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Abstract—In recent years, the research community has made
great progress in improving techniques for privacy-preserving
computation such as fully homomorphic encryption (FHE).
Despite the progress, there remain open challenges, mostly in
the areas of performance and usability, to further advance the
adoption of these technologies. This work provides multiple
contributions to improve the current state-of-the-art in both
areas.

More specifically, we significantly simplify the bootstrap-
ping idea by Carpov, Izabachène, and Mollimard [1] for
Boolean-based FHE schemes such as FHEW or TFHE, making
the concept usable in practice. Based on our simplifications, we
provide an easy-to-use interface for amortized bootstrapping
implementing our improvements in the open-source library
FHE-Deck and provide new parameter sets for multi-bit en-
cryptions with state-of-the-art security.

We build a toolset that compiles high-level code such
as C++ to code that executes operations on encrypted data.
For this toolset, we propose the first non-trivial FHE-specific
optimizations in synthesizing privacy-preserving circuits from
high-level code, namely look-up table (LUT) grouping and
adder substitution. Using LUT grouping, we reduce the num-
ber of bootstrapping required by almost 35 % on average,
while for adder substitution, we reduce the number of required
bootstrapping by up to 80 % for certain use cases. Overall, the
execution time is up to 3.8× faster using our optimizations
compared to previous state-of-the-art circuit synthesis.

1. Introduction

Encryption is a fundamental technology of today’s soci-
ety and is in use in different areas of public life, securing
data and communications around the globe. One exciting
application is privacy-preserving computation where tech-
niques such as fully homomorphic encryption (FHE) encrypt
and protect sensitive data during computation. However,
there remain open challenges in adopting these technologies,
such as reducing computation and hence economic costs, as
well as improving usability to ease adoption.

Since Gentry’s seminal work introducing the idea of
bootstrapping in 2009 [2], multiple schemes have been
proposed and improved over the years. Current state-of-the-
art schemes are still exclusively based on bootstrapping, a

process in which the error associated with the ciphertext
is refreshed to allow for indefinite computation, and two
strains have emerged.

Arithmetic-focused schemes such as BGV [3], BFV [4],
[5] and CKKS [6] operate on many elements at a time
and excel at highly parallelizable tasks. These schemes
usually perform many operations followed by an expensive
bootstrapping procedure and are often used for specific use
cases requiring many additions or multiplications, such as
matrix multiplication.

In contrast, Boolean-based schemes such as FHEW [7]
and TFHE [8] provide high flexibility encrypting either
single bits or small bit groups and are thus a good fit for a
wide variety of use cases in privacy-preserving computation.
A target function is commonly represented as a circuit with
Boolean gates where the input bits are encrypted. Every gate
evaluation requires a bootstrapping which is relatively fast
compared to arithmetic-focused schemes. However, boot-
strapping is still the most expensive part of such circuits
and thus, it is naturally important to reduce the number of
gates requiring bootstrapping for evaluation when translating
a use case to a circuit speeding up encrypted execution of
the circuit.

Translating use cases is either done manually for critical
tasks (this can be compared to hand-written assembly) or
using tools to automate translation from high-level code
to Boolean circuits (similar to code compilation). Although
the former usually results in better performance for a given
use case, the process is rather tedious, and there has been
some effort by the research community to provide automatic
translations from high-level code to circuits [9], [10], [11].

Currently, two different approaches exist automatically
converting high-level code to Boolean circuits. The first
approach is based on instruction mapping, where the high-
level code is translated to an intermediate representation.
Afterward, the individual instructions of the intermediate
representation are mapped to small Boolean circuits and
composed accordingly.

The second approach is based on existing hardware tool-
ing, more specifically the synthesis process. First, high-level
synthesis converts high-level code to a hardware description
language (HDL) such as Verilog. Then, the HDL is passed
to a synthesizer such as Yosys, and a Boolean circuit is
generated as output. The resulting circuit is then transpiled
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to FHE library code for both approaches.
The Google transpiler [11] is a state-of-the-art tool im-

plementing both approaches. In the transpiler, the high-level
synthesis framework XLS translates C++ code to an inter-
mediate representation (IR) and performs common compiler
optimizations. Afterward, the IR code is either mapped to
small Boolean circuits for each instruction or translated to
Verilog code for the synthesis-based approach.

For the latter, the Verilog code is then optimized and
translated to a Boolean circuit using Yosys, an open-source
synthesis tool. The result is a netlist, a textual description
of a Boolean circuit, either based on single-bit gates with
each ciphertext encrypting a single bit or multi-bit gates, so-
called look-up tables (LUTs), where each ciphertext contains
a small number of bits.

No matter the approach, the single-bit circuits can then
be transpiled to FHE library code for different open-source
libraries. For multi-bit circuits, however, the results can
only be simulated using the transpiler’s built-in simulator as
current state-of-the-art libraries do not support encryption
of multiple bits with secure parameters.

In this work, we make several significant contributions
to improve the current state-of-the-art in FHE transpilation,
primarily focusing on the synthesis-based approach:

• We significantly simplify the amortized bootstrap-
ping idea proposed by Carpov, Izabachène, and Mol-
limard [1], improving the current state-of-the-art for
bootstrapping in FHEW-like schemes. Our modi-
fications make it feasible to use the amortization
technique in practice.

• We propose new parameter sets for multi-bit encryp-
tions with state-of-the-art security and implement
an easy-to-use interface for amortized bootstrapping
based on the open-source library FHE-Deck.

• We introduce the first non-trivial FHE-specific opti-
mizations for single- and multi-bit circuits modify-
ing the circuit synthesis process to handle additions
specifically optimized for FHE circuits. This results
in circuits requiring up to 80 % less bootstrappings
compared to non-optimized circuits.

• We also perform post-synthesis optimizations on the
netlist based on amortized bootstrapping to evaluate
multiple gates at once. Using our optimizations,
execution times are up to 3.8× faster compared to
the previous state-of-the-art.

Outline. In Section 2, we start with some preliminaries on
FHEW-like schemes and the synthesis process. Then, in Sec-
tion 3, we provide our improvements and implementation for
TFHE-based bootstrapping while our optimizations to the
synthesis process are described and evaluated in Section 4.
We discuss our results and their implications in Section 5
and provide a summary of our work in Section 6.

2. Preliminaries

In the following, we first introduce notation used in the
remainder of this work and recall the definition of FHE.

We continue by defining the Generalized Learning with
Errors (GLWE) assumption as well as a cryptosystem based
on this assumption. Afterward, we introduce concepts from
hardware development, namely the synthesis process and
circuit representations, concluding this section by explaining
the general process of transpilation.

2.1. Notation

We denote as Zq the group of integers modulo q. We
denote asR the ring of polynomials ZQ[X]/(XN+1) where
N is a power-of-two. We call the n-th root of unity in R an
element z ∈ R such that zn = 1 ∈ R. Note that RQ has 2N
roots of unity of the form Xa for a ∈ Z2N . Furthermore, the
roots of unity in RQ form an algebraic group of order 2N
with respect to multiplication. To differentiate ring elements
from integers, we denote them with the mathfrak font like
a ∈ RQ.

We denote a n dimensional column vector as [f(·, i)]ni=1,
where f(·, i) defines the i-th coordinate. For brevity, we
will also denote as [n] the vector [i]ni=1, and more generally
[n,m]mi=n the vector [n, . . . ,m]⊤. We address the i-th entry
of a vector v⃗ by v⃗[i].

By x ←R S, we denote sampling a random variable
from the set S. By default, we sample from the uniform
distribution and explicitly state when referring to other
distributions. For a random variable a ∈ Z, we denote as
Var(a) the variance of a, its expectation as E(x), and its
standard deviation as SD(a). For a ∈ RQ, we define Var(a)
and E(a) to be the variance and expectation, respectively
of the coefficients of the polynomial a. We denote any
polynomial as poly(.). We denote as negl(λ) a negligible
function in λ ∈ N. That is, for any positive polynomial
poly(.) there exists c ∈ N such that for all λ ≥ c we have
negl(λ) ≤ 1

poly(λ) .

2.2. Fully Homomorphic Encryption

Below we recall the definition of fully homomorphic
encryption (FHE) [2], [12].

Definition 1 (FHE). A FHE scheme consists of four al-
gorithms (Setup, Enc, Eval, Dec), each with the following
syntax.
Setup(λ): This probabilistic polynomial time (PPT) algo-

rithm takes as input a security parameter λ and outputs
an evaluation key ek and a secret key sk.

