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Abstract. The recent technological advances in Post-Quantum Cryptography (PQC)
rise the questions of robust implementations of new asymmetric cryptographic primitives
in today’s technology. This is the case for the lattice-based CRYSTALS-Kyber algorithm
which has been selected as the first NIST standard for Public Key Encryption (PKE)
and Key Encapsulation Mechanisms (KEM). We have notably to make sure the Kyber
implementation is resilient against physical attacks like Side-Channel Analysis (SCA) and
Fault Injection Attacks (FIA). To reach this goal, we propose to use the masking coun-
termeasure, more precisely the generic Direct Sum Masking method (DSM). By taking
inspiration of a previous paper on AES, we extend the method to finite fields of char-
acteristic prime other than 2 and even-length codes. In particular, we investigated its
application to Keccak, which is the hash-based function used in Kyber. We also provided
the first masked implementation of Kyber providing both SCA and FIA resilience while
not requiring any conversion between different masking methods.

Keywords: Post-Quantum Cryptography · CRYSTALS-Kyber · Side Channel Analy-
sis · Fault Injection Attack · Masking · Direct Sum Masking

1 Introduction

Since the dawn of cryptology, cryptanalysis has focused on the theoretical background used
to perform cryptography. However, since the late 1990s and the publication of Kocher on side
channel analysis (SCA) [22], physical attacks try to take advantage of leakages or faults within
the implementation rather than breaking the algorithm in itself. For this reason, the software and
hardware designers of cryptographic primitives have to take into account this threat. The recent
Post-Quantum Cryptographic algorithms are particularly targeted as their implementation still
requires secure architectures and analysis to make them robust against physical attacks.
Quantum computing is an active research field which progresses monthly and the likelihood of
an efficient quantum computer in the coming 30 years is almost certain [23]. Such a computer
would be able to break current asymmetric cryptography primitives by taking advantage of the
Shor quantum algorithm [29]. In order to assure a continuity in asymmetric cryptography, the
NIST has launched a standardization process of PQC in 2016 [12] resulting in an international
competition to create the future digital signature, PKE and KEM protocols which must be secure
⋆ Supported by Agence de l’Innovation de Défense, Ministère des Armées
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against quantum and classical computer. The end of the third and final round was announced
the 5th of July 2022 [1] and 3 signatures and one PKE/KEM were selected while 4 other KEMs
are heading for a final round to serve as alternatives in case of a cryptanalysis breakthrough 3.
The selection process focused first on quantum resilience, cost and performance, and then on
the algorithm and its implementation. Most of the candidates claimed to be secure against
time-based SCA as they provide constant time implementation and no conditional branching
depending on sensitive data. But they do not make them secure against power-based SCA, like
like Correlation Power Analysis (CPA), and Fault Injection Attacks (FIA). Even more, some of
the candidates contains functions that can not be easily secured using generic defenses and will
require specific mechanisms to ensure their side channel resilience.

1.1 Background on Masking

One of the most efficient and proven countermeasure against power-based SCA is masking [11].
The core idea is to avoid manipulating the sensitive data but instead "shares" of it that will be
reassembled after the computations are done. The shares being a combination of the sensitive
data and a number of random variables called masks. Thus, an attacker will only observe leakages
from the shares and might not be able to recover the secret data. The order of masking is
determined by the number of independent shares used. A high-order of masking means a better
security against differential attacks but it generally comes at the cost of performances and space.
Classical masking involves either arithmetical masking, where the random shares are subtracted
or added to the secret, and boolean masking where the random shares are XORed with the
secret. Conversions from one type of masking to the other do exist but have to be performed
carefully. Here we will use a generic code-based masking scheme called Direct Sum Masking
(DSM), introduced by Bringer et al. [8].
In this paper we focus on CRYSTALS-Kyber [6], a post-quantum PKE/KEM. They have been
already several publications on how to mask it on several platforms. Most noticeably, the work
from Heinz et al. [19] proposed the first open-source implementation of a masked Kyber on
microprocessor while relying on the work of Oder et al. [25] on previous lattice-based primitives.
Bos et al. [7] proposed a masked software implementation of Kyber while Bronchain and Cassiers
[9] proposed new gadgets for Arithmetic to Boolean (A2B) and B2A conversions and tested them
in a open-source masked implementation of CRYSTALS-Kyber for microprocessors. When it
comes to other platforms, Fritzmann et al. [14] worked on masking HW/SW codesign. Beckwith
et al. [4] worked on a shared FPGA implementation of CRYSTALS-Kyber and CRYSTALS-
Dilithium while masking the CRYSTALS-Kyber. Finally, Pöppelmann and Heinz [20] proposed
a combined fault and DPA protection for lattice-based cryptography, however they only secured
the arithmetic parts of the algorithm.

Remark 1. It is important to note that masking at the first order alone is not a sufficient defense.
The PhD thesis work of Kalle Ngo [24] and master’s thesis of Linus Backlund [3] (both from KTH
Stockholm) proved that novel methods relying on deep-learning were able to thwart attempts
of protecting Kyber with first order masking and/or shuffling. Hence, it is important to either
mix defense mechanism (shuffling, blinding, hiding...) or use higher order masking. Also note
that these attack methods have not been tested yet against code-based masking.
3 One of the KEMs of the 4th round fell victim of such a breakthrough in August 2022, stressing the

need for alternative standards and hybridization
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1.2 Our contributions

The main contributions we are making with this paper are as follow:

– We extend the code-based masking method from [10] to work over prime modulus finite
fields and with even-length codes.

– We propose to adapt this code-based masking method to the post-quantum PKE/KEM
Kyber.

– We use the same method to mask a Keccak implementation which will be used inside Kyber.
– To the best of our knowledge, we are the first to propose a masking method over this post-

quantum KEM that does not require any change or conversion in terms of masking method.
– This method allows not only to mask at high order but also offer an error correcting capa-

bility, thus reducing the impact of Fault Injection Attack while our masking is active, albeit
at the cost of regular calls to the error detection mechanism.

– Finally we discuss performances of our masking method and possible axis to improve them.

The paper is structured as follows: in Section 2, we introduce notations and CRYSTALS-Kyber.
In Section 3, we present our Direct Sum Masking. In Section 4, we explain how we adapted
our masking method to CRYSTALS-Kyber. Finally, in Section 5, we discuss performances and
possible improvements for our design. Section 6 concludes our paper.

2 Preliminaries

2.1 Notations

Let n ∈ N∗ the length of a code and k its dimension. We denote odm the masking order. We
consider the finite field Fq with q a prime integer. Let ν a primitive element of Fq. We assume
that n ̸= 0 mod q divides q − 1, then we have

ω = ν
q−1

n ⇒ ωn = 1.

We must distinguish the case n odd and n even, then we set d = ⌊n/2⌋. For any vector
(u0, ..., un−1) ∈ Fn

q , we can associate the polynomial U(X) = u0 + u1X + . . . + un−1Xn−1

and the discrete Fourier transform is defined by

DFTω(u0, ..., un−1) =
(

n−1∑
i=0

uiω
ij

)
j∈[0...n−1]

=
(
U(ωj)

)
j∈[0···n−1] .

