9 ¢.g. https://wiki.newae.com/Tutorial_A8_32bit_AES
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assembly code is shown in Figure 3| where {aiPtr, biPtr, ciPtr} for i € {1,2,3} are memory pointers
to the two constant operands {ai, bi} and the memory location to store the result ci.
The test procedure is applied as follows:

— For each pair of elementary operations, the target code is the following concatenation

whitening () ;
operationl (alPtr, biPtr, clPtr);
whitening () ;
operation2(a2Ptr, b2Ptr, c2Ptr);

The inputs are pre-generated and loaded in memory once for all before iterating on the target
code.

— Triggers surround the target code to ease the trace acquisition.

— For randomly chosen values (x1, z2), (2], 25 )| we collect 108 traces for each set T,y 11,05
T0,1), T(2,2)s T(2,0)> T(0,2), for a total of 6x10° traces.

— From the sets of traces, we test if Equation @ holds.

The above process is applied for each pair of elementary operations and iterated 2-3 times for
different values of (@1, x2), (x), xh). illustrates the test result for the pair of operations
(xor, and) and a single choice of fixed inputs. (resp. illustrates the captured
leakage (through the T-Test) of the computation of xor (resp. and) and the manipulation of its
inputs/outputs. Namely, shows high T-test values at the moment of the execution of xor
with a residual leakage slowly decreasing afterward. While shows high T-test values later
at the moment of the execution and, and no leakage is detected before, ensuring that the inputs of
and were not manipulated before the execution of the operation. Then, illustrates the
captured leakage of both xor and and simultaneously, including the individual leakages of xor and
and. is the result of our proposed test: it represents the captured leakage of both xor and
and simultaneously while individual leakages of xor and and are removed. The T-Test results show
that the data isolation process (whitening function) successfully removes the combined leakage of
xor and and.

5 Relaxing the Noise Independence

A necessary physical assumption in the noisy leakage model is the noise independence. In the ideal-
ized model, the noise occurring during the execution of an operation is independent of the noise that
occurs before and after it. While enforcing data isolation is relatively possible, as described in
enforcing noise independence is hard to achieve, and we propose a way in our methodology
to relax it instead as discussed in

Consider a sequence of k operations and the corresponding leakage trace Y. Assuming that
the noise is additive, we have the decomposition Y = S + N where S is the signal (typically a
deterministic function of the input data as presented in the previous sections), and N is the data-
independent noise. Further, thanks to the data isolation test of the previous section, we know that
the signal can be rewritten as S = Zle Si, where S; is the leakage caused by operation ¢. We aim
to decompose the noise into a sum of k£ + 1 independent contributions (one for each operation and
a “leftover” one) N = Z?:o N;. Assuming that the noise contributions N; are Gaussian, we only
have to ensure that they are not correlated to ensure independence. This gives us a decomposition

10 where x; (resp. a;) contains the two inputs of operationi
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of the leakage signal Y = Zf:o Y; where Yy = Ny and Y; = S; + N; for i # 0, which ensures signal
and noise independence between the components.

We argue that an implementation secure against an adversary with access to the {Y;}icqo,. k)
is also secure against an adversary with access to the global leakage trace Y. The former is stronger
than the latter adversary since each sample in Y can be obtained by the sum of the corresponding
samples in {Yz‘}ie{o,...,k}- In our methodology, we suggest computing the noisy leakage parameter
based on the split leakages Y;, which is weaker than the noisy leakage parameter computed from
Y since we split the noise N into k + 1 smaller ones, which necessarily induces more information
leakage on each independent operation. Hence, an abstract circuit secure against an adversary with
access to the split leakage is also secure against an adversary with access to the global leakage Y.

We will present two solutions to the above decomposition problem in the following. We first
discuss a trivial solution, which has the advantage of being easily applicable but induces a loss in
the security level as the size of the implementation grows. Then, we express the decomposition as
an optimization problem that better scales with the size of the circuit but is more challenging to
solve. We propose a direct solution to the optimization and leave the question of optimally solving
it as an open question.

5.1 Trivial Solution

We can perform a trivial split of the noise described above. Namely, for a sequence of k operations,

we can split the Gaussian noise N = N(0,X) such that No = 0 and N; = N(0,(1/k) - X) for
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i€ {1,...,k}. This decomposition ensures that the leakage Y can be expressed as a sum of Y; with
Yo=0and Y; =S5; + N(0,(1/k) - ), with noise and signal independence between the Y;.

