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Abstract

Correlated secret randomness is a useful resource for secure computation protocols, often
enabling dramatic speedups compared to protocols in the plain model. This has motivated a
line of work on identifying and securely generating useful correlations.

Different kinds of correlations can vary greatly in terms of usefulness and ease of gen-
eration. While there has been major progress on efficiently generating oblivious transfer (OT)
correlations, other useful kinds of correlations are much more costly to generate. Thus, it is
highly desirable to develop efficient techniques for securely converting copies of a given source
correlation into copies of a given target correlation, especially when the former are cheaper to
generate than the latter.

In this work, we initiate a systematic study of such conversions that only involve a sin-
gle uni-directional message. We refer to such a conversion as a one-message secure reduction
(OMSR). Recent works (Agarwal et al, Eurocrypt 2022; Khorasgani et al, Eurocrypt 2022)
studied a similar problem when no communication is allowed; this setting is quite restrictive,
however, with few non-trivial conversions being feasible. The OMSR setting substantially ex-
pands the scope of feasible results, allowing for direct applications to existing MPC protocols.

We obtain the following positive and negative results.

• OMSR constructions. We present a general rejection-sampling based technique for
OMSR with OT source correlations. We apply it to substantially improve in the commu-
nication complexity of optimized protocols for distributed symmetric cryptography (Dinur
et al., Crypto 2021).

• OMSR lower bounds. We develop general techniques for proving lower bounds on the
communication complexity of OMSR, matching our positive results up to small constant
factors.

A preliminary version of this paper appears in the proceedings of CRYPTO 2023. This is the full version.
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1 Introduction

Secure multiparty computation [30, 48] (MPC) is a fundamental cryptographic primitive that en-
ables mutually distrusting parties to collaboratively compute a function over their combined data
while keeping their local data secret. While MPC is a general tool, it can be quite heavyweight in
terms of both computation and communication compared to a non-secure evaluation. To minimize
this cost, a common paradigm is to use preprocessing in the following way. Before the inputs are
known, the parties run an offline protocol to generate some input-independent local information.
The latter then serves as a resource for speeding up the online protocol, which is executed once
the inputs are known. A qualitative advantage of this paradigm is that expensive cryptographic
operations can be pushed to the offline phase, resulting in a simple and lightweight online protocol.

Abstractly, in the offline phase, the parties securely generate instances of correlated randomness
or correlations that are independent of the protocol inputs, and can therefore be processed in
advance. Examples for standard correlations include oblivious transfer (OT) correlations, which
serve as a natural basis for MPC protocols for Boolean circuits [30, 34, 38, 48], and multiplication
triples [6, 7, 21], which serve as a basis for MPC for arithmetic circuits.

While the above standard correlations are universal, in the sense that they suffice for any online
computation, in many cases it is more efficient to use a specially crafted correlation geared towards
the particular function being evaluated. Moreover, while recent techniques support generation of n
(pseudorandom) copies of any correlation with o(n) communication cost [15, 16], they are concretely
efficient only for a few standard correlations, and therefore are not practical for most other useful
correlations.

This motivates the central theme of our work: the study of efficiently and securely deriving one
type of correlation (the target) from another (the source); of particular relevance is when the source
correlation can be generated very cheaply using known techniques. As an upshot, this allows us
to broaden the class of correlations which can be concretely efficiently generated. We will restrict
our attention to two-party protocols in this paper, and focus mainly on target correlations that are
useful for secure computation in the semi-honest model.

Converting between correlations. A recent line of work [1, 31, 36, 37, 39] introduces secure
“non-interactive” reductions/simulations (SNIR/SNIS) for securely converting one type of correla-
tion to another. Here “non-interactive” refers to the strict notion of having no communication at
all. This can be viewed as a secure analog of (non-secure) non-interactive simulations of joint dis-
tributions (NIS), which have been extensively studied in the information theory literature (see [42]
for a recent survey). The SNIR/SNIS model, however, is highly restrictive. As intuition perhaps
suggests, very few conversions between correlations are feasible, and many conversions are prov-
ably impossible. In fact, the model remains highly restrictive even when the security condition
is dropped. As a result, there are no examples for nontrivial applications of SNIR/SNIS towards
generating useful correlations for MPC.