Enc(sk,m): This PPT algorithm takes as input a secret key
sk as well as a message m and returns a ciphertext ct.

Eval(ek, [cti]
n
i=1, C): Given an evaluation key ek, cipher-

texts [cti]
n
i=1, and a circuit C, this (non-)deterministic

algorithm outputs a ciphertext ct.
Dec(sk, ct): Given a secret key sk and a ciphertext ct, this

deterministic algorithm outputs a message m.

Correctness. We say that FHE = (Setup,Enc,Eval,Dec)
is correct if for all security parameters λ ∈ N, the circuits



C :Mn 7→ M over the message spaceM of depth poly(λ),
and all messages [mi ∈M]ni=1 we have

Pr
[
Dec(sk, ctout) = C([mi]

n
i=1)

]
= 1− negl(λ),

where sk← Setup(λ),
[
Dec(sk, cti) = mi

]n
i=1

and

ctout ← Eval(ek, [cti]
n
i=1, C).

Efficiency. We require that Setup, Enc and Dec run in
polynomial time in the security parameter, that is poly(λ),
and Eval runs in poly(λ, |C|). Finally, we say that a FHE
scheme is compact if the size of the output of Eval is
independent of the size of the circuit C.

Indistinguishability Under Chosen Plaintext Attack. Let
λ ∈ N be a security parameter and A = (A0,A1) be a PPT
adversary. We say that a FHE scheme has indistinguishable
under chosen plaintext attack (IND-CPA) security if, given
the advantage

AdvIND-CPA
A,FHE (λ),

the following probability is at most negl(λ) for all PPT
adversaries A

Pr

 A1(ctb, st) = b:

sk← Setup(λ),

(st,m0,m1)← AO(sk,.)
0 (λ),

b←R {0, 1},
ctb ← Enc(λ, sk,mb)

 ,

where the oracle O on input of a message m outputs ct←
Enc(λ, sk,m).

Circuit Privacy. Let C :Mn 7→ M be a polynomial size
circuit. A FHE is said to be circuit private if there exists a
PPT simulator Sim such that

∆(Sim(ek,mout),Eval(ek, c1, . . . , cn, C)) ≤ negl(λ),

where [mi ← Dec(sk, ci)]
n
i=1, mout ← C(m1, . . . ,mn) and

(ek, sk)← Setup(λ).

2.3. Generalized Learning with Errors

Definition 2 (GLWE). Let Dsk be a (not necessarily uni-
form) distribution over RQ, and σ > 0, n ∈ N and N ∈ N
be a power-of-two, that are chosen according to a security
parameter λ. For a⃗←R Rn

Q, e←R DR,σ and s⃗ ∈ Dn
sk, we

define a Generalized Learning with Errors (GLWE) sample
of a message m ∈ RQ with respect to s⃗, as

GLWEσ,n,N,Q(⃗s,m) =

[
−a⃗⊤ · s⃗+ e

a⃗⊤

]
+

[
m

0⃗

]
∈ R(n+1)

Q .

We say that the GLWEσ,n,N,Q-assumption holds if for any
PPT adversary A we have∣∣∣∣Pr [A(GLWEσ,n,N,Q(⃗s, 0))

]
− Pr

[
A(Un+1

Q )
]∣∣∣∣ ≤ negl(λ)

where Un+1
Q is the uniform distribution over Rn+1

Q .

We denote a Learning with Errors (LWE) sample as
LWEσ,n,Q(s⃗, m) = GLWEσ,n,1,Q, which is a special case of
a GLWE sample where the ring is Zq[X]/(X+1). Similarly
we denote a Learning with Errors over Rings (RLWE)
sample as RLWEσ(s,m) = GLWEσ,1,deg,Q which is the
special case of an GLWE sample with n = 1. For simplicity,
we omit to state the modulus and ring dimension for RLWE
samples because we always use RQ = ZQ[X]/(XN + 1)
where N is a power-of-two. For LWE samples, we will be
switching between different moduli and different dimen-
sions; hence we will indicate the current modulus in the
notation. We sometimes leave the inputs unspecified and
substitute them with · when it is not necessary to refer
to them within the scope of a function. We define the
phase of c⃗ = GLWEσ,n,deg,Q(s⃗,m), as Phase(c⃗, s⃗) = ⟨c⃗, s⃗⟩.
Additionally, we define the error of c⃗ as Error(c⃗,m) =
Phase(c⃗)−m.

2.4. Computing on Encrypted Data

In this section we recall algorithms to compute on
encrypted data and introduce additional notation that is
neecessary for the main funcational bootstraping procedure
in our work. In Table 1, we give a brief summary of the
algorithms and, for detailed descriptions and experiments,
refer the interested reader to previous work [7], [8], [13].

Below, we describe how to compose the algorithms from
Table 1 to implement a system fitting Algorithm 1 and our
model of computation.

Setup(λ). The setup algorithm consists of three main parts.
1) We choose the modulus Q, a power-of-two dimen-

sion N of the ring RQ and LWE dimension n ∈ N
according to the security parameter λ. Then, we
choose s ∈ RQ for the RLWE key and set s⃗ext to
be the coefficient vector of s. Finally we choose
s⃗ ∈ {0, 1}n for the LWE key.

2) We run ksKey← KSSetup(s⃗, s⃗ext, ℓksKey, σksKey).
3) We run brKey← BRSetup(s⃗, s, ℓbrKey, σbrKey).

Finally, we set the evaluation key ek = (brKey, ksKey) and
the secret key sk = (s, s⃗ext, s⃗).

Enc(sk,m). To encrypt a message m′ ∈ Zp, we compute

c⃗← LWEσ,N,Q(s⃗ext,m) ∈ ZN+1
Q ,

where m = Q
p ·m

′ ∈ ZQ.

Eval(ek, [cti]
n
i=1, C). We can represent homomorphic com-

putation as a circuit with gates of the form

f

(
b+

k∑
i=1

xi · ai ∈ Zp

)
∈ Zp,

where the ai and b are scalars known by the evaluator and
the xi are the encrypted plaintexts. We compute the affine
function using the additive homomorphism of the LWE
samples and the function f : Zp 7→ Zp by applying the
bootstrapping algorithm. In Section 3, we discuss in more
detail how the bootstrapping algorithms compute functions.



TABLE 1. LIST OF PROCEDURES OUT OF WHICH WE BUILD AN FHEW/TFHE-STYLE BOOTSTRAPPING ALGORITHM.

Key Switching

KSSetup
Input: Takes as input two LWE secret keys s⃗ ∈ {0, 1}n, s⃗ext ∈ ZN

Q , a performance parameter ℓksKey ∈ N and a standard deviation
σksKey ∈ R.
Output: Generates a key switching key ksKey which consists of N · ℓksKey LWEσksKey,n,Q(s⃗, ·) ciphertexts.

KeySwitch

Input: Takes as input a key switching key ksKey and a LWE.,N,Q(s⃗ext,m) sample of a message m ∈ ZQ.
Output: Returns a LWE·,n,Q(s⃗,m) sample under the key s⃗ encoding the same message m.
Description: The key switching process consists of N ·ℓksKey scalar multiplications in ZQ. The parameter ℓksKey largely determines
the time and space efficiency; that is, the smaller ℓksKey, the faster the computation and smaller the space complexity of the key
material, but the bigger the noise induced by the key switching operation.

Blind Rotation

BRSetup
Input: Takes as input the LWE key s⃗ ∈ {0, 1}n, a RLWE key s ∈ RQ, a performance parameter ℓbrKey ∈ N and a standard
deviation σbrKey.
Output: Generates a blind rotation key brKey that consists of 2nℓbrKey RLWEσbrKey (s, ·) ciphertexts.

BlindRotate

Input: Takes as input a blind rotation key brKey, a LWE sample ct under modulus 2N and an accumulator acc = RLWE(s, m⃗acc).
Output: BlindRotate returns a sample accout = RLWE(s, m⃗out) with m⃗out = m⃗acc ·XPhase(ct).
Description: The blind rotation process [7], [8] consists of 2n · (ℓksKey + 1) polynomial multiplications of elements in RQ. In
particular, at the heart of a blind rotation algorithm is a ring version of the GSW cryptosystem [14]. In this paper, we consider
the concrete blind rotation from [8], hence the number of polynomial multiplications. Similarly to key switching, the smaller the
parameter ℓbrKey, the faster the blind rotation algorithms and the smaller the blind rotation key, at the cost of larger noise.