Meanwhile, the above decomposition increases information leakage as the number of operations
grows by decreasing the amount of noise occurring on each operation. Such an increase in the
information leakage means decreasing the security level in the noisy leakage model when applying the
reduction after the relaxation (i.e. increasing the ARE leakage). In other words, this decomposition
scales poorly with the size of the circuit.

Hence, the noise decomposition, in addition to ensuring the independence of the components,
should minimize this leakage. As explained in the chosen ARE (or SD) metric for the
noisy leakage model is the maximum among all operations executed. Hence, the chosen decomposi-
tion should balance the noise on all operations and scale with the number of operations executed.
In the following, we tackle this by suggesting a formulation of the decomposition as an optimization
problem with a trivial solution and leave the question of optimally solving it for future research.

5.2 Better Noise Splitting

We propose a better way to split the noise taking advantage of a relaxed noise independence assump-
tion. For a sequence of k elementary operations, we can split the leakage trace into k sub-traces,
all of the same size and including the time samples of one elementary operation each. We call
distance d between two sub-traces the number of operations (or sub-traces) between them during
the computation’s sequence (for example, two consecutive sub-traces have distance d = 1). For the
sake of simplicity, we assume that the noise is identically distributed in each sub-trace and that
the dependence (i.e. the covariance matrix) between two sub-traces solely depend on their distance
dB This means that each operation’s noise covariance matrix is the same denoted X, and that
the covariance matrix between two sub-traces with distance d is the same along the computation
denoted X’ We then formulate the following relaxed noise-independence assumption:

Relaxed noise independence assumption: There exists dpqa, € [0,k) such that the sub-traces
with a distance d > dymaq have null covariance: X, = 0 Vd > dpaq-

Intuitively, the above assumption captures the expectation that, after some delay, the noise in
an operation sub-trace is fully independent of the noise in an earlier operation sub-trace. While we
introduce it as a ‘relaxed assumption”, we stress that it is without loss of generality since there
always exists such a dj,q;. In particular, the case dy,q: = k — 1 captures that the independence
between the noise of two apart operations is never reached.

Under this relaxed noise independence assumption, the global covariance matrix for k operations
has the following structure (assuming dyq = 1):

o 21
3! 5l s
Y= SHBN N (11)

1 This assumption is not strictly necessary to the application of our method but makes the presentation much
simpler.
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We introduce another parameter, which we call the data-dependency depth, £,q,. This is the
number of sub-traces over which the data dependency of an elementary operation spans. Specifically,
the deterministic part of the leakage d; of the i-th operation is non-zero for samples spanning on
sub-traces i, i + 1, ..., 7 + £;qe. This is represented in for 4,0z = 1.

op;  Op, Op;  Op,

Computation
Fig. 5: Data dependency spanning.

We now explain how a better splitting of the noise can be achieved, first by assuming dpq. =
lmax = 1 (and generalize later). Consider a split of the leakage in three as:

Ly = (51+S4—|—)—|—N1

Ly :=(Sy+ S5+ ...)+ Ny

Ly :=(S3+S6+...)+ N3
where S; = d;(x;) denotes the signal of the i-th operation, which spans over time samples as
represented on and with N; ~ N (0,(1/3)X) so that Ny + Na + N3 = N ~ N(0, X). We
have that (L; + Lo + L3) ~ Y, the global leakage.

Let us now consider (1/3)X = AAT the Cholesky decomposition of the global covariance matrix
(scaled by 1/3), so that the N; noises follow a distribution N; ~ A - X; with X; ~ N(0, 1), for I
the identity matrix. We have that A~! has the same zero matrix blocks as X (see .
Namely, it can be written as:

By BT
By By BY
A7l = By By Bf (12)

for some matrices By, By (with By being symmetric). Then we get
ATV L= (S + S+ )+ X0
A7V Ly = (S5+SL+..) + Xo (13)
AV Ly = (S5+SE+...) + X3

with S! = A~1.S;. One can then check that for each of the three leakages, L, Lo, and L3, the

successive signal S, Sj_ 5, ... are strictly disjoint (meaning that they are non-zero over disjoint time
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samples). This is due to the structure of A~! (see|Equation 12)) and the fact that each S; spans over
two sub-traces. Then the Sj span over three sub-traces so that S and S;_ 5 are disjoint. Moreover,
the normalized noises A™1 - N; = X; ~ N(0, ) can be trivially separated as