One-message secure reductions. Motivated by these limitations of the zero-interaction setting,
we take the next natural step and study the same secure conversion problem in a setting where only
one-way communication is allowed. In particular, denoting the two parties by the sender S and the
receiver R, we allow for a single message to be sent from S to R. We refer to a conversion protocol in
this model as a one-message secure reduction (OMSR). This relaxation of SNIR/SNIS dramatically
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changes the landscape, since in the OMSR setting many source correlations are universal in the
sense that they can be converted into every target correlation [27]. Such source correlations include
the string-OT correlation, which can be generated cheaply and “silently” (i.e., locally) using recent
techniques [16]. This directly confirms the wide applicability of OMSR for generating correlations
relevant for MPC, but leaves open the asymptotic and concrete efficiency of such reductions.

Limiting communication to be one-directional also comes with its own qualitative advantages
which have motivated widely-studied models like non-interactive zero-knowledge (NIZK) [9], wire-
tap coding [45] and one-way secure computation (OWSC) [27]. Our OMSR model inherits these
advantages. Finally, the simplicity of the OMSR model makes it more tractable for analysis and
lower bound proofs than the fully interactive setting, while still permitting conversions that can
make existing MPC protocols more efficient.

Non-trivial OMSR constructions for generating specific types of correlations can be implicitly
found in a recent work by Dinur et al. [24], although there was no concrete objective to restrict
to only single message protocols. The OMSRs were used in the context of concretely efficient dis-
tributed protocols for MPC-friendly symmetric-key cryptography that mixed together linear func-
tions over different small moduli. They also serve as a starting point for us; our work defines the
formalism for OMSR, generalizes the constructions used by [24], as well as provides substantial im-
provements. This directly translates to concrete efficiency gains in a number of settings including
oblivious pseudorandom function (OPRF) evaluation, the MPC-in-the-head paradigm for signa-
tures, and the distributed generation of keys for function secret sharing (FSS) with applications to
privacy-preserving machine learning.

1.1 Our Contributions

OMSR formalism (Section 4). We start by formalizing the notion of an OMSR, for securely
converting from m copies of a source correlation (X,Y ) to n copies of a target correlation (U, V ).
We also consider relaxed flavors of OMSR that are useful towards our positive and negative results:
a “Las Vegas” variant, which allows rejection without leaking information, and OMR, which forgoes
the security requirement. We primarily focus on two concrete efficiency metrics: the number of bits
of communication from the sender to the receiver, and the number of source copies m(n) required
for the conversion. In practice, the latter also captures computation cost to generate the initial
source copies.

Efficient OMSRs from OT-correlations (Section 5). We construct several OMSR protocols
for converting from some type of OT source correlation to useful classes of target correlations; the
use of OT as a source correlation is strongly motivated by a recent line of work on fast and “silent”
generation of OT correlations [13, 15, 16, 19, 46].

We show OMSRs for generating two concrete correlations from OT: The first is the (t, q)-
correlation (where t < q) which is the sharing of a random value r over both Zt and Zq. This
prepossessing is useful for the online conversion of a mod-t shared secret value to a mod-q sharing of
the same value, and provides efficiency gains in protocols which work over different rings (e.g., [23]).
Our second OMSR is for the (3, 2)-correlation which was used in [24] to convert between a mod-3
sharing of secret x to a mod-2 sharing of x mod 2.

The former generalizes (2, 3)-correlations which along with (3, 2)-correlations were instrumen-
tal within [24] in building concretely efficient distributed protocols for candidate MPC-friendly
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weak-PRF and PRG constructions that mixed linear operations over Z2 and Z3. Our new OMSR
constructions concretely improve the communication cost by more than 2x over the (already heavily
optimized) protocols from [24] (The improvement is orthogonal to the single-message feature, and
applies even when comparing to protocols that use an arbitrary number of rounds.). The same
kind of improvement is expected to apply to future designs of symmetric primitives based on the
same alternating moduli paradigm.