Then the DFTω inverse is defined by:

IDFTω(U(1), . . . , U(ωn−1)) = n−1

(
n−1∑
i=0

U(ωi)ω−ij

)
j∈[0···n−1]

= (u0, ..., un−1).

Remark 2. We have clearly made the hypothesis “n divides q − 1” to find the condition of
application of the Fast Fourier Transform but the procedure that we are going to develop
obviously works by considering respectively DFTω and IDFTω as a Vandermonde multiplication
and its inverse. The impact is just in term of complexity which cost n2 multiplications over Fq

against O(n log n) for a DFTω in the most favourable cases.
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For the Kyber algorithm, the considered DFTω is coming from methods described in [10,31]. It
consists in building a tree (see section 4) of polynomials and to compute input vector interpreted
as a polynomial modulo these polynomials. In particular cases, for example over finite fields of
even characteristic and n + 1 a power of two, the tree is composed of linearized polynomials (up
to constant) which are sparse by nature [31]. For example in the figure below, the tree is defined
over the finite field F24 with n = 3 and ω satisfying ω3 = 1:

q2,0 = X4 + X

q1,0 = X2 + X q1,1 = X2 + X + 1

q0,0 = X q0,1 = X + 1 q0,2 = X + ω q0,3 = X + ω + 1

Then, to calculate DFTω(C) with C = (c0, c1, c2, c3) and C(X) = c0 + c1X + c2X2 + c3X3, we
first compute C1,0 = C(X) mod q1,0 and C1,1 = C(X) mod q1,1, finally we get the result by
performing C1,0 mod q0,0, C1,0 mod q0,1, C1,1 mod q0,2 and C1,1 mod q0,3. We show in the
section 4 that we have the same principles with the KYBER parameters.

We have seen that the DFTω operation is equivalent to a Vandermonde matrix multiplication
V (ω) with V (ω) = (ωij)i,j∈J0,2d−1K and

DFTω(u0, ..., un−1) = (u0, ..., un−1)× V (ω).

For length n vectors of the form (u0, ..., ud−1, 0, . . . , 0), the DFTω operation corresponds to an
encoding procedure by the Reed-Solomon code denoted: RS[n, d, n− d + 1]. A generator matrix
of this code is given by the shortened matrix (ωij)i∈J0,d−1K,j∈J0,2d−1K. We recall some results
that can be found in [26]: This error correcting code is classic, it is a MDS (maximum distance
separable) code, which means that its minimal distance is optimal and equals n − d + 1 where
n is code length and d is its dimension. Among the good properties of these codes, we have, if
R is a generator matrix of MDS code R of length n and dimension d that:

– If R is MDS, then R⊥ is MDS where R⊥ is the code defined by kernel(R);
– If R is MDS, then all set of d columns are free.

We recall that any [n, d, n− d + 1]-linear code can detect until n− d errors.

2.2 CRYSTALS-Kyber

CRYSTALS-Kyber [6] is a Module-Lattice-Based KEM which has been selected4 at the end of
the 3rd round of the NIST Standards Post-Quantum Competition in July 2022 [1]. It relies on
several instances of the Module-LWE/LWR problems for its key generation, encapsulation and
decapsulation procedures.
At its core, Kyber is a CPA-Secure PKE. To ensure CCA-level of security and a KEM status,
4 We present the candidate version 3.02 [2] here. The final standard specifications might differ.
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a modified version of the Fujisaki-Okamoto Transform [15] is used.
CRYSTALS-Kyber has three levels of security, with different parameter sets (see [2] Table 1
page 11 or Table 2 in Appendix B). All sets use the same modulo, namely q = 3329. We also
denote Zq[X]/(X256 + 1) by Rq and Sη := {P ∈ Rq, ∥P∥∞ ≤ η} a subset of Rq.
Amongst other notations defined by Kyber, we have ⌈⌋, the nearest integer with ties rounded
up used in the compression functions, defined as follow:

Compressq(α, di) =
⌈

2di

q
· α
⌋

mod 2di , α ∈ Zq (1)

Decompressq(β, di) =
⌈ q

2di
· β
⌋
, β ∈ F2di (2)

When applied to a vector of polynomials, those two functions will then be applied to each
coefficient of each polynomial separately.

Remark 3. It is interesting to note that, for di = 1, the Decompressq function can be seen as
a simple multiplication by a scalar, as the value β in the equation 2 can be extracted from the
rounding as it can only be 0 or 1. Thus, we have ⌈ q

2 · β⌋ = 1665 · β. This does not apply to
Compressq (Equation 1) however.

Remark 4. It is also important to note that the compression functions are lossy:

If m′ = Decompressq(Compressq(m, di), di), then |m−m′| ≤ ⌈q/2di+1⌋ (3)

In Kyber, the distribution used for random sampling of sensitive values is the Center Binomial
Distribution:

CBDη(β) =
255∑
i=0

(
η∑

j=0
β2iη+j −

η∑
j=0

β2iη+η+j)Xi with β ∈ {0, 1}512η (4)

This function is fed with a pseudo-random input β, generated by

PRF (seed, N) = SHAKE256(seed∥N)

The counter here allows seed reuse for the multiple values sampled during the PKE algorithms
of CRYSTALS-Kyber. We will use the ←↩ notation for sensitive value sampling. Keep in mind
this is a call to Equation 4 where the input is PRF (seed, N). The N counter is incremented
after each call to CBD.
Non sensitive values are sampled a bit differently but this is out of the scope of this paper and
we will simply denote this sampling by ↼.

We will only present the KEM Decapsulation of CRYSTALS-Kyber here. For more details, we
invite you to consult Appendix B where are described the PKE and KEM algorithms as well as
figures showing the sensitiveness of the different operations within CRYSTALS-Kyber. You can
also consult the reference paper of CRYSTALS-Kyber [6] for the algorithms and [27] (slide 76),
[28] (slide 32-35) for the sensitiveness.
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Algorithm 1 KEM-Kyber Decapsulation
1: Input: Ciphertext c = (cu, cv)
2: Input: Secret Key sk = (s⃗, pk, H(pk), z)
3: Output: Shared key K
4: u⃗, v = Decompressq(cu, du), Decompressq(cv, dv)
5: m′ := P KE.Decaps(s⃗, u⃗, v)
6: (K′, seed′) := G(m′∥H(pk))
7: u⃗′, v′ := P KE.Encaps(pk, m′, seed′)
8: c′ = (Compressq(u⃗′, du), Compressq(v′, dv))
9: if c == c′ then

10: return KDF (K′∥H(c))
11: else
12: return KDF (z∥H(c))
13: end if

Remark 5. H, G and KDF are all different Keccak instances.

Remark 6. Keep in mind that PKE Encaps will always result in the same outputs for a given set
of inputs, as the seed for the sampling is one of the inputs. Thus, tampering with the ciphertexts
results in tampering with the seed and a completely different result out of the re-encapsulation.