X1 =X1+X,+...
Xo=Xo+X+... (14)
X3=X5+ X5+ ...

such that the X/ span the same time samples as the S;. We finally split the leakage in variables
Y; = A- (S, + X]) which satisfy Y = Zle Y;. In this splitted leakage, the amount of noise is scaled
by a factor 1/3 compared to the factor 1/k of the trivial solution.

The same reasoning applies to higher values of d;q, and £i,q,. But instead of dividing the noise
in 3 and scaling the covariance by factor 1/3, one has to divide it in dypaz + lmazr + 1 and hence
scale the covariance by a factor 1/(dmaz + ¢maz +1). Depending on the noise dependency depth and
data dependency depth, this might still be way better than a factor 1/k.

5.3 Towards Optimal Noise Splitting

While better than the trivial solution, the above method is still non-optimal since it roughly splits
the noise in 3 (or dpmax + fmaz + 1) regardless of the signals S;. While the signal S; may span over
the (i 4 1)-th sub-trace, it might be much weaker than on the i-th sub-trace. In that case, it should
receive a smaller amount of splitted noise than the signal S;;1 on these time samples.

Once again, we state our optimization problem for the simpler case of dpar = lmaz = 1 but
stress that it can be generalized to higher depths. We recall that our goal is to split the global
covariance matrix into k + 1 covariance matrices Xy, X1, ..., X such that

Y=Xo+21+ -+ 2% (15)
such that the leakage is split into n leakages:

This gives us a decomposition of the leakage signal Y = Zf:(] Y; where Yy = Ng and Y; = S; + N;
for ¢ # 0, ensuring signal and noise independence between the components.

Given the data-dependency spanning (c.f. , the X; matrix is only required to span
the same leakage samples as d;. Then the (lowered) global covariance matrix X' has the following
structure:

%

%

Zs
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From this structure, we observe that for an operation, say the i-th one, we need to split the covariance
matrix X, between Y; and Y;_; (since d;_; spans over time samples of the i-th operation). On the
other hand, X does not need to be split. Namely, defining Y, for every ¢ € {1,...,n}, as the
symmetric positive semi-definite matrix

SO 5
1 =9
with
SO 45l <5 (17)
and
T <y, (18)

we ensure [Equation 15, where by X’ < X we mean that there exists a positive semi-definite matrix
X" (i.e. X" is a covariance matrix) such that X' + X" = .

Let 6; be a leakage metric corresponding to Y; (e.g. ARE). Our optimization goal is

min max {0;};
50,50 5

under the constraints of [Equation 17| and [Equation 18, and for X; symmetric and positive semi-
definite.

To sum up, under the assumptions stated above, we infer the leakage parameters which are the
functions di. and the covariance matrices X, and X} and we look for a matrix X; as defined in
Equation 16| (in particular, a split of the X matrix into E’SO) + E’él)) for which the maximal §; is
minimized.

Choosing §;. We present the above optimization problem using any leakage metric §; corresponding
to the leakage Y;. Ideally, we would find the decomposition as the one that minimizes our SD
or ARE leakage metric. Meanwhile, choosing metrics simpler to express can lead to optimization
problems with simpler constraints that are theoretically solvable with current tools more efficiently.
For instance, we can choose our metric to be the multivariate SNR denoted SNR; for the leakage
Y; defined as the maximal eigenvalue of the matrix Xy, i‘i_ ! where X4, is the covariance matrix of
d;(X), for X uniform over X. Then, our optimization goal becomes

( )mi(n) max {SNR;};
oy tHEL
20 ’EO 721

under the same constraints as earlier. Minimizing the SNR ultimately leads to minimizing the SD
or ARE and appears as a natural first step before solving the more general case. It is in line with
our goal to exhibit a first complete connection between the theory and practice of the masking
countermeasure, leaving the question of an optimized methodology relying on the best combination
of metrics and proofs as an interesting direction for further research.
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6 Estimating the Noisy Leakage Parameter

Recall that once data isolation is enforced and tested as described in we can empiri-
cally characterize the leakage distribution of each elementary operation as described in
Assuming that the leakage takes the form of [Equation 6] we compute the coeflicients in the deter-
ministic function for each elementary operation (as defined in. We propose using linear
regression, but any other leakage characterization method holds with our methodology. Then, we
can apply the noise relaxation described in Section [6] to get the covariance matrix of the Gaussian
noise, which we suppose is the same for each elementary operation, following the representation in
our optimization problem.