Applications (Section 5.4). Our improved OMSRs translate to improvements in all of the
application scenarios considered in [24]: post-quantum oblivious PRF, fully distributed MPC pro-
tocols for PRF evaluation, signatures based on the MPC-in-the-head paradigm, and distributed
generation for function secret sharing (FSS) keys. The latter is particularly motivated by applica-
tions to privacy-preserving machine learning, where FSS is an increasingly popular building block
for fast offline-online secure protocols for ReLU and other nonlinear activation functions [11, 17, 40,
41, 43]. The PRG candidates from [24] serve as an attractive choice for MPC-friendly PRGs in such
contexts, and were recently used in the FssNN system to optimize the distributed generation of
FSS keys [47]. Our new OMSR protocols for (2, 3) and (3, 2) correlations would lead to significant
improvement in the concrete communication cost of the protocol from [47] and similar protocols.
We leave an optimized implementation and benchmarking to future work.

Lower bounds (Section 6). We start by proving new lower bounds for (insecure) OMR. While
the notion of OMR is meaningless in the presence of common randomness (which is cheap to
generate in a cryptographic setting), we will later argue that OMR lower bounds without common
randomness can be lifted to OMSR lower bounds that apply even in the presence of common
randomness.

When a so-called S∗ measure (see Definition 3.1) of the source correlation is strictly smaller
than that of the target, Theorem 6.1 shows that the communication cost of OMR is necessarily
linear. This result strictly strengthens an impossibility result for non-interactive simulation [5]. A
more precise analysis yields concrete lower bounds (Corollaries 6.7.1 and 6.7.3) on the amortized
communication cost of OMR between specific source and target correlations from our positive
results. Theorem 6.8 shows that deriving n-bit unit vector correlations for large enough n from
almost any correlation requires linear communication even with interaction. In fact, the result
applies to other target correlation families too (See Section 6.2). This result can be thought of as
a generalization of a result in [18] which is a similar result for deriving common randomness from
noisy common randomness.

Role of common randomness (Section 7). Finally, in Theorem 7.1, we show that common
randomness does not aid in OMSR; i.e., given an OMSR with common randomness we can derive
an OMSR without common randomness with comparable error. Our proof relies on a convergence
theorem for Markov chains. In contrast, with a sufficiently large amount of common randomness,
any correlation can be non-securely derived without any communication.

A question that arises from the above discussion is whether OMSR is strictly harder to realize
than OMR. The costs of OMSR and OMR trivially coincide for any pair of correlations that permit
secure non-interactive reductions. In other non-trivial cases, our lower bound for both OMR and
upper bound for OMSR are only tight up to a constant, hence, we do not know whether they match.
However, security makes a big difference when augmenting nontrivial source correlations (such as
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OT correlations) with public randomness. This trivializes the notion of OMR, but keeps our lower
bounds for OMSR unchanged (Theorem 7.1). While our results imply separations between the two
notions, we do not know of any explicit non-trivial instances where the two notions provably do
not match, although intuition suggests that OMR is an easier primitive than OMSR to realize.

1.2 Related Work

As mentioned above, we are motivated by the question of efficiently and securely deriving one type
of correlation from another. A recent line of work [1, 8, 36, 37] introduced secure non-interactive
simulation/reduction which studied the problem of deriving a correlation from another without any
communication and with information theoretic security. The non-secure variant of this problem,
namely non-interactive simulation (NIS), has attracted a lot of attention from both computer
science and information theory [5, 22, 29, 35, 42]. Generating correlations with computational
security and low communication cost has been studied in a recent line of work on pseudorandom
correlation generators (PCGs) [12, 16]. A (two-party) PCG is a local deterministic algorithm that
stretches a pair of short, correlated seeds into many copies of a correlation, while ensuring that
each seed does not reveal more than necessary about the other output. A large body of work in this
area [13, 14, 16, 19, 46] has focused on generating OT-correlations extremely cheaply in practice;
this makes OT very suitable as a source correlation. However, other useful correlations, such as
OLE and multiplication triples [15], are much more expensive to generate, and many other useful
correlations do not admit a concretely efficient PCG. This is a primary motivation for our work.