If you are interested in knowing more about CRYSTALS-Kyber, we invite you to read the
specification paper from the CRYSTALS team [6].

3 Code Based Masking, a DSM Example

The DSM encoding [8] consists in mapping the information x in a masked information (x, r)
where r is a random mask such that:

x 7→ (x, r) 7→ xG + rH. (5)

where G and H are two generator matrices of the two complementary codes C and D with
C ∩ D = {0}.
We propose to describe a masking method based on Reed Solomon encoding. This method is
described in [10] for the characteristic 2 and odd length. We show in this section that it works
for the characteristic prime q. We want to mask an information of size t and we assume that
ω ∈ Fq is a n-square root of unity and we consider a free family u0, u1, u2, ..., ud−1 of Fd−1

q

with ui ̸= ωj for any 0 < i ≤ t − 1 and 0 < j ≤ n − 1. We want now to mask the vector
x⃗ = (x0, . . . , xt−1) ∈ Ft

q with t < d and d = ⌊n/2⌋.

3.1 Encoding Procedure

First we pick randomly r⃗ = (rt, rt+1, . . . , rd−1) in Fd−t
q . It is well known that there exist a

vector a⃗ = (a0, a1, . . . , ad−1) and the associate polynomial Px⃗(X) = a0 + a1X + · · ·+ ad−1Xd−1

of degree at most d − 1 that satisfies Px⃗(ui) = xi for i ∈ {0, . . . , t − 1} and Pr⃗(ui) = ri for
i ∈ {t, . . . , d− 1}.
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Let us denote the matrix A ∈ F(d)×(d)
q , where Ai,j = uj

i for any i, j in {0, . . . , d− 1}. We have:

a⃗ = (x⃗ | r⃗)× (A−1)⊤

The second of our masking procedure consists in evaluating the Pr⃗ over the set 1, ω, ω2, . . . , ωn−1.
By construction, the second step of encoding consists in computing DFTω(a0, . . . , ad−1, 0, . . . , 0).
Thus finally:

Mask(x⃗) = DFTω(a0, . . . , ad−1, 0, . . . , 0).

Algorithm 2 SeveralByteMasking Complexity : d2

1: Input: a sensitive vector x⃗ ∈ Ft
q

2: Output: Mask(x⃗) ∈ Fn
q

3: r⃗
$← Fd−t

q

4: a⃗← (x⃗ | r⃗)× (A−1)⊤ ▷ A−1 is a precomputed value
5: return DFTω (⃗a | 0⃗)

We have presented a O(d2) complexity encoding procedure, but we can do better with the
following method: We can construct P (X) = Tt(X) + Rt(X) by first picking randomly the
polynomial Tt(X) = atX

t + · · · + ad−1Xd−1. Then we evaluate Tt over 1, u, . . . , ut−1 which
cost t(d − 1 − t) multiplications over Fd−1

q . We want now constructing Rt(X) = a0 + a1X +
. . . , at−1Xt−1 which leads to solve the linear system



1 u0 . . . ut−1
0

...
1 ui . . . ut−1

i
...

1 ut−1 . . . ut−1
(t−1)


︸ ︷︷ ︸

A

×



a0
...

ai

...
at−1


︸ ︷︷ ︸

a⃗ ′

=



x0 + Tt(u0)
...

xi + Tt(ui)
...

xt−1 + Tt(ut−1)


︸ ︷︷ ︸

y⃗ ′

.

The matrix inversion of A is a precomputation, thus, the calculation of:

a⃗ ′ = A−1y⃗ ′

costs (t+1)2 multiplications over Fq. Hence, the total cost of this encoding (including the Tt(ui)
calculation) does not exceed t(d−1−t)+t2 = t(d−1) multiplications over Fq. Again, the second
step of encoding consists in computing DFTω(a0, . . . , ad−1, 0, . . . , 0) which can be achieved with
not more than (2d− 1) log(2d− 1) multiplications over Fq.

Remark 7. All the aforementioned operations are obviously reversible and we denote by Unmask
the reverse operation. A tedious calculation gives a complexity in t(d− 1) + (2d− 1) log(2d− 1)
multiplications over Fq.
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3.2 Error Correcting Code Interpretation

We note that by construction, there exist an invertible matrix R that satisfies:

a0
...
at−1
at

...
ad−1


= R×



x0
...
xt−1
P (ut)
...
P (ud−1)


We note that this DFT computation corresponds to the encoding in the Reed-Solomon code
defined by the evaluation of 1, X, . . . , Xd−1 over 1, ω, ω2, ..., ωn−1, and represented by a Vander-
monde matrix V (ω). Hence, we get that

Mask(x⃗) = (x⃗, r⃗)R⊤V (ω) (= x⃗G + r⃗H in the DSM model).

We deduce that our masking algorithm corresponds to encoding procedure with a generalized
Reed-Solomon code of minimal distance n− d + 1, dimension d and length n.

3.3 Masking Addition, Subtraction and Scaling

Let us denote: z⃗ = Mask(x) and z⃗ ′ = Mask(x′). The following properties are obviously satisfied:

– Mask(x + x′) = z⃗ + z⃗ ′,
– Mask(x− x′) = z⃗ − z⃗ ′,
– Mask(λx) = λ · z⃗ for any λ ∈ Fq.

3.4 Masking the Multiplication

Let’s denote: z⃗ = Mask(x⃗) and z⃗ ′ = Mask(x⃗′). Obviously,

z⃗ ⊙ z⃗ ′ = DFTω(a0, . . . , ad−1, 0, . . . , 0)⊙ DFTω(a′
0, . . . , a′

d−1, 0, . . . , 0).

The polynomial obtained by performing DFT−1
ω (DFTω(Px⃗) × DFTω(Px⃗′)) = Px⃗(X) × Px⃗′(X) =

C(X) is a 2d − 2 degree polynomial, which satisfies C(ui) = Px⃗(ui) × Px⃗′(ui) = xix
′
i for i in

{0, . . . , t− 1}.
Now we have to propose a method that associates a degree d − 1 polynomial D(X) to C(X).
This polynomial must satisfies the same properties: D(ui) = C(ui) for all 0 ≤ i ≤ t− 1.
The authors of [17] proposed the following construction for t = 1:

D(X) = c0 + c1X + . . . + cd−1Xd−1 + ud−1
0 (cdX + . . . + c2d−2Xd−1)

= c0 + (c1 + ud−1
0 cd)X + · · ·+ (cd−1 + ud−1

0 c2d−2)Xd−1 .

Obviously, in this case D(u0) = C(u0) = x0x′
0. This construction can be generalized and let:

Uj(X) = ud−1
j

(X − u0) · · · (X − uj−1)(X − uj+1) · · · (X − ut)
(uj − u0) · · · (uj − uj−1)(uj − uj+1) · · · (uj − ut)

.
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Hence, by construction, Uj(uj) = ud−1
j and Uj(ui) = 0 ∀ i ∈ {0, . . . , t−1}\{j} and deg(Uj(X)) =

t− 1.
Then we set:

D(X) = c0 + c1X + · · ·+ cd−1Xd−1 +
∑t

j=1 Uj(X)(cdX + · · ·+ c2d−t−1Xd−t)

+
∑t

j=1 Uj(X)
∑t−1

i=1 c2d−t−1+iu
d−t+i
j .