We can then compute the noisy leakage parameter related to the noisy leakage model. Given
an elementary operation, this parameter represents the amount of information that can be deduced
about the inputs x of the operation, given the leakage trace y. Different metrics can be used to
measure this amount, as discussed in [Section 3.6| and [Section 2.4l The security reduction from the
noisy leakage model to the random probing in the literature uses SD or ARE metrics. We propose to
estimate both metrics to measure their effect on the reduction to the random probing model, where
our secure constructions are. First, we look at the SD and ARE expressions using the pointwise
mutual information recalled in We have

ARE = Ey max |PM]]|
X=x
P[X =z,Y = y]

—E 1
VR I PIX = 2] P[Y = 9] (19)
Ev ma PlY = y|X = ] 1 1‘
— X . —
VXSS PY =y|X =2/] P[X =a]
As for the SD, we get:
1
SD = JEyEx|PM]]
. 12‘ PlY =y|X =z 1 _1‘ (20)
T LIS P —yX =] PX=a]

From the equations above, we need to compute the sum of the conditional probabilities P[Y =
y|X = '] for ' € X for ARE and SD estimations. Then, in the case of ARE estimation, we need
to find the maximal value of the expression given between |- | in over the values taken
by X. While in the case of the SD estimation, we compute a sum over the expression given between
|-]in Finally, we must compute the expected value for ARE and SD for Y.

Computing the conditional distribution. To estimate the conditional distribution P[Y =
y|X = x] given a leakage trace and x, we can use the leakage characterization computed earlier,
since the conditional distribution is known to be expressed as

PV =y X =a] = ———exp ( — 5(y — d(@)" 5y~ d(a)) (21)

(2m)n 2\

where n is the number of samples in y [30].
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Estimating the expected value. Each sample point in the leakage distribution ) is a continuous
random variable over R. Hence, the expected value Ey is computed as an integral. Instead of
computing the integral, we use a Monte Carlo integration method to estimate the expected value.
Namely, we draw several random leakage values to estimate the expected value. The ARE is then
computed as

1 PlY = y|X = ] 1
ARFE = — . -1 22
P S Py g — o] P el 32
and the SD is computed as
Y =y|X =] 1 _1‘ . (23)

1 Pl
SD=-—>" > :
2-kY:yX:JZX:m,P[Y:yX:a;’] P[X =]

In both equations, k& denotes the number of leakage vectors y drawn from the leakage distribution
Y. Each leakage vector y is generated as y = d(x) + ¢, where x is an input generated uniformly
at random, d(-) is the deterministic function for an elementary operation, and ¢ is generated from
the Gaussian distribution A (0, ) following the noise covariance X.

Thanks to the law of large numbers, we know that as k approaches infinity, this estimation
converges to the expected value Ey. We show later in our experimental results that the convergence
curve reaches a plateau after some number of samples, which corresponds to the value of Ey-.

6.1 Experimental Validation

We use the same experimental setting from [Section 4.3] where we consider operations with at most 2
inputs of 8 bits. Then, iterating through all possible values in X for a given y amounts to performing
216 jterations. An extra 216 iterations are performed to compute the max for ARE or the sum for SD.
Indeed, iterating over all possible values in X does not scale well when considering larger inputs. In
such a case, other methods can be applied to make the computation tractable. For instance, one can
use the nearest-neighbor-based approach from [26] to efficiently and quickly compute the conditional
probabilities and to find the max over & € X in the case of ARE. We leave the computation of the
noisiness metric for larger inputs as an open research question.