One-way secure computation (OWSC), introduced in [27] and subsequently studied in [2, 3], is
closely related to OMSR. Here, a sender and a receiver securely implement a target channel with
only one-way communication over a given source channel. Known results about OWSC can be
used to realize limited forms of OMSR. In the other direction, OMSR implies OWSC whenever
the induced channel of the target correlation allows a random self reduction. This is because after
realizing OMSR, a random self reduction can be applied with one-directional communication to go
from a random sample in the target correlation to the the given input to the sender. However, there
is still a separation in terms of efficiency. The completeness of the string-OT correlation for OWSC,
which in turn builds on information-theoretic analogs of garbled circuits [33, 49], implies an OMSR
converting string-OT correlations to any target correlation. A similar result can be based on the
simpler bit-OT correlation, though requiring a much bigger number of copies and inevitably intro-
ducing an inverse-polynomial security error in the number of copies [2]. These generic constructions
are typically very inefficient. Another drawback is that they entangle communication cost with the
number of copies of the source correlation used. Our objective in this paper is to reduce the number
of bits transmitted while possibly burning up more copies of the source correlation. Owing to this,
the lower bounds in the OWSC model do not provide interesting insights for our model.

All our lower bounds apply more generally to (the non-secure variant) OMR; however, in the
presence of common randomness they are only meaningful in the more restrictive OMSR setting.
The problem of deriving common randomness from correlations has been extensively studied. The
zero-communication version of this problem was studied in [26, 44], which led way to the NIS
model we previously described. Generalizing this, in [4], Ahlswede and Csiszar studied the rate
of generating common randomness per use of correlation when communication is limited. Several
works in computer science [10, 18, 28, 32] considered a related problem of agreement distillation,
where parties have unlimited access to a source of noisy common randomness and want to derive
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common randomness while minimizing communication. Our lower bounds use techniques developed
in both these areas of work. To the best of our knowledge, deriving a target correlation given
unlimited access to a source correlation is not studied in information theory or theoretical computer
science.

2 Technical Overview

We now present an overview of our main technical contributions. We split this into two parts: in
the first (Section 2.1), we provide an overview for our concrete OMSR protocols; in the second
(Sections 2.2 and 2.3), we present an overview of our lower bound results.

2.1 Concrete OMSR Protocols

OMSR formalism. Abstractly, in the OMSR model, we consider two parties: a sender S and a
receiver R. The parties are given access tom copies of a source correlation (X,Y ) jointly distributed
according to pXY , with the goal being for them to securely generate n copies of a target correlation
(U, V ) which is jointly distributed according to pUV . To accomplish this task, S is only allowed to
send a single message to R; no communication from R is allowed. Intuitively, the security of an
OMSR is now defined as neither party learning anything about the other party. In other words,
S’s view u of the target correlation does not leak anything about R’s view v and vice versa.

We focus on two concrete efficiency metrics: the primary one being the (expected) number of
bits l communicated, and a secondary one being the number of source correlations m(n) used to
generate n target correlations (in the most general case, we allow access to an unlimited number
of source correlations).

General OMSR protocols from rejection sampling. For our concrete constructions, we study
OMSRs in the ρ-Las-Vegas model; here, the output must be correct whenever it is produced but the
protocol is also allowed (with probability ≤ ρ) to return a failure symbol in which case correctness
is not guaranteed.

We build general protocols in this model using the following approach: Suppose that the sender’s
and receiver’s views of the source correlation are X̂ and Ŷ . Often, by conditioning this on some
variable C (dependent only on the private randomness of the sender), both parties can locally
convert to the required target correlation. Equivalently, the sender computes some function f(X̂; r)
for some private randomness r such that whenever f(·) = 1 is communicated to the receiver, both
parties can locally produce the required target correlation. Note that here, the sender only needs
to send a single accept symbol to indicate whether the conversion can be done. We refer to this
as an accept-reject protocol with parameter ρ denoting the accept probability (i.e., the probability
that the sender produces an accept message).

General OMSR protocols with efficient asymptotic communication can be built using accept-
reject protocols through rejection sampling. The intuitive idea is to consider k source copies together
instead of one and send an accept message only when all k copies can be successfully converted
locally. While this improves communication cost conditioned on an “accept” message, it exponen-
tially reduces the probability of accepting. To get around this, the sender can now instead look
at batches of k copies and send the index of the first batch where all k copies are accepting. This
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results in an efficient OMSR in the Las Vegas model. We show the following informal result for our
general transformation.