The degree d− 1 polynomial D(X) satisfies D(ui) = C(ui) = xix
′
i of i ∈ {0, . . . , t− 1}.

In order to build efficiently DFTω(D(X)), let’s write:

D(X) = c0 + c1X + · · ·+ cd−1Xd−1 + (cdX + · · ·+ c2d−t−1Xd−t)
∑t

j=1 Uj(X)

+
∑t−1

i=1 c2d−t−1+i

∑t
j=1 Uj(X)ud−t+i

j

Thus:
DFTω(D(X)) = DFTω(C(X))

− DFTω(cdXd + · · ·+ c2d−2X2d−2)

+ DFTω(cdX + · · ·+ c2d−t−1Xd−t)⊙ u⃗

+
∑t−1

i=1 c2d−t−1+i ·Gi.

= Mask(x⃗⊙ x⃗′) .

where: Gi = DFTω(
∑t

j=1 Uj(X)ud−t+i
j ) for i ∈ {1, . . . , t − 1} and u⃗ = DFTω(

∑t
j=1 Uj(X)) are a

precomputed values, and cd, . . . , c2d−2 = extractLastCoefficients(z⃗ ⊙ z⃗ ′). We remind that
extractLastCoefficients has been defined in [10]:

We have seen that IDFTω(z⃗ ⊙ z⃗ ′) = (ci)i∈{0,...,n−1} = C(X), then if we denote y⃗ = z⃗ ⊙ z⃗ ′, by
definition cj+d =

∑n−1
i=0 yiω

−i(j+d) =
∑n−1

i=0 (yiω
−id)ω−ij ∀ 0 ≤ j ≤ d− 1 and (cj+d)j∈{0,...,d−1}

is obtained from IDFT
(
(yiω

−id)0≤i≤n−1
)
.

If we denote ϕ(C, ω) = −DFTω(cd+1Xd + · · ·+ c2d−2X2d−2) + DFTω(cdX + · · ·+ c2d−t−1Xd−t)⊙
u⃗+
∑t−1

i=1 c2d−t−1+i ·Gi where C represents the d−1 last coefficients of IDFT(Mask(x⃗)⊙Mask(x⃗′)),
then we get that

Mask(x⃗⊙ x⃗′) = Mask(x⃗)⊙ Mask(x⃗′) + ϕ(C, ω)

3.5 Security Proof

We propose to show in this section that our method corresponds to (d− t)-probing order for the
security with a discussion around more sophisticate security models. For fault injection resilience,
we assume that we are in the random fault model with a reasonable number of injected faults.
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SCA Resilience We showed that this construction is identical to the original construction of
[10] up to the sign and up to the parity of n. The proof is coming from the property of this
masking that can be written as a DSM encoding [8]:

x 7→ (x, r) 7→ xG + rH.

For this model, the masking order is provided by the minimal distance of the code H⊥. It is
proven in [10] that the probing order depends of code H⊥ which can be MDS (i.e dmin =
n− (d− t) + 1) or AMDS (i.e dmin = n− (d− t)). We show in the subsection 4 (with t = 1) that
we are in the MDS favourable case. It means that odm equals d− t. The gadget multiplication
is also (d− t)-probing secured due to the MDS property of H.

For more sophisticate security models like IOS, SNI or t-region probing, we refer to [18] for a
similar method involving the DFT computation and [30] which gives proves for a code based
masking. According to the proof of [10], the masking method of this paper satisfies the main
properties of [18,30]. However proving rigorously that the presented masking method is (d− t)-
SNI is out of the scope of this paper and will be covered in another one.

Faults Injection By construction, everywhere a codeword C is present, the integrity of C can
be checked by computing the syndrome of C, i.e by computing IDFT(C) = c and checking that c
corresponds to a degree d−1 polynomial. If not, it means that some errors have been introduced.
According our parameters, C belongs to the Reed-Solomon code RS[2d, d, d + 1] and can detect
d errors.

The difficult question concerns the gadget multiplication between two vectors Mask(x) and
Mask(y). For this computation we must perform Mask(x) ⊙ Mask(y) where “⊙” corresponds to
the multiplication term by term. We showed that Mask(x)⊙Mask(y) = DFTω(C(X)) where C(X)
is a degree 2d− 2 polynomial. However, our codewords have length n = 2d and DFTω(C(X)) ∈
RS[2d, 2d−1, 2]. Hence we can check with a syndrome calculation (i.e IDFT(Mask(x)⊙Mask(y)))
that C(X) is degree 2d−2 polynomial. If not, it means that at least one error has been injected.
Then an attacker may inject faults on the vector (cd, . . . , c2d−2), however in this case we remind
that

Mask(x⃗⊙ y⃗) = Mask(x⃗)⊙ Mask(y⃗) + ϕ((cd, . . . , c2d−2), ω),
with Mask(x⃗ ⊙ y⃗) and Mask(x⃗) ⊙ Mask(y⃗) that can be verified, then the injected fault will be
detected.

Remark 8. We assume that fault are randoms and do not directly affect the syndrome computa-
tions. We showed here that our gadget supports one fault injection. To support more injections
we could modify our encoder by reducing the dimension of r⃗. As a direct consequence, the degree
of the resulting polynomial C(X) from a multiplication has a degree strictly less than 2d−2 and
more errors can be detected. In the same time this modification decrease the security probing
order, thus, it is now a question of balance.

3.6 Complexity

It is shown in [10] that the complexity of the multiplication is quasi-linear and requiresO(4d log(2d))
multiplications in Fq. This is a standard complexity, but regarding real performances and ap-
plicability a study must be performed over different platforms (hardware and software) with
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different strategies: parallel computation, pipeline, bitslicing... From now on, we set t = 1 as it
seems us difficult to take benefit of several symbol encoding due to the design of CRYSTALS-
Kyber. Taking t > 1 may be interesting if we manage to compute simultaneously several KEM
computation but it affects the probing security order.

In terms of randomness, we require d − t random symbols to mask t sensitive ones. As the
multiplication includes a refresh done by adding the mask of 0⃗, it requires another batch of d− t
random symbols.

3.7 Masking a Polynomial Function

By induction, we can compute Mask(xn) for an arbitrary n value in Z. We can write Mask(xn) =
Mask(xn−1 ∗ x) = Mask(x)⊙ Mask(xn−1) + ϕ(C, ω) thus if we assume that Mask(xn−1) has been
computed, then the property is demonstrated. The same proof holds for Horner (polynomial
evaluation) algorithm.