Characterizing the leakage distribution. We start by inferring each elementary operation’s
deterministic part of the leakage function separately. We use the linear regression with a specific
choice of basis of functions H = {h1,..., hn}. The result of the linear regression is the set of {c;};
such that, for all inputs (a,b) of the selected elementary operation,

d(a,b) = ahi(a,b) (24)
=1

holds. In order to capture the leakage function fully, we construct the basis of functions as follows
(where n is the bit-length of the inputs a and b, here n = 8):

- ho(a, b) =1

— for all i € [1---n], hi(a,b) returns the ith bit of a

— for all i € [1---n], hpyi(a,b) returns the ith bit of b

— for all (i,7) € [L---2n)?, with i < j, h; j(a,b) returns h;(a,b) & h;(a,b)
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This gives a total of m =1+2-n+n-(2-n—1) = 2-n2 4+ n+ 1 functions in the function basis H.
For each elementary operation, the target code is the following concatenation

operation(aPtr, bPtr, cPtr);
whitening () ;

surrounded by triggers to ease the trace acquisition (similarly to . The inputs to the
operations are randomly generated (using a Mersenne Twister RNG) on the chip before each exe-
cution of the target code. Then, we collect 10° traces in a single set and apply linear regression over
the function basis H on each independent time sample. The output is the set of vectors {a;};.

Figure [6a] illustrates the convergence of the L2 norm of the coefficient vectors at two different
time samples for the xor operation. We consider one vector where the SNR ratio is high (i.e., more
information leakage) and one where the ratio is low. We can see that for both vectors, the L2 norm
converges from a few hundred traces, meaning that the linear regression can quickly estimate the
coefficients of the deterministic part of the function. This behavior can further be explained by
the low noise in the leakage depicted through the covariance matrix in Figure [6b] We compute
this covariance matrix on the same time samples of the operation as for the deterministic function.
The covariance matrix clearly shows low noise levels, which implies more information leakage. We
can also observe through Figure [6a that for a sample with high SNR, the coefficients converge to
more significant values than for a sample with low SNR, which gives more confidence about the
results, since for samples with more information leakage, the deterministic functions should have
more weight than when there is not much information leakage.
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Fig. 6: Linear Regression of the Leakage Function.

Estimating ARE and SD metrics. Before estimating the noisiness metrics, we must infer the
noise covariance following the relaxation from [Section 5 Our experimental results on the chipwhis-
perer show that the noise levels on the chipwhisperer we use are very low. Namely, shows
the noise covariance matrix computed from a set of traces with fixed input value for the same oper-
ation. This low noise failed our attempts to apply the optimization problem of In this
case, we can apply the trivial noise decomposition from making the security reduction
work at the cost of decreasing the noise levels even further as the size of the circuit grows. To
simplify our analysis, and since we already observe inefficient noise levels on the chipwhisperer, we
estimate the ARE and SD metrics using the original covariance matrix from to exhibit
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the noisiness levels achievable on this device in the best cases. We end our estimations by discussing
the challenge of designing hardware that generates enough noise to implement circuits secure in the
noisy leakage mode with reasonable security levels and finding optimal ways to solve the relaxation
on such a device.

shows the convergence of the Monte Carlo estimation of ARE and SD metrics for the
four operations as considered in The curves show that both metrics converge to a stable
value after around 4000 samples for each operation. For the ARE metric, it converges to a maximal
value of ~ 2134 for the xor operation, which is enormous as this value is the same as the leakage
probability in the random probing model (c.f. . Recall that the final ARE value in the
noisy leakage model is the maximal ARE among all operations. This result means no constructions
secure in the random probing model can be used on this device. We compare this value to the
SD metric, which converges to a maximal value of ~ 2700093 for the xor operation. While this
value is much lower, we recall that the reduction to the random probing model with the SD metric
(c.f. induces a factor of 216, equal to the size of the input space (2 inputs of 8 bits each).
In other words, the leakage probability in the random probing model using the SD reduction would
be almost 2'6, which is even higher than with the ARE reduction. We observe that the values of
the SD and ARE metrics are smaller for the shift operations than for the xor and and operations.
We argue that this comes from the fact that the xor and and operations have two operands of 8 bits
and perform an additional instruction between registers, contrary to the shift operations, leading
to more information leakage and hence higher values for the noisiness metrics.