Theorem 2.1 (Informal). A secure accept-reject protocol with probability ρ can be turned into a
secure Las Vegas OMSR with asymptotic communication log(1/ρ).

Concrete OMSR protocol for (t, q) and (3, 2)-correlations. We use the above general trans-
formation to construct efficient OMSR protocols for (t, q) and (3, 2)-correlations. In a (t, q)-
correlation (where t < q), the two parties are given (x0, r0) and (x1, r1) respectively where xi ∈ Zt

and ri ∈ Zq such that x0 + x1 mod t = r0 + r1 mod q. The (t, q)-correlation generalizes the (2, 3)-
correlation defined in [24].

We show an accept-reject protocol to generate a (t, q)-correlation using as the source correlation,
a 1-out-of-t OT correlation over Zq (we formally define this as well as other correlations we use in
Section 4.3). For this source correlation, the sender is given a vector v = (v0, . . . , vt−1) with each
vi ∈ Zq, while the receiver is given (b, vb) for a random b ∈ Zt.

The protocol has accept probability tq
qt and intuitively works as follows: given v, the sender S

checks if there is some (x, r) such that (x+ i) mod t = (r+ vi) mod q for all i. If this is the case, S
can output (x, r) and send an accept symbol to R who then can just output its original OT source
(b, vb); this results in a (t, q)-correlation since by construction, regardless of b, x+ b mod t = r+vb
mod q. We can now use the earlier general transformation (Theorem 2.1) to get an OMSR for
(t, q)-correlations with communication of log(qt/tq).

For (3, 2)-correlations, we first show that they are isomorphic to non-zero OLE correlations (see
Section 4.3 and Lemma 5.3), following which we can use the above approach to construct an OMSR
for them.

2.2 Lower Bounds

We prove linear lower bounds on the communication cost of OMSR for a large family of conversions.
These lower bounds also hold more generally for non-secure one message reductions (OMR). For
the specific conversions considered in the previous section, the lower bounds we obtain by applying
these techniques justify the cost of their OMSR protocols.

Linear lower bound for one-message reductions. Our first result in this section can be
stated informally as follows:

Theorem 2.2 (Informal). The amortized communication cost of OMR converting a correlation
(X,Y ) to (U, V ) is linear if S∗(X,Y ) < S∗(U, V ).

Here, S∗ (see Definition 3.1) of a correlation (X,Y ) is defined as supU
I(U ;Y )
I(U ;X) where the supre-

mum is taken over all U that is generated from X (conditionally independent of Y ); The connection
of this quantity with several other information theoretic measures is outlined in [5]. To prove The-
orem 2.2, we first show that the amortized communication complexity of OMR converting (X,Y )
to common randomness is exactly 1− S∗(X,Y ). For this, we use a seminal result [4] from informa-
tion theory which characterized the so called common randomness capacity of any correlation with
limited communication. For communication rate R ≥ 0, common randomness capacity C(R) of a
correlation (X,Y ) is the asymptotic rate at which common randomness can be derived per use of
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(X,Y ) by parties (S and R) using only one-way communication (from S to R) with rate limited
to R. OMR converting (X,Y ) to common randomness differs from this model in that the usage of
correlation (X,Y ) is not limited. Intuitively, the optimal communication cost of OMR converting
(X,Y ) to common randomness should be the smallest ratio between R to C(R) as R tends to zero.
Although, this observation is referenced in several works [32, 42, 50], to the best of our knowledge
this is not formally proved. Revisiting the proof of common randomness capacity region in [4] and
using a careful analysis, we prove this fact.

Now, suppose agreeing on n bits of common randomness using (arbitrarily many copies of)
(X,Y ) requires at least n · c bits of communication. Whereas, only c′ · n (where c′ < c) bits of
communication is sufficient to agree on n bits of common randomness using k · n copies of (U, V ).
Then, OMR converting (X,Y ) to (U, V ) ought to have a communication complexity of at least
(c− c′)/k. Otherwise, the parties can generate k · n copies of (U, V ) correlation with (c− c′)n bits
of communication and then convert it to n bits of common randomness using less than c′ · n bits
of communication leading to a contradiction. Hence, we prove the theorem by showing that when
S∗(X,Y ) < S∗(U, V ), there is a sufficiently large k and c′ < S∗(U, V ), such that two parties can
agree on n bits of common randomness using k ·n copies of (U, V ) and c′ ·n bits of communication.
We then exactly compute S∗ of several correlations and use the above technique to obtain concrete
linear lower bounds. In Corollary 6.7.1 we show a lower bound on the communication cost of
converting 1-out-of-2 OT to (2, 3) correlation that is half of what our construction achieves; in
Corollary 6.7.3 we show a lower bound for converting 1-out-of-3 OT to (3, 2) correlation that is a
third of what our construction achieves.