3.8 Masking a Formal Polynomial

Let s(X), u(X) ∈ (F(deg)
q [X])2. We define

Mask(s(X)) =
deg∑
i=0

Mask(si)Xi (6)

Also, we have Mask(s(X))⊙ Mask(u(X)) = Mask(s(X) ∗ u(X)). We deduce that we can perform
Mask(s(X) ∗ u(X)) using the Karatsuba algorithm of complexity deg1.585 Mask multiplications
[21].
We note that fast Fourier transformed based on Cooley-Turkey algorithm that involves a n-root
of unity could be obviously applied since the scalar multiplication is well defined over the linear
codes. We preferred Karatsuba because this part of CRYSTALS-Kyber algorithm is not the
most costly in term of masking.

3.9 Masking Boolean Operations

We proved that we can use our masking method whenever arithmetical operations are used.
However, some algorithms requires boolean operations. While we cannot tweak our masking
method to work for every value, lets recall some simple properties working for x, y ∈ {0, 1}2:

x ∧ y = x ∗ y, x⊕ y = x + y − 2 ∗ x ∗ y

Thus, in the very specific case where the value before masking is equal to 0 or 1, we are able to
perform basic boolean operations while in masked state by using these arithmetic equations.

3.10 Masking Keccak

The current standard for hash functions is FIPS-202 [13], also known as Keccak or SHA3. It can
be seen as a 3-dimensional array denoted by A of size (5, 5, w). At its core is the Round function
and its 5 steps:
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– θ: The first step uses three substeps:
1. ∀(x, z) ∈ J0, 4K× J0, w − 1K, C[x, z] =

⊕4
i=0 A[x, i, z]

2. ∀(x, z) ∈ J0, 4K×J0, w−1K, D[x, z] = C[(x−1) mod 5, z]⊕C[(x+1) mod 5, (z−1) mod w]
3. ∀(x, y, z) ∈ J0, 4K2 × J0, w − 1K, A′[x, y, z] = A[x, y, z]⊕D[x, z]

All the operations here are relying on XOR (⊕) and manipulates bits. Thus, our masking
method can be directly applied.

– ρ: The second step simply rotates the elements of the array on the z axis. We won’t detail
it here as it is obviously with our masking method.

– π: Similarly to the ρ step, this step rotates the positions of the lanes (z axis) in the array.
As for the ρ step, we won’t detail it. It is fully compatible with our masking method.

– χ: This step is the non-linear step of Keccak. It computes the following:

∀(x, y, z) ∈ J0, 4K2 × J0, w − 1K,

A′[x, y, z] = A[x, y, z]⊕ ((A[(x + 1) mod 5, y, z]⊕ 1) ∧A[(x + 2) mod 5, y, z])

As we are also able to mask the AND (∧) operation, our method can be applied to this step
as well.

– ι: The final step involves only one lane. It is XORed with a round constant, and thus can
be easily masked:

∀z ∈ J0, w − 1K, A′[0, 0, z] = A[0, 0, z]⊕RC[z]

With this final step covered, we can see that our method can be applied to every step in the
Round function of Keccak.

Keccak also uses the Sponge protocol to compute the hash of a word. As the two part of the
protocol, Absorb and Squeeze, simply involves XORing the word with the on-going state and
extracting a copy of the state, we won’t discuss them in detail as their compatibility with our
masking method is once again obvious. For more details on the Keccak function, please refer to
the standard paper from the NIST [13].

4 CRYSTALS-Kyber Example

4.1 Discussion on Parameters

As stated in Section 2.2, CRYSTALS-Kyber operations are defined over Zq with q = 3329
satisfying q − 1 = 28 × 13. If ν = 3 is a primitive element of Fq, we could set n = 13 = 2d′ + 1,
d = 6, with ω = ν

q−1
13 and α = ν

q−1
16 . The masking method is working for these parameters but we

have not found a better way to compute the DFT than using a Vandermonde matrix multiplication
which costs O(n2). However, with these parameters, for t = 1, we get odm = d + 1− 1 = 6 and
6 faults can be detected on codewords.

Another choice can be: n = 8 = 2d′, d = 4, ω = ν
q−1

8 = 749 and α = ν
q−1
13 = 2970. We chose to

these parameters,

A =


1 α α2 α3

1 α2 α4 α6

1 α3 α6 α9

1 α4 α8 α12

 , V (ω) =


1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5


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Then,
Mask(x) = (x, r1, r2, r3)× (A−1)⊤ × V (ω),

and

Mask(x) = (x, r1, r2, r3)×


3106 2858 3174 2115 2750 487 2997 3238
420 3028 750 2228 758 2346 2288 3272
2568 1881 1558 1208 1834 526 338 2683
565 2221 1177 1108 1317 3300 1036 795

 ,

with r⃗ = (r1, r2, r3) ∈ Zq is picken randomly.

Mask(x) = xG + r⃗H, with H =

420 3028 750 2228 758 2346 2288 3272
2568 1881 1558 1208 1834 526 338 2683
565 2221 1177 1108 1317 3300 1036 795

 .

It is possible to check (cf: MAGMA online) that the minimal distance of H⊥ is 4 as predicted
by the theory, then odm = 3. Furthermore V (ω) is a Reed Solomon code and 4 faults can be de-
tected. The complexity of the detection corresponds to complexity of the syndrome computation
that can be achieved with a DFT and for n = 8 we have the following tree decomposition:

X8 − 1

X4 − 1

X2 − 1

X − 1

P (1)

X + 1

P (−1)

X2 + 1

X + 1600

P (−1600)

X + 1729

P (−1729)

X4 + 1

X2 + 2620 ∗X + 1

X + 40

P (−40)

X + 2580

P (−2580)

X2 + 709 ∗X + 1

X + 749

P (−749)

X + 3289

P (−3289)

It is shown in [31] that this representation is favourable to hardware implementation and com-
plexity does not exceed nlog(n) multiplications over Fq.

We also propose to consider the parameters n = 4 = 2d′, d = 2, ω = ν
q−1

4 = 1729 and
α = ν

q−1
13 = 2970. We chose to these parameters,

A =
(

1 α
1 α2

)
, V (ω) =

(
1 1 1 1
1 ω ω2 ω3

)
Then,

Mask(x) = (x, r)× (A−1)⊤ × V (ω),

Mask(x) = (x, r)
(

103 2590 1545 2387
3227 740 1785 943

)
= xG + rH,

which leads to a minimal distance of H⊥ equal to 2 and consequently, odm = 1. These parameters
lead also to a very fast DFT with the following tree decomposition:
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X4 − 1

X2 − 1

X − 1

P (1)

X + 1

P (−1)

X2 + 1

X + 1600

P (−1600)

X + 1729

P (−1729)

4.2 Masking Strategy

First we will focus on securing the PKE Decapsulation part of CRYSTALS-Kyber (see [2],
Algorithm 6 page 9 or Algorithm 5 in Appendix B). Then we will discuss how we can extend
our masking method to the entirety of the KEM Decapsulation procedure (see Algorithm 1)
and CRYSTALS-Kyber itself.
You can use the following map (Figure 1) of the KEM Decapsulation to navigate between the
different parts we had to mask.