Such values for the ARE and SD noisiness metrics imply critical leakage levels on this component,
making attacks most likely possible with very few traces. It also matches the conclusions of previous
works (e.g. [26]) on this component. In addition, such levels of noisiness metrics make it challenging
to have provably secure implementations on the device. To show the amount of noise that needs to
be added to this component to be able to use secure constructions from the literature, we present
in the following section concrete results on the AES cipher and use artificial noise that we add to
the samples to demonstrate the obtained security levels.

7 Discussion on the Application of the Methodology

To achieve arbitrary levels of security in the random probing model, current literature proposes using
an ezxpanding compiler [I3JI5/16]. We recall that the latter consists of recursively applying some
base gadgets to the original circuit until achieving the desired security level. After k£ applications,
the achieved random probing security is ¢ = f¥(pwi) where pwi is the random probing wire-
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leakage probability and f is the simulation failure function achieved by the set of gadgets. The
maximal tolerated leakage probability for current 3-share and 5-share constructions is around pyw ~
2773 [15]. In our context, pwy is the square root of the maximal ARE metric over the different
operations, meaning that the maximum tolerated ARE is of ARE ~ 271°. This value is very far

from what we estimate in on the chipwhisperer.

Adding artificial noise and impact on ARE / SD. We illustrate the impact of noise on security
in the noisy leakage model by adding artificial noise to the traces acquired with the chipwhisperer.
For simplicity, we add noise to each time sample of each trace, drawn from a univariate Gaussian
distribution of mean 0 and standard deviation o. We illustrate the evaluation of the ARE value for
the xor operation, which showed the highest ARE and SD values in [Section 6.1] This operation’s
signal variance is about agignal ~ 1077 at the leakiest point during the execution of the operation.
shows the values of convergence for the SD and ARE metrics as done in after
adding different amounts of noise to the traces (i.e. different o values). The table shows that the
ARE value reaches 277 when adding a univariate Gaussian noise of mean 0 and standard deviation
o = 5 to each sample in the traces. Recall that this corresponds to a leakage probability of 2735 in
the random probing model. Meanwhile, the SD value reaches 27!°, which must then be multiplied
by 2!6 to obtain the leakage probability in the random probing model (because we consider 2-input
8-bit xor operation), making the reduction still not usable. These results showcase the difference in
the tightness of the reduction from the noisy leakage to the random probing model using the SD and
ARE metrics on this device. We also recall that the reduction using the ARE metric is theoretically
tighter (c.f. because the latter is a worst-case metric, matching the definition of the
random probing model, a worst-case model. We then remark that the values of the ARE and SD
metrics decrease as the o value increases by the same factor. For instance, the ARE and SD values
are halved whenever the o is doubled.

To use random probing secure gadgets from the literature, as mentioned above, we need to
tolerate a leakage probability of almost 277, translating to an ARE value of 2715, This value is
reached when adding Gaussian noise with a significant standard deviation o ~ 1280.

Table 1: ARE and SD values after adding noise to the leakage traces on the chipwhisperer.

o |ARE|SD
5 | 277 [2710
10 | 278 |27
20 | 279 |2712
40 2710 2713
1280| 2715 2718

Application to AES. We now illustrate the impact of the implementation’s noise level on the
complexity of the expanding compiler in the random probing model. We choose a provably secure
implementation of AES as in [I3], under the verified and relaxed leakage assumptions. We consider a
bitslice implementation of AES using the 8-bit bitwise operations (xor, and, left shift logical).
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Table 2: AES operations complexity.

. Complexity
AES Operatlon (NXORy ]Vlsh Ncopyy Nandy Nrnd)
AddRoundKey (16,0,0,0,0)
SubBytes (174,0,111,64,0)
Linear layer (54,16,46,0,0)
AES-128 (10 rounds)| (2440, 160,1570, 640, 0)

gives the operation counts for such an implementation which are detailed in [Section A] The copy
operation outputs two values equal to the single input value, and the rnd operation outputs a fresh
uniform random value. N, denotes the number of operations for the operation g in the circuit.

We apply the expanding compiler proposed in [13] with the 3-share gadgets proposed in [15].
The LSL gadget applies the LSL operation to each input share before refreshing the sharing using
a refresh gadget. summarizes the complexities of these gadgets. As for the failure functions
for the set of gadgets, we compute them using the verification tool IronMask [14].