Other

ModSwitch
Input: Given a LWE sample LWE·,n,Q(s⃗,∆Q,p ·m) and a modulus q < Q, where m ∈ Zp.
Output: Returns a LWE sample LWE·,n,q(s⃗,∆q,p ·m) under modulus q.

SampleExtract
Input: Takes as input a RLWE encryption RLWEσbrKey (s,m) of a message m ∈ RQ.
Output: Returns a LWE sample LWE·,N,Q(s⃗ext,m), where m = m[1]. That is, the LWE smaple encodes the constant coefficient
of the polynomial m.

Bootstrap

Input: Takes as input a blind rotation key brKey, a key switching key ksKey, a LWE ciphertext c⃗ = LWE·,N,Q(s⃗, ·), a polynomial
w ∈ RQ, and a vector v⃗ ∈ Rk

Q.
Output: We consider two different versions of the bootstrapping algorithm: the classic variant and the amortized variant. For
the classic variant, the vector v⃗ is empty (k = 0), and the algorithm returns a LWE ciphertext LWE.,N,Q(s⃗,w · X c⃗,s⃗). For the
amortized variant, the algorithm returns a vector of LWE ciphertexts [⃗cout,i]

k
i=1, where c⃗out,i = LWE.,N,Q(s⃗,w ·X c⃗,s⃗v⃗[i]).

Description: The algorithm usually calls ModSwitch, KeySwitch, SampleExtract and BlindRotate as subprocedures. In
Section 3, we describe the exact bootstrapping algorithms that we implement and use for your experiments.

Dec(sk, ct). To decrypt a LWE sample c⃗ ∈ ZN+1
Q , we run

Phase(c⃗) = ⟨c⃗, s⃗ext⟩ = Q
p ·m

′ + e ∈ ZQ, rescale and round
the result obtaining⌈

p

Q

(Q
p
·m′ + e

)⌋
= m′

if |e| ≤ Q
2p .

2.5. Synthesis

Synthesis is a process in hardware development that
transforms a circuit design, commonly described using a
HDL such as Verilog, to a textual representation of a low-
level circuit, also referred to as netlist (see also Subsec-
tion 2.6). During synthesis, the circuit is optimized, often
heuristically, according to specific parameters such as area
usage or power consumption.

Extending the idea of synthesis from HDL code to high-
level code such as C++ code is called high-level synthesis. It
enables designers to work at higher levels of abstraction and

facilitates the re-use of existing high-level code for hardware
circuits.

An example of a high-level synthesis tool is Google’s
XLS framework1, translating C++ code to Verilog code,
and an example of a low-level synthesis tool is Yosys2,
transforming Verilog code to netlists. Both tools are used
in Google’s FHE transpiler [11].

2.6. Circuit Representation

After synthesis, circuits are often represented using a
textual representation, also referred to as a netlist. Usually,
netlists are either based on storage elements (such as regis-
ters) and logic gates (for example, NAND-gates, XOR-gates,
multiplexers, . . . ) or based on storage elements combined
with LUTs where each LUT has an initialization string.

The initialization string is a bit string and defines the
output for each input. For a LUT2, for example, the bit at

1. https://github.com/google/xls
2. https://github.com/yosyshq/yosys

https://github.com/google/xls
https://github.com/yosyshq/yosys


index zero of the initialization string defines the output for
the input 00, the bit at index one for the input 01, the bit
at index two for 10 and the bit at index three for 11.

In this work, we also use a full adder gate. A full adder
receives two input bits x and y as well as a carry-in bit ci.
It outputs two bits, the sum s and the carry-out co:

s = x⊕ y ⊕ ci

co = (x · y) + (ci · (x⊕ y))

A helpful perspective on a netlist is viewing it as directed
acyclic graph, where the gates from the netlist are the ver-
tices of the graph, and the edges are the wires connecting the
gates. A well-known fact is that for every directed acyclic
graph, there exists a topological ordering of the graph.

A topological ordering is an ordering such that for every
edge, the start vertex of this edge appears before the end
vertex in the sorted list of vertices. Extending this idea
to netlists ensures that, if we evaluate the gates in their
topological order, all the inputs for a given gate have been
evaluated previously.

2.7. Transpilation

Transpilation, also known as source-to-source compila-
tion, is a process in which the source code written in one
programming language is converted into the source code
of another language. Usually, transpilation converts code
at similar levels of abstraction without changing the code’s
logic or functionality.

In the context of FHE, transpilation refers to convert-
ing high-level code implementing functionality in the un-
encrypted domain to FHE library code. As an example,
Google’s FHE transpiler [11] converts a subset of C++ code
to C++ or Rust, depending on the chosen output library.

Although FHE transpilation operates at a similar abstrac-
tion level with respect to the input and output programming
language, the process itself closely resembles a compilation
process as FHE libraries commonly only implement low-
level operations on the encrypted data.

The first step is thus often translating the high-level
code to an IR where optimizations are performed and then
further processed using instruction mapping or synthesis.
For instruction mapping, each IR instruction is mapped
to the low-level operations exposed by the FHE library,
while for synthesis, hardware synthesis tools are used to
convert the IR to a low-level circuit matching the low-
level operations provided by the chosen library (see also
Subsection 2.5).

3. Amortized Functional TFHE: Parameters
and Efficient Implementation

In this section we specify how we compute functions
on ciphertexts while keeping a constant noise level. Among
the most efficient types of FHE schemes are schemes based
on the FHEW/TFHE style bootstrapping algorithms [7], [8].

There are multiple variants [1], [8], [15], [16], [17], [18] and
improvements [19], [20], [21], [22] of these algorithms.

Nevertheless, the at the core of these algorithms is the
idea, introduced by Alperin-Sheriff and Peikert in [23], of
homomorphically rotating a vector of elements in way that
the homorphic rotation resenbles the decryption function on
the input ciphertext. Specifically, suppose we have a LWE
ciphertext c⃗ with ⟨c⃗, s⃗⟩ = M + e, where s⃗ is the secret
key, M the message and e the error. The operation ⟨c⃗, s⃗⟩
of computing the phase can be realized within a cyclic
algebraic group, more specifically, the group of rotations.
The idea is to realize the rounding function by setting the
elements of the vector such that messages are encoded in
intervals of appropriate size to handle the noise term e.

Bootstraping algorithms for FHEW-like schemes use the
design pattern established by Alperin-Sheriff and Peikert
[23] over polynomial rings. In particular, the observation
first made by Ducas and Micciancio [7] is that in the
ring Z[X]/(XN + 1), the product of any ring element
with a root of unity (negacyclicly) rotates the coefficients
of that ring element. In other words, given a polynomial
w =

∑N−1
i=0 wi ·Xi, we have

w ·Xy =
∑
i=y

wi ·Xi −
y∑

i=0

wN−i−1 ·Xi.

At the core of FHEW-like algorithms is the BlindRotate
procedure. In short, as part of the blind rotation procedure,
we homomorphically compute w · X⟨c⃗,s⃗⟩ = w · XM+e.
Since all computation take place over RLWE ciphertexts, we
obtain at the end of the blind rotation procedure a RLWE
ciphertext of w ·XM+e. Finally, Ducas and Micciancio [7]
observe that given such RLWE ciphertext, one can extract a
LWE ciphertext that encrypts the constant coefficent of the
message, more specifically, the element w ·XM+e[1]. The
step is done via the SampleExtract procedure (see Table 1).
Then, the final step is to choose the polynomial w such
that w · XM+e[1] encodes the desired value and switch
the extracted LWE ciphertext to a LWE ciphertexts that is
suitable for another bootstrapping step.

3.1. Amortized Functional Bootstraping

At a high level, the idea to amortize computation of
different functions on the smaple input ciphertext is based
on a previous work by Carpov, Izabachène, and Mollimard
[1], but in this paper, we significantly simplify execution of
the idea. Furthermore, we choose parameters that satisfy our
constrains and integrate the algorithm in the the open-source
library FHE-Deck [24]. More importantly, we provide high-
level interfaces in FHE-DECK for all algorithms, making
them easily accesible for FHE researchers and developers.

We give a version of the bootstrapping algorithm in
Algorithm 1 providing a bound on the bootstrapping noise
in Theorem 1. The algorithm takes as input the blind rota-
tion key brKey and the key switching key ksKey, a LWE
ciphertext c⃗ ∈ ZN+1

Q and polynomials w and v⃗. First, the
algorithm switches the LWE key. After this step, the LWE



ciphertext c⃗ has a smaller dimension n ∈ N, and a secret
key from a smaller distribution, for instance binary, ternary
or Gaussian.