Secret key
s⃗, z, A, t⃗, h

Ciphertext c

Decode

M = v − ts⃗ · u⃗

Compression

Public key A, t⃗

PKE Encaps

Keccak

Ciphertext
Comparison Keccak

Keccak

Shared secret ss

MUX

A, t⃗

m

h Seed

K

v′, u⃗′

v, u⃗

s⃗

M

z

Fig. 1. Interactive map (links) of our masking strategy

Graph legend:

– : Non-sensitive operation
– : Non-sensitive input/output of the algorithm
– : Non-sensitive intermediate data
– : Sensitive operation
– : Sensitive input/output of the algorithm
– : Sensitive intermediate data

We propose to mask the following operation: v − ts⃗ · u⃗ with v ∈ Rq given, u⃗ ∈ Rsec
q given, and

s⃗ ∈ Rsec
q the secret. First, we have to discuss how to multiply a sensitive data and a public one.
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Karatsuba between a Sensitive and a Public Polynomials To multiply two sensitive
polynomials we rely on the Karatsuba algorithm. However, to avoid the cost of masking a public
polynomial, we will instead consider its coefficients as scalars. Indeed, we have the following
theorem:

Theorem 1. Let f(X) ∈ Rq be a sensitive data and g(X) ∈ Rq a public one. Then Mask(f(X)∗
g(X)) = Mask(f(X)) ∗ g(X)

Proof. First we will prove it for a degree lesser than 16 and then recursively extend the theorem
to the entirety of the Karatsuba algorithm as for this degree, we use the textbook polynomial.
The textbook polynomial multiplication states that( 15∑

i=0
fiX

i

)
∗

15∑
j=0

gjXj =
15∑

j=0
gj ∗

( 15∑
i=0

fiX
i+j

)
(7)

Using the linearity of our masking method, it’s immediate that

Mask(
15∑

j=0
gj ∗

( 15∑
i=0

fiX
i+j

)
) =

15∑
j=0

gj ∗

( 15∑
i=0

Mask(fi)Xi+j

)
(8)

Now, let’s recall the Karatsuba formula:

f(X) ∗ g(X) = (f ′(X) + f ′′(X)Xn/2) ∗ (g′(X) + g′′(X)Xn/2)
= f ′ ∗ g′Xn + (f ′ ∗ g′ + f ′′ ∗ g′′ + (f ′ + f ′′) ∗ (g′ + g′′))Xn/2 + f ′′ ∗ g′′

Each product is once again between a sensitive polynomial f and a public one g. Thus, we have to
prove that Mask(f ′(X)∗g′(X)) = Mask(f ′(X))∗g′(X)(same for f ′′∗g′′ and (f ′+f ′′)∗(g′+g′′)) at
degree k. If true, then using the linearity it’ll also be true for f(X)∗g(X) at degree 2k. However,
we already proved it for degree lesser than 16 in Equation 8. By recursion we proved that we do
not need to mask nonsensitive data before multiplying them with sensitive polynomials as we
can see their coefficients as scalars.

Thanks to the Theorem 1 and the homomorphic properties of the Mask procedure we have:

Mask(v − ts⃗ · u⃗) = Mask(v)−
sec∑
i=0

Mask(si) ∗ ui,

where ts⃗ · u⃗ =
∑sec

i=0(si ∗ ui) with si ∈ Rq and ui ∈ Rq.

Compression Following the CRYSTALS-Kyber design described in Algorithm 5, we have to
apply the Compressq function while staying masked. We have the following theorem:

Theorem 2. Compressq can be computed using a polynomial function.

Proof. We can rewrite the Compressq function from Equation 1 as

∀α ∈ Zq, Compressq(α) =
{

1 if
⌈

q
4
⌋

< α <
⌈ 3q

4
⌋

0 otherwise
(9)
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As Zq is a finite field, we can simply enumerate all the values of α resulting in 1 and those
resulting in 0 and thus we can rewrite Equation 9 as

∀α ∈ Zq, Compressq(α) =
{

1 if α ∈ {α0, α1, . . . , αh}
0 if α ∈ {β0, β1, . . . , βl}

with h + l = q (10)

A simple Lagrange interpolation of Equation 10 thus give us the following:

∀α ∈ Zq, Compressq(α)⇔ P (X = α) =
l∏

i=0
(X − βi)

h∑
j=0

h∏
k=0,k ̸=j

(X − αk)
(αj − αk) (11)

We proved Compressq can be seen as a polynomial function and we can further extend the
reach of our masking method within CRYSTALS-Kyber.

We deduce from this theorem that we can mask Compressq as a polynomial function. It requires
q Mask multiplications and q Mask additions by using the Horner algorithm. However, we can
improve this complexity.
In the specific case of our Compressq interpolation, we notice that the polynomial function
has a structure. All the exponents are odd. Thus, a first optimization is to change the variable
from X to Y = X2, thus reducing the complexity from q Mask multiplications to q/2 Mask
multiplications. Then, we notice we can factorize that polynomial into 838 polynomials, with
the largest degree being 599. Thus, by multiplying some of these polynomials together, we end
up with 2 polynomials of degree 599 and one of degree 466. By precomputing the Y i, and
not masking the polynomial coefficients5 and using them as scalars as described in 3.3, we
reduce the complexity (multiplications wise) of our masked Compressq to just around 600 Mask
multiplications.

From PKE to KEM PKE Decaps is used in KEM Decapsulation as shown in Algorithm 1.
In order to mask the rest of the KEM Decapsulation procedure of Kyber and the other KEM
procedures, we have to address a few points.

– How do we hash the message output of PKE Decaps? As stated in Subsection 3.10,
we can only use our Keccak implementation if the value masked is either 0 or 1. Which is
the case for each term of the output of the Compressq function. Thus, we can directly apply
our Keccak implementation on the output of PKE Decaps, albeit if this output is kept in
polynomial form and masked.

– How do we mask PKE Encapsulation? The homomorphic properties of Mask can also
be applied to both the PKE encapsulation and key generation of CRYSTALS-Kyber. By
taking into account Remark 3 regarding the Decompressq function, we can secure most of
the computations using the sensitive data s⃗, m, r⃗, e⃗, e⃗1 and e2 in PKE Key Gen (see [2] page
8 Algorithm 4 or Algorithm 3 Appendix B) and PKE Encaps (see [2] page 9 Algorithm 5 or
Algorithm 4 Appendix B). For instance, to compute v we do

Mask(v) =
(

sec∑
i=0

ti ∗ Mask(ri)
)

+ Mask(e2) + 1665 ∗ Mask(m) (12)

However, we have to secure the sampling of these sensitive data.
5 Those are not sensitive data
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– How do we use our masking method to perform sensitive data sampling? To
sample sensitive values in the PKE Encapsulation procedure, we use the CBD from Equation
4 fed by two chained Keccak instances. As the output of our masked Keccak implementation
is a vector of either 0s or 1s masked, it can be fed into a new masked Keccak implementation
without problems.
We can compute the following:

Mask(CBDη(G)) =
255∑
i=0

(
η∑

j=0
Mask(G2iη+j)−

η∑
j=0

Mask(G2iη+η+j))Xi (13)

The result will be masked with our method and ready for use. We can perform sensitive
data sampling from a masked seed and remain in the masked domain all along.