The operation counts after k applications of the expanding compiler is given by N¥ . ﬁAES
(c.f. [13]) where N is the gadget gate-count matrix defined as

N = (Nyor | Nustt | Neopy | Naso | Nown) » (25)

and ﬁ aps 18 the gate-count vector for AES given by the last row of [Table 2

Table 3: Complexities for the 3-share gadgets from [I5] achieving (¢ = 1, f)-RPE.

Complexity
A8 (N s Nisss Neopys Nawos Nuwo)
Ghrefresh (4,0,2,0,2)
Gxor (11,0,4,0,4)
Gron (4,3,2,0,2)
G opy (8,0,7,0,4)
Gao (40,0,29,9,17)

summarizes the complexities of the obtained masked AES with expansion levels k €
{1,2,3,4}. For each expansion level, it further gives the maximal value of the ARE in order to reach
a provable security of ¢ = 272, for A € {32,64,128}. In order to compute the ARE value, we use the
failure functions computed with lronMask and numerically estimate the required leakage probability
p to achieve the security level given the expansion level k. This translates to the required noise level
(or ARE) on the physical device to achieve the proven security level. We also recall that the ARE
value is then obtained as p?.

shows that by doing one level of expansion, which consists of replacing each gate of the
circuit with the corresponding gadget, the required levels of ARE are very high and reach 27136
for 128-bit security. As we further apply the expansion, this required level decreases to almost
2730 for 128-bit security, but the complexity of the circuit becomes quickly impractical (4.33 x 10°
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operations). Meanwhile, to have an ARE value of 2730 on the chip we use for our tests, for example,
huge amounts of noise must be added (o ~ 5 - 223, c.f. .

Our results emphasize the trade-off between the physical noise on a device and the complex-
ity of circuit implementation on this device with proven security. Higher noise levels lead to less
complex constructions while achieving such noise requires specialized hardware that enables consid-
erable noise independent of the operations. This also emphasizes the challenge of constructing such
hardware, taking provable security into account and the limitations of the noise levels that can be
achieved in practice. We recall that the chipwhisperer we use is far from suitable for such a case,
and the question of having adapted hardware needs to be studied further in the literature.

While the complexities obtained through our results are yet to be practical, they show that it
is possible to obtain physical implementations with provable security and that the noisy leakage
security of the considered device highly influences the complexity of the constructions.

Table 4: Masked AES for different levels of expansion.

Expansion|Masked AES|ARE for 27> security

level k Complexity |\ = 32|\ = 64| A =128
1 0.24 Mop 2740 | 9772 | 97136
2 6.14 Mop 2728 | 9744 | 9776
3 163 Mop 2722 | 9730 | 9—46
4 4.33 Gop 2718 | 9722 | 9=30

8 Discussions and Perspectives

This paper proposes the first complete methodology to connect the theory and practice of prov-
ably secure masked implementations. The main goal of this approach is to obtain higher confidence
security guarantees than the heuristic solutions used so far. It is based on several steps that com-
bine different models and metrics introduced in the literature in a principled manner to transfer
formal security claims into concrete security levels that rely on hypotheses that can be validated
experimentally. The main technical novelty is the relaxation of the ideal assumptions of the noisy
leakage model (data and noise independence) to more realistic requirements, that still imply the
ideal hypotheses without large tightness gap. We also propose and demonstrate an experimental
methodology to validate the relaxed hypotheses.

When applying our novel methodology “end-to-end” to protect an AES implementation on a
COTS Cortex-M4 microcontroller, and identify a two main issues: the lack of noise on this device
and the non-tightness of the overall masking security proof.

The lack of noise of COTS microcontrollers has been pointed as a security issue in the practical
software masking literature [26l23I21] and is therefore not an issue specific to our methodology. It
is indeed hard to find simple COTS microcontrollers with high noise levels. More complex MCUs
are generally more noisy, but it is harder to study and ensure isolation on these (at least when
treating them as black-boxes). The noise level is therefore a difficulty for research but not fun-
damental one, since it is possible to manufacture simple microcontrollers with higher noise levels
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(e.g. by adding noise engines). For more complex microcontrollers, working in a more open setting
will help with ensuring isolation with high confidence and reasonable effort, for example by using
instruction-set power leakage contracts [17]. Let us finally note that our methodology is also applica-
ble to hardware implementations which are typically more noisy and perform operations in parallel,
although the approach for ensuring isolation (i.e. avoiding glitches, transitions and couplings) will
be different [422§)].