Algorithm 1: Bootstrap(brKey, ksKey, c⃗,w, v⃗)

Input:
The blind rotation key brKey;
The key switching key ksKey;
A LWE ciphertext c⃗ ∈ Zn+1

q ;
Polynomial w ∈ ZN

Q ; and
A vector of polynomials v⃗ ∈ Rk

p .

begin
Run c⃗ksKey ← KeySwitch(c⃗, ksKey) ∈ Zn+1

Q ;
Run c⃗in ← ModSwitch(c⃗ksKey, 2N) ∈ Zn+1

2N ;
c⃗acc ← BlindRotate(brKey,w, c⃗in) ;
for i = 1 . . . k do

Compute c⃗acc,i ← c⃗acc · v⃗[i] ;
Compute c⃗out,i ← SampleExtract(⃗cacc,i) ;

Return
[
c⃗out,i

]k
i=1

;

Afterward, the algorithm switches the modulus from Q
to 2N . Recall, that the roots of unity in the ring RQ form
an algebraic group of order 2N . Then, we run BlindRotate
which homomorphically computes macc ← w · X⟨c⃗,s⃗⟩. Fi-
nally, we execute a for-loop that multiplies the ciphertext
with a polynomial from the vector v⃗.

Consequently we obtain and return a vector of cipher-
texts

[
c⃗out,i

]m
i=1

. The i-th ciphertext in the returned vector
encrypts the message macc · v⃗[i]. The problem when using
this construction is that the multiplications by the elements
of the vector v⃗ may blow up the error, ultimately destroying
the ciphertext. This can happen if the norm bound of v⃗ is
too large.

Carpov, Izabachène, and Mollimard [1] suggest a poly-
nomial factorization algorithm that takes q and returns fac-
tors w0 and w1 to tackle this problem. To plug this into
our notation we would set w to w0 and and insert w1 into
the vector v⃗. This factorization algorithms works as follows.
Essentially, they set w0 =

∑N
i=1 X

i and w1 =
∑N

i=1 t
′
iX

i.
To compute the t′i coefficients, they build and solve a large
system of N linear equations.

In practice, the polynomial degree is usually a power-
of-two N ≥ 211 and Gaussian elimination runs in cubic
time in the number of variables. Hence we may expect that
soving such system may take considerable time in practice.
In their implementation [1], the authors only tests the boot-
strapping for random rotation polynomials, and there is no
implementation of the linear system solver.

Nevertheless, for N = 214 [1], we can roughly calculate
that the number of modular multiplications in the Gaussian
elimination algorithm3 will be over 240. Furthermore, we

3. Recall that Gaussian elimination requires N(N + 1)/2 divisions,
(2N3 + 3N2 − 5N)/6 multiplications, and (2N3 + 3N2 − 5N)/6
subtractions modulo Q.

need to assume that the system is solvable, and that elements
of the matrix that we build for Gaussian elimination are
invertible modulo Q which, with high probability, will not
be the case if Q is a power-of-two as in many TFHE im-
plementations inlcuding the bootstrapping implementation
from [1].

In our version, we use a simpler and less involved
solution that requires only linear time to build the polynomi-
als. In fact, in our implementation, the polynomials can be
constructed online without any significant slowdown during
computation. We observe that, when we are only interested
in extracting bits, the polynomials in v⃗ can already be sparse
and of small infinity norm.

Later, we can compute a simple binary composition be-
fore running the new bootstrap and computing the next LUT.
Concretely, we set w = ∆Q,p ·X . Then, the polynomials in
v⃗ are of the form

f(0)−
N∑
i=1

f(⌊i/2N⌉) ·XN−i,

where f : Zp 7→ {0, 1}.
In the worst case, all coefficients of the polynomials

in the vector v⃗ could be 1 and −1. Such polynomials how-
ever would not compute any interesting function, essentially
the outcome of every bootstrapping would be the constant
function computing 1. In practice, we have that at least one
block must be equal to zero. Hence the infinity norm of the
polynomials in v⃗ can be bounded by 2N/3.

Theorem 1 (Bootstrapping Correctness). Let c⃗acc ∈ R2
Q be

an RLWE ciphertext returned by BlindRotate in an execution
of Algorithm 1. Let eacc = Error(⃗cacc,macc) where macc =
∆Q,p·XM , and M = ⟨c⃗in, s⃗⟩ mod 2N . Then for all i ∈ [k],
we have

SD
(
Error(⃗cacc,i,macc · v⃗[i])

)
≤
√

2N

3
· Var(eacc)

Proof. Recall, that we assume that at most 2N/3 of all
coefficients in the polynomials in the v⃗ vector are non-zero
and that eacc ∈ RQ. When multiplying the RLWE ciphertext
c⃗acc by v⃗[i], we multiply the resulting error polynomial
which is then equal to eacc,i = eacc · v⃗[i]. The d-th coefficient
of eacc,i can be written as

eacc,i[d] =

d∑
j=1

eacc[j] · v⃗[i][d− i+ 1]

+

N∑
j=d+1

eacc[j] · v⃗[i][N + d− i+ 1].

Crucially, observe that the sum takes each coefficient from
the polynomails once, and at most 2N/3 of the coefficents of



v⃗[i] are non-zero. All non-zero coefficents of v⃗[i] are either
1 or −1. Hence we have that

SD(eacc,i) ≤

√√√√2N/3∑
i=1

Var(eacc)

≤
√

2N

3
· Var(eacc).

3.2. New Parameters

We choose our parameter sets to target 128-bit security
for the LWE and RLWE samples. The parameters are listed
in Table 2. We estimate the security using the latest commit
of the Lattice Estimator [25]. We also include a Python script
to estimate the statistical security.

In Table 2, we specify three parameter sets. The
tfhe-11-ntt parameter set is based on previous work
by Kluczniak [26] and chosen for binary ciphertexts. The
parameter sets tfhe-11-amort and tfhe-12-amort
are new parameter sets to support amortized bootstraping
for 3-bit and 4-bit LUTs, respectively.

We choose our parameters accoring to the following
strategy. For the bootstrapping key we choose two rings,
one with dimension deg = 211 and one with dimensiton
deg = 212. The idea is to choose the highest modulus such
that the RLWE problem remains 128-bit secure according to
the Lattice Estimator [25] and the modulus is below 51-bits
to allow for faster multiplication of ring elements using the
HEXL library [27].

The larger ring gives us a larger group of the roots of
unity and we thus correctly process larger messages. For
the LWE parameters, we set n = 950 for both rings and a
binary secret key as there are asymptotic reductions from
binary LWE to LWE with uniform keys.

Moreover, we stress that we choose the secret key vector
uniformly from the binary distributions. In particular, we do
not use sparse secret keys and we do not fix the hamming
weight, but there are algorithms to handle other key distri-
butions [7], [28]. However, these bootstrapping algorithms
are usually slightly slower or require larger bootstrapping
keys.

Then, we choose the decomposition bases to minize the
number of polynomial multiplications ℓ while at the same
time preserving correctness with a probability of at most
2−80 for a faulty bootstraping.

Based on Table 2, we can conclude that tfhe-11-ntt
will require the least amount of polynomials multiplica-
tions. In particular, recall that the number of polynomial
multiplicaitons is given by n · (2 · (ℓbrKey + 1)). For
tfhe-11-bin, we need 5472 polynomial multiplicaiotns
while for tfhe-11-amort and tfhe-12-amort, we
need 7600 and 13300 polynomial multiplications, re-
spectively. Furthermore, note that the ring dimension in
tfhe-12-amort is doubled compared to the other pa-
rameter sets. Hence, a polynomial multiplication in this ring

FHEContext ctx;
ctx.generate_context(tfhe_11_NTT_amortized);

auto bit0 = [](long m) -> long {
return m & 1;

};
auto bit1 = [](long m) -> long {

return (m >> 1) & 1;
};
auto bit2 = [](long m) -> long {

return (m >> 2) & 1;
};

std::vector<RotationPoly> lut;
lut.push_back(ctx.genrate_lut(bit0));
lut.push_back(ctx.genrate_lut(bit1));
lut.push_back(ctx.genrate_lut(bit2));

int msg = 6;
Ciphertext ct = ctx.encrypt_public(msg);
std::vector<Ciphertext> out = \

ctx.eval_lut_amortized(&ct, lut);

std::cout << ctx.decrypt(&out[0])
<< ctx.decrypt(&out[1])
<< ctx.decrypt(&out[2])
<< std::endl;

Listing 1. Code example showing the easy-to-use interface for amortized
bootstrapping.

will be slower. We provide benchmarking results confirming
these observations in Subsection 4.5.