Remark 9. Some points discussed here also apply to the sampling of the message in the KEM
Encapsulation procedure. Using a TRNG and masking its output, we can have a masked
message from the start and thus compute the seed used in the CBD while always staying
masked.

– How do we compare ciphertexts in the Fujisaki-Okamoto Transform without
unmasking them? One of the biggest issue with masking Kyber is the lossy nature of the
Compressq function, as stated in Remark 4. As the ciphertext in the KEM Decapsulation
(Algorithm 1) is given as input in a compressed state, the reference paper [6] simply com-
presses the generated ciphertext into c′ and compares it with the input ciphertext c.
However, we have already seen that masking the Compressq function can be costly. Thus,
papers masking Kyber [7,9] use a different approach: They compare the generated cipher-
texts u⃗′, v′ with the decompression of c.
We went a step further and relied on the property stated in Remark 4 Equation 3. A key
point here is we want a function that returns 0 when the ciphertexts are good and not 0
when the comparison fails. Which means that, instead of performing a Lagrange interpola-
tion6 like for the message compression, here we can just list the values of y = x− x′ such as
|y| ≤ ⌈q/2di+1⌋ mod q and consider them as the roots of the polynomial we are looking for.
Thus, for di = du = 10, we have ⌈q/2di+1⌋ = ⌈q/210+1⌋ = 2, thus y ∈ J−2, 2K, 5 roots and a
polynomial of degree 5:

P (X) = X5 + 3324 ∗X3 + 4 ∗X = X ∗ (Y − 4) ∗ (Y − 1) with Y = X2 (14)

This Equation 14 only requires 3 masked multiplications. For di = dv = 4, we have
⌈q/2di+1⌋ = ⌈q/24+1⌋ = 104, thus y ∈ J−104, 104K, 209 roots and a polynomial of de-
gree 209. However, we know that X will be a factor of this polynomial and that we will be
able to use the symmetric nature of the set of roots to have (X − a) ∗ (X + a) = X2 − a2,
thus allowing us to have two polynomials, X and one of degree 104 in Y = X2. A last
optimization is to factorize together some of the factors of this polynomial in Y to have 8
factors of degree 13, requiring only 1 + 1 + 7 + 12 = 21 masked multiplications7.

6 All the mathematical optimizations in this paper were computed using PARI GP.
7 For 4 factors of degree 26, 30 masked multiplications; for 16 factors of degrees 6 and 7, 23 masked

multiplications
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We demonstrated that our masking method can be applied completely to CRYSTALS-Kyber8 to
secure computations on sensitive data, without requiring any conversion to a different masking
method and providing an error detection and error correcting capability.

5 Implementation and Performances

We made a proof of concept implementation of our masking method in the C language on a
desktop. This first implementation may not be the most optimized but we think it is important
to share some performances9 results to give an idea of the costs of our method. Please note
that, to the best of our knowledge, there is no paper discussing performances of a masked
implementation of CRYSTALS-Kyber on desktop we could compare to. Thus, we will only
present our results here and won’t be able to compare them with other methods for now.

0 100 200 300 400 500 600

KEM Key Gen

KEM Encaps

KEM Decaps

231.6

258.9

255.6

417.9

468.3

465.3

MillisecondsOrder 1 Order 3

Fig. 2. Performances in milliseconds of our masked KYBER512

It’s interesting to notice on Figure 2 that we double the performances while tripling the masking
order. The reason behind it is that we have to double the length of the Reed-Solomon code used
to perform the masking. This tendency is also noticeable in the following Table 1:

Table 1. Performances in milliseconds of several important functions

Masking order 1 3

Masking a degree 256 polynomial 0.007 0.0136
Ciphertexts comparison 1.07 1.93
Karatsuba between a sensitive and a public polynomials 0.717 1.358
Karatsuba between two sensitive polynomials 2.46 4.53
Message compression 19.6 35.1
Hash function 25.2 46.8

8 Note that we mask KYBER512 but our method works for other security levels as well.
9 Averages in milliseconds over 1000 iterations.
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The most costly functions we have to use are our Hash function and the message compression,
as seen in Table 1. They take the vast majority of the run time of our implementation, as seen
in the following Figure 3:

0 10 20 30 40 50 60 70 80 90 100

KEM Key Gen

KEM Encaps

KEM Decaps

1.4

11.6

2.97.6

98.6

88.4

89.5

PercentagesHash function Message compression Others

Fig. 3. Percent of run time of functions at order 3

We also compared these results with the reference C source code of CRYSTALS-Kyber:

– KEM Key Gen: from 0.03ms to 231.6ms and 417.9ms (×7720 and ×13 930)
– KEM Encapsulation: from 0.03ms to 258.9ms and 468.3ms (×8630 and ×15 610)
– KEM Decapsulation: from 0.03ms to 255.6ms and 465.3ms (×8520 and ×15 510)
– Keccak: from 0.0007ms to 25.2ms and 46.8ms (×36 000 and ×66 857)

Remark 10. Note that our implementation is not fully optimized while the reference C source
code of CRYSTALS-Kyber is. The interesting result here is the massive overhead in the specific
case of Keccak, stressing the need for alternatives solutions to our masked implementation of
SHA3.

The performances shown here were realized on a DELL Precision 3561 laptop equipped with a
11th Gen Intel(R) Core(TM) i7-11850H processor operating at 2.50 GHz, 16 GB of RAM. The
source code was compiled and executed using gcc version 11.3.0. A particularity of our setup
is the use of Ubuntu 22.04.1 through WSL2 (Windows Subsystems for Linux) on a computer
operating Windows 11.

We plan on making our source code public using an anonymized Github depot.

5.1 Possible Improvements

In this subsection, we propose some ideas to improve the performances of the implementation
albeit at the expanse of some of our masking method advantages.

– The most costly function in our CRYSTALS-Kyber is our Keccak implementation, as shown
by the Figure 3 and Remark 10. We propose the idea of replacing it by a boolean masked
implementation of Keccak, like [5] from Bertoni et al. for instance. To convert the masked
output of this implementation to our code-based masking, one simply needs to use our
method on each boolean share and then use our XOR to retrieve the value which was
boolean masked but now in our code-based masking domain. However, giving a code-based
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mask data to the Bertoni’s Keccak implementation is a bit more tricky.
Let m ∈ Rq be the sensitive data we masked in the code-based making domain. We have
Mask(m) = (Mask(mi))i∈J1..256K. Let’s pick randomly (R1, . . . , Rd′) ∈

(
Z256

q

)d′

. Then, we can
compute Mask(m) +

∑d′

i=1 Mask(Ri) = Mask(m +
∑d′

i=1 Ri). Finally we get m +
∑d′

i=1 Ri =
Unmask(Mask(m) +

∑d′

i=1 Mask(Ri)).
We thus have an arithmetic masking of the m, and we can apply methods like Goubin
A2B [16] or the more recent SecA2BModp from Bronchain-Cassiers [9] to switch to boolean
masking compatible with Bertoni’s masked Keccak.