Regarding the tightness of the security proof, we have very noise requirements and need a large
number of shares for a given security level (table 4). These requirements may seem excessive to a
practitionners and the security level given seems very far from what the state of the art attacks can
achieve, or even from the security level recently proven for a single sharing [I1]. Let us now discuss
some of the sources of the non-tightness in our security bounds and discuss directions for improving
them.

First, the masking scheme we consider is based on the expansion technique [I3]. While this
scheme has state of the art minimum noise level requirement, the scaling of the security level with
the noise (i.e. the noisy leakage parameter p) is suboptimal: an optimal masking scheme with n
shares would scale as O(p™), while ours has a lower exponent [I527|. This issue can be solved
by using tighter random probing security proofs such as the ones based one probe distribution
tables [27], although that approach requires further work to ensure composability in large-scale
circuits.

The next step in the proof is the reduction of noisy leakage to random probing. The use of the
ARE metric over the SD metric is already a significant gain as it avoids a field-size loss in the proof.
On our test device, the ARE worst-case metric is much larger the the SD, cancelling part of the
gain, but this may be due to the very low noise level, as adding noise reduces the ARE vs. SD
gap. If the use of worst-case leakage metric remains an issue on noisy devices, a possibility is to
move towards the reduction to the average random probing model [41], which would relax the noise
requirements, at the cost of a stronger security model for the masking scheme.

Finally, our reduction of gate-probing to wire-probing involves a square loss in the random
probing parameter. This appears to be a proof artifact that might be improved upon.

On the practical side of the bridge, our methodology relies on well-defined and realistic physical
assumptions. We propose experimental tests for some of these assumptions, while other are sim-
ply assumed to hold using physics-based arguments. While our methodology makes a significant
step towards experimentally-validated hypotheses, there is still some margin for improvement, in
order to replace the remaining assumptions by experimental tests, even though these assumptions
may appear sound in the first place (e.g. noise Gaussianity, m-SE, LP). Further, many of these
assumptions are qualitative (e.g. independence, isolation). Due to the nature of statistical tests,
such assumptions can never be proven, only invalidated. While heuristics based on statistical power
and effect size may be used [74], a fully-proven approach would rather rely on quantitative variants
of these assumptions, which can be proven with high confidence using statistical tests. Finally, there
is some room for efficiency improvements in our methodology, for example by optimizing the noise
splitting or by reducing the isolation performance overhead.

In conclusion, we have shown how to achieve provable side-channel security in practice under
relaxed leakage assumptions, although the current state of the art gives rise to constructions that
are inefficient for the noise levels currently available on COTS devices. Promising directions to fully
close the gap are the design of chips embedding noise engines achieving much higher noise levels
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and the improvement of masking schemes and their security proofs. In particular, we have identified
several concrete directions to improve the tightness of security proofs, from both the theoretical side
and the practical side.
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A Operation Counts for AES

We detail hereafter the operation counts for the considered bitslice implementation of AES with
8-bit logical operations.

For the s-box, we use the optimized Boolean circuit from [I8]. This circuit computes the AES
s-box with 32 ANDs, 83 XORs and 4 NOTs. Moreover, it involves 111 copies. In our context, NOTs
are computed as XORs with a constant operand, which makes 32 ANDs + 87 XORs + 111 copies.
For a full SubBytes layer, composed of 16 bitsliced s-boxes, this makes 32 ANDs + 87 XORs + 111
copies in terms of 16-bit operations, which is 64 ANDs + 174 XORs -+ 222 copies in terms of 8-bit
operations.

For the linear layer, we rely on the fizslicing approach proposed in [2]. For the linear layer in one
round, this approach requires 27 32-bit XORs, 16 word-wise rotations, 16 byte-wise rotations and
23 copies. In our context, word-wise rotations are free since they are by multiples of 8. A byte-wise
rotation requires 2 LSHs (one left shift, one right shift). This makes a total of 108 XORs + 32 LSH
-+ 92 copies in terms of 8-bit operations for the MixColumn layer for two blocks, which is 54 XORs
+ 16 LSH -+ 46 copies per block@

12 We note that this is for the even rounds, while odd rounds are further optimized in [2] but we consider the same
count for all the rounds.
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