3.3. Implementation Details

We implemented, tested and integrated the amortization
algorithm into the FHE-Deck library [24]. A significant part
of our work was to integrate different functional bootstrap-
ing algorithms, message encodings, amortization and circuit
privacy support under a single interface.

At Listing 1, we show a simple example of evaluating
a LUT using the new interface. Roughly speaking, we
can specify C++ lambda expressions to evaluate during
bootstrapping on encrypted data. FHE-Deck is based on
the HEXL library [27] for fast polynomial multiplcation
utilizing advanced vector instructions.

4. Circuit Synthesis

In the following, we provide a detailed description of
our two main optimizations applied during synthesis and on
the resulting netlist. We start by explaining our processing
pipeline with Yosys [29], an open-source synthesis suite,
and HAL [30], a netlist analysis tool. Then, we describe the
idea of LUT grouping used for amortized bootstrapping and
continue explaining adder substitutions for faster additions.
We conclude this section with additional minor optimiza-
tions and evaluate and discuss our optimizations.



TABLE 2. NEW PARAMETER CHOICES.

BR Key KS Key

Set Amort. Q N ℓBR SD n ℓKS SD

tfhe-11-amort ✓ 251 211 3 3.2 950 6 218

tfhe-11-amort ✓ 250 212 6 3.2 950 6 218

tfhe-11-bin × 248 211 2 3.2 912 6 226

4.1. (Post-)Synthesis Processing

Synthesis with Yosys can be done using pre-defined
Yosys scripts, the HDL code is read in by Yosys and then
transformed into a netlist executing the steps specified in the
script. We base our scripts on the default synthesis script in
Yosys, removing steps and optimizations that do not apply
to circuits only consisting of combinatorial logic gates.

For Boolean circuits, we additionally use a so-called
liberty file defining all gates supported in state-of-the-art
FHE libraries; we source the file from the Google tran-
spiler. The liberty file defines each gate to consume an
area corresponding to the required bootstrappings per gate
invocation. This includes inversion, which is free for FHEW-
like schemes, and defined to consume no area.

For LUT synthesis, we include a step mapping the tech-
nology to a pre-defined gate library. HAL supports the same
gate library; however, we slightly modify the default library
to remove non-needed gates and include our custom full
adder gate. The latter is instantiated if adder optimizations
are enabled to map certain operations to these custom gates
during synthesis (see also Subsection 4.3).

Using HAL’s Python interface, the post-synthesis opti-
mizations are performed using two different Python scripts,
one for the Boolean circuits and one for the LUT-based
circuits. Common functionality, for example, topological
sorting or translating inputs and outputs to library code, is
extracted to a third script.

Transpiling the Boolean-based netlists in HAL is rela-
tively straightforward: We apply a topological sorting to the
netlist and transpile all gates from the liberty file as required.
As each ciphertext is either zero or one, we transpile inver-
sion by subtracting the ciphertext from the constant value
one.

Translating the LUT-based netlists is more involved:
First, we apply a topological sorting as before. Afterward,
we group all full adders (see Subsection 4.3) followed by
the LUT grouping (see Subsection 4.2). We then apply
another topological sort on the final groups as grouping the
adders can “unsort” the graph (without introducing cycles,
however).

The individual LUTs are translated as follows: first,
we permute the inputs and the initialization string to a
fixed order consistent in each LUT grouping. Then, the
initialization string is extended to the size of the plaintext
modulus covering the full range of possible input values, and
the input ciphertext to a LUT is composed using constant
multiplications by powers-of-two as well as additions.

Each LUT outputs a ciphertext with the output bit stored
in the least significant bit of the ciphertext. Thus, composing
inputs as described is a well-defined operation and does
not wrap around the plaintext modulus (which would re-
quire one additional bootstrapping). Finally, the initialization
string of each LUT is translated to library code and added
to an amortized bootstrapping call for each grouping.

We depict the stages and tools during the entire transpi-
lation process in Figure 1. Our transpilation code, including
tests and examples, will be publicly available on GitHub.

4.2. Look-Up Table Grouping

As described in Subsection 3.1, the most expensive part
of bootstrapping is computing the rotation polynomial while
evaluating a specific function itself is cheap. Thus, as long
as the input ciphertext is the same, we can generate multiple
outputs with almost no overhead.

Mapping the amortized bootstrapping technique to LUTs
is relatively straightforward: As long as the inputs to a
LUT are equal and in the same order, we can perform an
amortized bootstrapping evaluating multiple LUT at once
and “save” on bootstrapping operations. This also applies
to LUTs where we only evaluate a subset of inputs (for
example, grouping a LUT2 with a LUT3).

There is, however, a limitation: our input is a directed
acyclic graph of Boolean gates sorted topologically. We still
require the grouped graph to be acyclic for the output, as
we cannot compute the circuit otherwise. Thus, we parse
the LUTs sequentially and only group a LUT to a previous
one if its input is a subset, including the case with equal
inputs.

The reason is that grouping can introduce cycles to the
graph if a previous LUT is a proper subset of the current
one. Note that such a grouping can introduce a cycle into the
netlist graph but does not have to. Nevertheless, detecting
these cases is non-trivial, and thus we do not perform such
groupings.

An example for LUT grouping is depicted in Figure 2.
Here, the two LUT3 in the bottom row contain the same
inputs and hence can be grouped. Additionally, we can add
the LUT2 in the bottom row to the same group, as it is
a subset of the inputs and appears later in the graph. The
LUT2 in the middle row has a unique input combination and
is its own group. As for the top row, the inputs of the LUT2
are a subset of the inputs from the bottom row. Adding it to
the group at the bottom would introduce a cycle, however.
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Figure 1. The full transpilation pipeline from C++ code implementing high-level functionality in the unencrypted domain to FHE library code, including
our optimizations during and after synthesis. For some examples, we skip the high-level synthesis based on XLS and directly use available Verilog code.
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Figure 2. Grouping LUTs in an example circuit by matching the inputs
while preserving topological order, each group is surrounded by a dashed
line in green. The LUT2 in the top row cannot be grouped with the bottom
row as it would introduce a cycle.
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Figure 3. Comparing a two-bit addition s = x + y based only on LUTs
(left) and based on ciphertext addition with decomposition (right) for the
plaintext modulus 23. The former requires two amortized bootstrappings
while the latter only requires one. Each “LUT” can produce multiple
outputs for different initialization strings, corresponding to a LUT grouping.

4.3. Adder Substitution

The general idea for our adder substitution optimization
is based on the following observation: Using LUTs to realize
additions is generally more costly than using the native
addition capabilities of the scheme and decomposing the
resulting sum to individual bits using a single amortized
bootstrapping. Figure 3 depicts an example of a two-bit
addition for the plaintext modulus 23.

The process of adder substitution is split into multiple
steps. First, we hook into the synthesis process, replacing
addition and subtraction units in the Yosys IR with custom
adder gates. Note that we exclude constant additions as the
optimizer is very good at combining them with surrounding
logic into LUTs.

Second, during netlist post-processing, the adders are
grouped into addition chains and split into groups so that
we can add two ciphertexts without wrap-around. This is
necessary as any wrap-around would require a second boot-
strapping step for decomposition resulting in a more costly
circuit overall.

Finally, the adders are transpiled to library code, and an
amortized bootstrapping is used to decompose the cipher-
text into individual bits. In the following, we will provide
additional details for the first two steps describing our opti-
mization in more detail, then the final step follows trivially.

Replacing Addition and Subtraction Units. We hook into
the synthesis process with a custom mapping to replace
addition and subtraction units in the Yosys IR. For readers
familiar with hardware development, this process is gener-
ally used to replace certain operations with special gates
such as multiplications with digital signal processing units.

As Yosys allows custom mappings for arbitrary instruc-
tions, we provide such mappings for additions and subtrac-
tions. For both operations, we first check if any of the inputs
is a constant as replacing constant additions is inefficient
and we thus abort processing for this specific instance if
applicable. Otherwise, we continue with the replacement
process.

Since additions and subtractions in Yosys are arbitrary-
width operations, we sign-extend both operands to the same
width and replace each bit addition with a full adder, con-
necting the adders with a carry chain. For addition, we set a
constant value of zero to the carry-in of the first full adder.
For subtraction, we set the carry-in to one and place inverters
for the second operand; this corresponds to negation in the
two’s complement representation. As inversions are free for
FHEW-like schemes, this does not add any costs to the
resulting circuit.