– We already have made some optimizations to our Compressq function. However, it still is the
second most costly function in our CRYSTALS-Kyber implementation. Thus, we propose
the idea of converting from our code-based masking to an arithmetic one to use already
existing work from Bos et al. or Bronchain and Cassiers [7,9] to mask this function at a
lower cost. The conversion process is the same as for the previous optimization proposal
aimed at Keccak, without the A2B conversion requirement.

Remark 11. Please note that we focused on the mathematical and algorithmic optimizations
throughout this paper, there might also be software optimization for our source code to improve
its performances. Also note that these performances were obtained on a desktop implemen-
tation and thus might be far better once our masking is adapted to a hardware or codesign
implementation.

6 Conclusion

In this paper we demonstrated the first masked implementation of a post-quantum KEM using
the code-based masking method in Section 4. We proved in Section 3 that code-based masking
can be used with finite fields of prime characteristic other than 2 and with code of even length. We
studied how to mask a Keccak implementation in Section 3.10, however we leave the optimization
of this implementation for another paper. We succeeded in proposing a masked implementation
of CRYSTALS-Kyber where sensitive data are masked once and never require any conversion
or unmasking. We also provide a better security against Fault Injection Attacks (FIA) by not
only being able to detect faults but also to correct some.
The next step of our work is to implement this solution on a hardware platform and verify its
robustness experimentally. We also plan to adapt our method to mask a post-quantum signature.
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A Graph legend

– : Non-sensitive operation
– : Non-sensitive input/output of the algorithm
– : Non-sensitive intermediate data
– : Sensitive operation
– : Sensitive input/output of the algorithm
– : Sensitive intermediate data

B CRYSTALS-Kyber

B.1 PKE

RNG Keccak CBDη1

CBDη1

XOFParse

LWE
A · s⃗+ e⃗

Public key A, t⃗

Secret key s⃗
s⃗

e⃗

A

t⃗

Fig. 4. Overview of the sensitive operations within the PKE Key generator

Algorithm 3 PKE-Kyber Key Generation
1: Output: Secret key s⃗ ∈ Rsec

q

2: Output: Public Key A ∈ Rsec×sec
q , t⃗ ∈ Rsec

q

3: A ↼ Rsec×sec
q

4: s⃗, e⃗←↩ Ssec
η1 × Ssec

η1
5: t⃗ := A · s⃗ + e⃗
6: return (s⃗, (A, t⃗))
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Public key A, t⃗

Seed
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CBDη1

CBDη1

CBDη2

LWE
u⃗ = tA · r⃗ + e⃗1

LWE
V = tt⃗ · r⃗ + e2

LWR
v = V +M

Decompression

Ciphertext v, u⃗

m M

A

t⃗

e⃗1

r⃗

e2

v

u⃗

V

Fig. 5. Overview of the sensitive operations within the PKE Encapsulation

Algorithm 4 PKE-Kyber Encapsulation
1: Input: Public Key A ∈ Rsec×sec

q , t⃗ ∈ Rsec
q

2: Input: Message m ∈ {0, 1}256

3: Input: Seed seed ∈ {0, 1}256

4: Output: Ciphertext u⃗ ∈ Rsec
q , v ∈ Rq

5: r⃗, e⃗1, e2 ←↩ Ssec
η1 × Ssec

η2 × Sη2

6: u⃗ := tA · r⃗ + e⃗1
7: v := tt⃗ · r⃗ + e2 + Decompressq(m)
8: return (u⃗, v)

Secret key s⃗

Ciphertext v, u⃗

M = v − ts⃗ · u⃗ Compression Message m
s⃗

v, u⃗

Fig. 6. Overview of the sensitive operations within the PKE Decapsulation



Quasi-linear Masking to Protect Kyber against both SCA and FIA 23

Algorithm 5 PKE-Kyber Decapsulation
1: Input: Secret key s⃗ ∈ Rsec

q

2: Input: Ciphertext u⃗ ∈ Rsec
q , v ∈ Rq

3: Output: Message m ∈ {0, 1}256

4: m := Compressq(v − ts⃗ · u⃗)
5: return m

B.2 KEM

RNG

PKE
Key Generator

Keccak

Public key A, t⃗

Secret key
s⃗, z, A, t⃗, h

z

t⃗

A, t⃗

s⃗

h

Fig. 7. Overview of the sensitive operations within the KEM Key generator

Algorithm 6 KEM-Kyber Key Generation
1: Output: Public Key pk = (A, t⃗)
2: Output: Secret Key sk = (s⃗, pk, H(pk), z ∈ {0, 1}256)
3: z (256 random bits from system)
4: s⃗, A, t⃗ := P KE.KeyGen()
5: pk := (A, t⃗)
6: sk := (s⃗, pk, H(pk), z)
7: return (pk, sk)

Remark 12. Alternatively to store the matrix A as a part of the public key, we could store the
random seed used to generate it in order to reduce the size of the public key.
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Public key A, t⃗

Keccak

RNG Keccak

PKE Encaps

Keccak
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Keccak

Keccak

Ciphertext c

Shared secret ss
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A, t⃗

m

m

Seed

K

v, u⃗

h

Fig. 8. Overview of the sensitive operations within the KEM Encapsulation

Algorithm 7 KEM-Kyber Encapsulation
1: Input: Public key pk = (A, t⃗)
2: Output: Ciphertext c
3: Output: Shared secret K ∈ {0, 1}256

4: m (256 random bits from system)
5: m = H(m)
6: (K′′, seed) := G(m∥H(pk))
7: u⃗, v := P KE.Encaps(pk, m, seed)
8: c = (Compressq(u⃗, du), Compressq(v, dv))
9: K := KDF (K′′∥H(c))

10: return (c, K)
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Secret key
s⃗, z, A, t⃗, h

Ciphertext c

Decode

PKE Decaps

Public key A, t⃗

PKE Encaps

Keccak

Ciphertext
Comparison Keccak

Keccak

Shared secret ss

MUX

A, t⃗

m

h
Seed

K

v′, u⃗′

v, u⃗

s⃗

z

Fig. 9. Overview of the sensitive operations within the KEM Decapsulation

Algorithm 8 KEM-Kyber Decapsulation
1: Input: Ciphertext c
2: Input: Secret Key sk = (s⃗, pk, H(pk), z)
3: Output: Shared key K
4: u⃗, v = Decompressq(c, du), Decompressq(c+, dv)
5: m′ := P KE.Decaps(s⃗, u⃗, v)
6: (K′, seed′) := G(m′∥H(pk))
7: u⃗′, v′ := P KE.Encaps(pk, m′, seed′)
8: c′ = (Compressq(u⃗′, du), Compressq(v′, dv))
9: if c == c′ then

10: return KDF (K′∥H(c))
11: else
12: return KDF (z∥H(c))
13: end if

B.3 Parameters

Table 2. Parameter sets for CRYSTALS-Kyber

NIST security level n q k η1 η2 du dv

KYBER512 I 256 3329 2 3 2 10 4
KYBER768 III 256 3329 3 2 2 10 4
KYBER1024 V 256 3329 4 2 2 11 5
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