Finally, we proceed with the rest of the synthesis process
as usual and use ABC [31], a system for sequential logic
synthesis and formal verification, to map the other parts to
LUTs, including the ignored constant additions or subtrac-
tions.

Post-Processing Full Adder Gates. So far, we only placed
single-bit full adders during the synthesis process. For multi-
bit circuits, however, we can process multiple full adders
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Figure 4. Grouping individual full adders in the post-synthesis netlist for
a 5-bit addition and a plaintext modulus of 23, each grouping is marked
by a dashed green box.

simultaneously and decompose the result to individual bits
using amortized bootstrapping.

First, we detect the adders in the netlist by looking at
the carry-ins. If it is either zero (for additions) or one (for
subtractions), we set this full adder as the root of an adder
chain. Then, we follow the carry bits to determine the entire
chain.

Afterward, we group the adders where each group con-
sists of one less adder than the bit size of the plaintext; for
example, when using a plaintext modulus of 23 encrypting
3 bits, we group two adders to ensure no wrap-around
with the carry happens. We can then compose the addition
inputs using constant multiplications with powers-of-two
and additions as described in Subsection 4.1, performing
a ciphertext addition afterward. The sum is then input to
a LUT, decomposing the sum into individual bits. Here,
the highest bit corresponds to the carry-out of the multi-bit
addition and is used afterward as carry-in to the next adder
group in the chain. We depict this process in Figure 4 for a
5-bit addition and a plaintext modulus of 23.

4.4. Other Optimizations

In addition to our two major optimizations described
in Subsection 4.2 and Subsection 4.3, we perform two
additional minor optimizations: inverter conversion and type
sorting. For inverter conversion, we use the fact that any
LUT1 corresponds to an inverter and hence does not require
a bootstrapping (hardware tools usually use buffers for the
identity function, not LUT1 gates). As a sanity check, we
make sure that each LUT1 is actually an inverter.

For type sorting, we group the netlist graph into layers
during topological sorting according to their depth and then
sort each layer with respect to gate types. Most importantly,
we sort LUTs according to the number of inputs in descend-
ing order. This ensures that we do not miss out on LUT

groupings within a layer, as these cannot introduce cycles
to the graph.

4.5. Evaluation

For evaluation, we use our own examples as well as
multiple extracted Verilog designs from the Google tran-
spiler [11]. More specifically, the following examples are
used:

• add3, add4, add32: Compute the sum of 3-bit,
4-bit or 32-bit integers, respectively.

• calc: Calculate the addition, subtraction or multi-
plication of two 16-bit integers.

• const4: Compute the sum of a 4-bit integer with
a constant.

• img-blur: Apply blurring to a small image.
• img-ricker: Apply a ricker wavelet transforma-

tion to a small image.
• img-sharp: Apply sharpening to a small image.
• relu: Compute a rectified linear unit function.
• sqrt: Compute the square root of a 16-bit integer.
• strrev: Reverse an array of up to eight characters.
• structs1d: Compute the sum over a one-

dimensional array of structs.
• structs3d: Compute the sum over a three-

dimensional array of structs.
• sum3d: Compute the sum over a three-dimensional

array of integers.

Additionally, we compare multiple different synthesis
processes with or without optimizations:

• [11]: The Yosys script used with the Google tran-
spiler for single-bit circuits without optimizations.

• bool: Our Yosys script for single-bit circuits with-
out optimizations.

• none2, none3: Our Yosys script for multi-bit cir-
cuits using no optimizations during or after synthesis
supporting up to 2-bit or 3-bit LUTs, respectively.

• none2fa, none3fa: Our Yosys script for multi-
bit circuits using adder translations with amortized
bootstrapping and no other post-synthesis optimiza-
tions, supporting up to 2-bit or 3-bit LUTs, respec-
tively.

• lut2, lut3: Our Yosys script for multi-bit circuits
with type sorting, LUT grouping, and inverter con-
version after synthesis supporting up to 2-bit or 3-bit
LUTs, respectively.

• lut2fa, lut3fa: Our Yosys script for multi-bit
circuits with all optimizations enabled supporting up
to 2-bit or 3-bit LUTs, respectively.

We summarize the number of bootstrappings that are re-
quired for each approach considering all examples in Ta-
ble 3.

Evaluating LUT Grouping. To evaluate LUT grouping in
isolation, we compare the results for none2 and none3
with lut2 and lut3, respectively. For the chosen use



TABLE 3. RESULTS COMPARING MULTIPLE EXAMPLES WITH MULTIPLE SYNTHESIS PROCESSES AND OPTIMIZATION TECHNIQUES. EACH ROW
CONTAINS THE NUMBER OF BOOTSTRAPPINGS FOR A GIVEN EXAMPLE WHILE THE COLUMNS CONTAIN THE SYNTHESIS PROCESSES.

[11] bool none2 none2fa lut2 lut2fa none3 none3fa lut3 lut3fa

add3 12 12 12 3 7 3 6 2 3 2
add4 17 17 17 4 10 4 8 2 4 2
add32 165 165 163 32 102 32 63 32 32 16
calc 948 896 884 857 655 653 491 479 351 358
const4 4 4 4 4 2 2 3 3 1 1
img-blur 318 318 316 74 193 74 146 37 90 37
img-ricker 342 341 334 90 212 89 145 48 95 47
img-sharp 183 183 194 76 125 65 94 43 57 35
relu 30 30 15 15 15 15 15 15 15 15
sqrt 195 200 224 334 183 307 102 179 85 162
strrev 668 690 805 805 744 744 364 364 341 341
structs1d 159 159 157 31 98 31 61 16 31 16
structs3d 1091 1091 1056 217 654 217 460 112 246 112
sum3d 954 954 926 203 553 203 396 105 199 105

cases, we reduce the number of bootstrappings by up to
66 % and, for most use cases, by at least 30 %. On average,
using LUT grouping reduces the number of bootstrappings
by almost 35 %. Hence, we recommend always enabling
LUT grouping to improve performance for synthesized FHE
circuits.

Evaluating Adder Substitution. For adder substitution, we
compare the results for none2 and none3 with none2fa
and none3fa, respectively, to our optimization in isolation.
Here, results are more mixed than before and we can make
multiple interesting observations.

As expected, for use cases without additions such as
strrev, the number of bootstrappings stays the same, and
there is no improvement to the number of bootstrappings.
For use cases with lots of additions, however, improvements
are much more drastic compared to before, and the number
of bootstrappings is reduced by up to 80 % and, on average,
we reduce the number of bootstrappings by almost 44 %.

Nevertheless, in the use case sqrt, we actually perform
worse with our optimization. In Listing 2, we extract the
culprits for this result. The subtractions performed depend
on many constant bits for the second input. However, we
cannot detect this during synthesis in Yosys as the built-
in constant folding is not aggressive enough to mark the
appropriate subset of input bits as constant.

Since folding additions and substitutions with many con-
stant input bits into LUTs is relatively efficient, the default
optimizations outperform our adder substitution. We suggest
transpiling circuits with and without adder substitutions
discussing possibilities for future work in Subsection 5.4
to avoid such scenarios.

Benchmarking. We run our benchmarks on Ubuntu 20.04.4
with an Intel Core i7-11850H central processing unit (CPU)
at 2.50 GHz featuring 8 cores. Our system has 16 GiB of
available memory.

[...]
assign sub_1935 = sel_1912 - \

({1’h0, sel_1910, 13’h0000} | 16’h1000);
[...]
assign sub_1962 = sel_1939 - \

({1’h0, sel_1937, 11’h000} | 16’h0400);
[...]
assign sub_1989 = sel_1966 - \

({1’h0, sel_1964, 9’h000} | 16’h0100);
[...]
assign sub_2016 = sel_1993 - \

({1’h0, sel_1991, 7’h00} | 16’h0040);
[...]
assign sub_2043 = sel_2020 - \

({1’h0, sel_2018, 5’h00} | 16’h0010);
[...]
assign sub_2070 = sel_2047 - \

({1’h0, sel_2045, 3’h0} | 16’h0004);
[...]

Listing 2. Subtractions in the sqrt example containing constant bits.

TABLE 4. PERFORMANCE OF THE NEW PARAMETER SETS.

Set Boot. [s] brKey [MB] ksKey [MB]

tfhe-11-amort 0.29 81.7 81.8
tfhe-12-amort 0.58 217.9 163.6
tfhe-11-ntt 0.24 44.8 78.5

For the new parameter sets, we summarize our results
in Table 4 regarding runtime and memory consumption,
confirming our observations from Subsection 3.2.

We use the parameter set tfhe-11-ntt for bool,
lut2 as well as lut2fa while for lut3 and lut3fa,
we use the parameter set tfhe-11-amort. For lut4 and
lut4fa, we use the parameter set tfhe-12-amort.

Our benchmarking results for all examples are summa-
rized in Table 5. Here, we can make multiple observations.
As expected, the execution time highly correlates with the
number of bootstrappings. In general, we receive the best



speed-ups for lut3fa (for sqrt with lut3). But, there
are exceptions such as the relu example where lut2 and
lut2fa perform the best.

Using lut4 and lut4fa is generally not worth due
to the increased polynomial degree and thus the longer
bootstrapping time; using lut4 is actually worse than
bool. Sometimes, the adder substitution optimization still is
enough to provide a speed-up compared to bool, however,
the speed-ups for the smaller LUT-based circuits provide
better execution times in all our examples.

5. Discussion

We put our work in the context of the current sci-
entific discourse discussing first related work on FHEW-
like implementations followed by related work on FHE
circuit synthesis. Afterward, we discuss limitations of our
optimizations and explore multiple opportunities for future
work to further optimize the tool-based generation of circuits
for Boolean-based schemes from high-level languages.

5.1. Related Work on FHEW-like Implementations

In Table 6, we roughly compare different libraries im-
plementing FHEW-like schemes. A distinguishing feature of
FHE-Deck is the support of circuit privacy by default as well
as interface support with correct and secure parameter sets
for amortized bootstrapping. Both FHE-Deck and TFHE-
rs support different algorithms for functional bootstrapping
(also known as programmable bootstrapping).

In particular, FHE-Deck supports the full domain boot-
strapping algorithm based on work by Liu, Micciancio, and
Polyakov [21] while THFE-rs supports the algorithm by
Chilotti et al. [20]. Moreover, both libraries support simple
padding-based functional bootstrapping. The TFHE library
[32] supports only binary gates. Open-FHE [33], which
is derived from PALISADE [34], implements binary as
well as full domain bootstrapping based on work by Liu,
Micciancio, and Polyakov [21].

There are implementations for LUT evaluation [35].
However, the techniques are vastly different, as the authors
evaluate a LUT on so-called RGSW ciphertexts requiring
numerous bootstrapping invocations (the number depends
on the chosen parameters) for each output bit of the LUT
In contrast, we focus on computing LUTs using a single
bootstrapping invocation.

Finally, the amortized bootstrapping technique by Mic-
ciancio and Sorrel [15] and its improvement [36] compute
functional bootstrapping over many input ciphertexts at a
cheaper cost than bootstrapping ciphertexts separately. In
particular, the functional difference is that we amortize
computation for many output functions on the same input
ciphertexts while they compute the same functions on mul-
tiple ciphertexts. Combining both amortization techniques
in a practical way is an interesting open problem for future
work.

Amortized Bootstrapping in TFHE. The TFHE library im-
plements amortized bootstrapping [1] in a separate branch.
However, the method is not integrated into a usable inter-
face, and parameters are hardcoded in the low-level code
mainly for benchmarking purposes. In particular, the per-
formance tests do not switch the key back to the LWE
form, thereby disallowing to use the implementation in
applications.

Furthermore, as we addressed in Subsection 3.1, the
implementation only tests the performance of bootstrapping
itself for randomly chosen polynomials w and v⃗. Unfortu-
nately, there is no implementation of the procedures that
generates these polynomials. Moreover, the bootstrapping
parameters chosen in the implementation do not allow gen-
erating the rotation polynomials as suggested [1] because the
ciphertext moduli are a powers-of-two. Hence the system of
linear equations will not be solvable.

To fix the problem, we may choose prime power moduli.
However, even with prime power moduli, the method for
the suggested parameters requires over 240 multiplications
and modulus reductions. While 240 isn’t considered crypto-
graphically hard, it is a considerable time in practice.

Additionally, we note that previous parameters [1] use a
much larger ring of dimension 214, which may be justified
by the larger target precision. However, the choice of the
LWE dimension seems to be controversial with respect to
security. In particular, the dimension n is only 803 with
a sparse binary secret key of hamming weight 63. Finally,
the online bootstrapping algorithm used in [1] is the same
as Algorithm 1. Hence differences in running time may be
attributed to differences in implementation, benchmarking
setups, or parameter choices.

5.2. Related Work on Circuit Synthesis

There are a couple of previous works on circuit synthesis
for FHEW-like schemes, the previously mentioned Google
transpiler [11] as well as two earlier works named Cingulata,
originally released under the name Armadillo [9], and the
E3 framework [10].

In Cingulata, the authors divide their toolchain in three
parts: the front-end translating C++ code to a Boolean
circuit, the middle-end optimizing the circuit and the back-
end transpiling the circuit to a FHE library. The mapping
from C++ to a Boolean circuit in the front-end defers
optimizations to the middle-end based on ABC [31], which
we also use as part of our toolchain via Yosys. No other
optimizations are performed. The E3 framework also uses
hardware tooling for transpilation, however, no details re-
garding optimizations are available in their publication.

The Google transpiler currently improves upon all previ-
ously known work and thus serves as a good foundation to
evaluate new research ideas. Common compiler optimiza-
tions such as constant folding or dead code elimination
are performed in the XLS-based high-level synthesis layer.
However, to the best of our knowledge, the only FHE-
specific optimization currently performed is rather trivial
treating inversion as free for Boolean-based circuits. For



TABLE 5. EXECUTION TIME IN SECONDS INCLUDING THE CORRESPONDING (ROUNDED) SPEED-UPS COMPARED TO
BOOL FOR ALL EXAMPLES AND A SELECTION OF SYNTHESIS PROCESSES WITH OPTIMIZATIONS.

bool lut2 lut2fa lut3 lut3fa lut4 lut4fa

Example tb t tb/t t tb/t t tb/t t tb/t t tb/t t tb/t

add3 2.40 1.57 1.5 0.91 2.6 1.31 1.8 1.01 2.4 2.79 0.9 2.19 1.1
add4 3.33 2.18 1.5 1.23 2.7 1.75 1.9 1.14 2.9 3.88 0.9 3.28 1.0
add32 30.90 21.03 1.5 9.69 3.1 13.91 2.2 9.13 3.3 36.44 0.8 23.39 1.3
calc 146.50 109.10 1.3 107.60 1.4 104.30 1.4 106.00 1.4 149.60 1.0 149.10 1.0
const4 0.86 0.54 1.6 0.54 1.6 0.50 1.7 0.59 1.5 1.38 0.6 1.36 0.6
img-blur 56.00 35.88 1.6 17.00 3.3 30.82 1.8 15.70 3.6 61.71 0.9 35.05 1.6
img-ricker 59.88 39.11 1.5 19.38 3.1 31.98 1.9 18.67 3.2 64.19 0.9 40.28 1.5
img-sharp 32.39 22.97 1.4 13.26 2.4 19.34 1.7 12.90 2.5 36.60 0.9 24.82 1.3
relu 5.94 3.54 1.7 3.53 1.7 5.50 1.1 5.43 1.1 12.89 0.5 12.88 0.5
sqrt 33.23 30.55 1.1 52.51 0.6 25.64 1.3 50.77 0.7 41.63 0.8 80.00 0.4
strrev 115.10 124.60 0.9 123.70 0.9 103.10 1.1 103.60 1.1 171.50 0.7 171.30 0.7
structs1d 30.01 20.25 1.5 9.42 3.2 13.38 2.2 9.00 3.3 36.56 0.8 22.78 1.3
structs3d 193.20 123.40 1.6 53.68 3.6 88.20 2.2 50.62 3.8 202.80 1.0 110.20 1.8
sum3d 167.10 103.20 1.6 46.33 3.6 71.13 2.3 43.86 3.8 161.90 1.0 94.46 1.8

TABLE 6. FUNCTIONALITY COMPARISON OF DIFFERENT FHE
LIBRARIES FOR FHEW-LIKE SCHEMES. BY CP, WE DENOTE WHETHER

THE PARAMTER SETS AND INTERFACES SUPPORT CIRCUIT PRIVACY.
FOR FUNCTIONAL BOOTSTRAPPING, WE DENOTE AS  THE PLAIN

FHEW/TFHE ALGORITHM TO EVALUATE BOOLEAN GATES. BY G#, WE
DENOTE A FULL DOMAIN FUNCTIONAL BOOTSTRAPPING ALGORITHM

[19], [20], [21], [22]. BY  , WE DENOTE SUPPORT FOR OUR
IMPROVED FUNTIONAL BOOTSTRAPPING ALGORITHM. IN THIS

COMPARISON, A HIGH-LEVEL INTERFACE FOR FUNCTIONAL
BOOTSTRAPPING IS REQUIRED.

Lib Lang CP Func. Bootstrap Amortized

FHE-Deck C++ ✓  ✓
Open-FHE C++ × G# ×

TFHE C++ × # ×
tfhe-rs/CONCRETE Rust ×  ×

LUT-based circuits, there is currently no post-processing
implementing this optimization.

5.3. Limitations

There are some limitations for our proposed optimiza-
tions. First, as highlighted in Subsection 4.5, using adder
substitution can result in worse performance when the inputs
contain many constant bits which can be non-detectable
using our current approach. Therefore, a user has to man-
ually check for the better circuit. One solution and useful
contribution in future work would be improving constant bit
detection and constant folding in the Yosys IR.

Second, although using three-bit ciphertexts tends to
provide the largest speed-ups, sometimes other bit sizes can
be more beneficial such as using two-bit ciphertexts for the
relu example. Exploring the root causes and detecting such
cases, especially if also done for subcircuits, would further
improve automated circuit generation.

5.4. Future Work

An in our opinion important observation is that the cur-
rent state-of-the-art in bootstrapping for FHEW-like schemes
can still be improved upon. We also believe that there
is still room for improvement regarding performance for
TFHE implementations as well as regarding usabilities for
currently available libraries, including but not limited to
FHE-Deck.

As for circuit synthesis, our work is a first step in FHE-
specific optimizations and we believe that there is a mul-
titude of other possibilities making automatically generated
circuits more efficient. For example, amortized bootstrap-
ping greatly benefits from LUTs with the same inputs which
current hardware tooling is not optimizing for.

Another important contribution would be providing
high-level implementations for a representative set of use
cases serving as foundation to better evaluate optimizations
(similar to compiler benchmarking where, for specific use
cases, the performance of the compiler is evaluated consider-
ing compilation time and output quality). This is necessary
as optimizations are often heuristic in nature and hard to
evaluate generically. Overall, we are looking forward to
future work in the area of circuit synthesis for Boolean-
based FHE schemes.

6. Conclusion

In this work, we improve performance and usability of
FHEW-like schemes by extending the current state-of-the-
art in bootstrapping as well as circuit synthesis.

To improve performance, we significantly simplify the
bootstrapping idea proposed by Carpov, Izabachène, and
Mollimard [1]. Additionally, we provide the first non-
trivial FHE-specific optimizations for generating circuits
from high-level code: LUT grouping and adder substitution.



Using LUT grouping, generated circuits require almost
35 % less bootstrappings on average and adder substitution
reduces the number of required bootstrappings by up to
80 %. Overall, our performance improvements result in up
to 3.8× faster execution times compared to previous syn-
thesized circuits with state-of-the-art methods.

With respect to usability, we provide new and secure
parameter sets for multi-bit encryptions which can be used
by researchers and developers alike. Additionally, we im-
plement a high-level interface for amortized bootstrapping
based on the open-source library FHE-Deck which supports
circuit privacy by default.
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[17] A. Guimarães, E. Borin, and D. F. Aranha, “Revisiting the functional
bootstrap in tfhe,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2021, no. 2, p. 229–253, Feb. 2021.
[Online]. Available: https://tches.iacr.org/index.php/TCHES/article/
view/8793

[18] K. Kluczniak, “NTRU-v-um: Secure fully homomorphic encryption
from NTRU with small modulus,” in ACM CCS 2022: 29th Confer-
ence on Computer and Communications Security, H. Yin, A. Stavrou,
C. Cremers, and E. Shi, Eds. Los Angeles, CA, USA: ACM Press,
Nov. 7–11, 2022, pp. 1783–1797.

[19] Z. Yang, X. Xie, H. Shen, S. Chen, and J. Zhou, “TOTA: Fully
homomorphic encryption with smaller parameters and stronger se-
curity,” Cryptology ePrint Archive, Report 2021/1347, 2021, https:
//eprint.iacr.org/2021/1347.

https://doi.org/10.1145/2633600
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/2732516.2732520
https://doi.org/10.1145/2732516.2732520
https://eprint.iacr.org/2018/1013
https://eprint.iacr.org/2018/1013
https://eprint.iacr.org/2018/1013
https://eprint.iacr.org/2021/811
https://doi.org/10.1145/3474366.3486924
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://eprint.iacr.org/2021/1347
https://eprint.iacr.org/2021/1347


[20] I. Chillotti, D. Ligier, J.-B. Orfila, and S. Tap, “Improved pro-
grammable bootstrapping with larger precision and efficient arith-
metic circuits for TFHE,” in Advances in Cryptology – ASI-
ACRYPT 2021, Part III, ser. Lecture Notes in Computer Science,
M. Tibouchi and H. Wang, Eds., vol. 13092. Singapore: Springer,
Heidelberg, Germany, Dec. 6–10, 2021, pp. 670–699.

[21] Z. Liu, D. Micciancio, and Y. Polyakov, “Large-precision homomor-
phic sign evaluation using FHEW/TFHE bootstrapping,” in Advances
in Cryptology – ASIACRYPT 2022, Part II, ser. Lecture Notes in
Computer Science, S. Agrawal and D. Lin, Eds., vol. 13792. Taipei,
Taiwan: Springer, Heidelberg, Germany, Dec. 5–9, 2022, pp. 130–
160.

[22] K. Kluczniak and L. Schild, “Fdfb: Full domain functional
bootstrapping towards practical fully homomorphic encryption,”
IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2023, no. 1, p. 501–537, Nov. 2022. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/9960

[23] J. Alperin-Sheriff and C. Peikert, “Faster bootstrapping with polyno-
mial error,” in Advances in Cryptology – CRYPTO 2014, Part I, ser.
Lecture Notes in Computer Science, J. A. Garay and R. Gennaro,
Eds., vol. 8616. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 17–21, 2014, pp. 297–314.

[24] “Fhe-deck,” https://github.com/FHE-Deck, September 2023.

[25] M. R. Albrecht, R. Player, and S. Scott, “On the concrete
hardness of learning with errors,” Journal of Mathematical
Cryptology, vol. 9, no. 3, pp. 169–203, 2015. [Online]. Available:
https://doi.org/10.1515/jmc-2015-0016

[26] K. Kluczniak, “NTRU-ν-um: Secure fully homomorphic encryption
from NTRU with small modulus,” Cryptology ePrint Archive, Report
2022/089, 2022, https://eprint.iacr.org/2022/089.

[27] F. Boemer, S. Kim, G. Seifu, F. D. de Souza, V. Gopal et al., “Intel
HEXL (release 1.2),” https://github.com/intel/hexl, September 2021.

[28] Y. Lee, D. Micciancio, A. Kim, R. Choi, M. Deryabin, J. Eom, and
D. Yoo, “Efficient FHEW bootstrapping with small evaluation keys,
and applications to threshold homomorphic encryption,” in Advances
in Cryptology – EUROCRYPT 2023, Part III, ser. Lecture Notes in
Computer Science, C. Hazay and M. Stam, Eds., vol. 14006. Lyon,
France: Springer, Heidelberg, Germany, Apr. 23–27, 2023, pp. 227–
256.

[29] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.

[30] Embedded Security Group, “HAL - The Hardware Analyzer,” https:
//github.com/emsec/hal, 2019.

[31] A. Mishchenko, “System for sequential logic synthesis and formal
verification,” https://github.com/berkeley-abc/abc.

[32] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“TFHE: Fast fully homomorphic encryption library,” August 2016,
https://tfhe.github.io/tfhe/.

[33] A. Al Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu,
D. Micciancio, I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor,
D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca,
“Openfhe: Open-source fully homomorphic encryption library,” in
Proceedings of the 10th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, ser. WAHC’22. New York,
NY, USA: Association for Computing Machinery, 2022, pp. 53–63.
[Online]. Available: https://doi.org/10.1145/3560827.3563379

[34] “PALISADE Lattice Cryptography Library (release 1.11.5),” https:
//palisade-crypto.org/, September 2021.

[35] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster
packed homomorphic operations and efficient circuit bootstrapping
for TFHE,” in Advances in Cryptology – ASIACRYPT 2017, Part I,
ser. Lecture Notes in Computer Science, T. Takagi and T. Peyrin,
Eds., vol. 10624. Hong Kong, China: Springer, Heidelberg, Germany,
Dec. 3–7, 2017, pp. 377–408.
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