Linear lower bound for interactive reductions. We demonstrate much stronger lower bounds
on communication costs when the target correlation of interest is “close” to common randomness.
Consider an n-bit unit vector correlation in which the parties receive an additive secret sharing of
an n-bit unit vector (a string of Hamming weight 1). This correlation is close to n-bits of common
randomness in that the two strings are uniformly distributed and differ on exactly one (random)
index. Another correlation that is close to common randomness is a 1-out-of-k n-bit string OT,
where one party’s uncertainty about the other party’s part of the correlation is just 1/k. Our next
result shows that, deriving such correlations using any correlation (other than correlations with
inherent common randomness) requires linear communication even using an interactive protocol.
We state the result specifically for unit vector correlations.

Theorem 2.3 (Informal). If a source correlation (X,Y ) lacks common randomness, then any
interactive protocol generating an n-bit unit vector correlation requires Ω(n) communication.

In [18], Canonne et al. showed that a protocol in which parties with unlimited access to a source
of noisy common randomness derive common randomness with ℓ bits of interactive communication
can be converted into a zero communication protocol for deriving common randomness from the
same source with (2−O(ℓ)) success probability. We observe that a similar approach can be used
to convert an interactive protocol for deriving an n-bit unit vector correlation using a correlation
(X,Y ) with ℓ bits of interactive communication into a zero communication protocol for deriving the
n-bits of common randomness from the same source with about 2−O(ℓ) success probability. For this,
we only use the fact that n-bit unit vector correlation can be converted (with zero-communication)
to n bits of common randomness with success probability 1/n by having one party simply flipping
one of the n bits at random in their share of the correlation.
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In the other direction, we show the success probability for agreeing on n bits is 2−Ω(n). Bogdanov
and Mossel’s result from [10] which showed that deriving n bits of common randomness using a
source of noisy common randomness and zero communication succeeds only with 2−Ω(n) probability.
The authors show this using hypercontractive inequality. We generalize this result to show that if
correlation (X,Y ) has no common randomness, then an analogous condition holds. The proof of the
statement uses generalized hypercontractive inequality as defined in [35] and Holder’s inequality.
The lower bound follows from the above observations.

2.3 Role of Common Randomness in OMSR

In general, common randomness does not aid in OMSR. This is in line with the intuition that
common randomness available to both parties cannot be used to achieve security. Note that this
is in contrast with OMR where any correlation can be generated from common randomness with
zero communication. The main result of this section is as follows:

Theorem 2.4 (Informal). Suppose correlation (U, V ) lacks common randomness. Given an OMSR
converting a correlation (X,Y ) to (U, V ) using common randomness we can construct an OMSR
for the same conversion without common randomness.

All (target) correlations considered in this work lack inherent common randomness; more gener-
ally, this holds for most correlations with cryptographic applications because, intuitively, common
information does not enable cryptographic tasks. In the case of OMSR with perfect security, an
OMSR without common randomness can be obtained by simply conditioning on any of its realiza-
tions. Such an approach is used to the ineffectiveness of common randomness in statistical NISR
[1]; but this approach fails for statistical OMSR. This is because the conversion amplifies the se-
curity error by a factor that is inversely proportional to the smallest probability assigned by the
correlation to any member in the support. In OMSR, the conversion is to several copies of the
target correlation which makes the error in the conversion increase exponentially.

We use a different approach. Consider an ϵ-secure OMSR using common randomness for con-
verting a given source to n copies of the target correlation. By a Markov bound, there exists a
realization of common randomness conditioned on which privacy against both parties is guaranteed
with at most

√
ϵ error. Hence, on average, conditioned on sender’s output, the receiver’s output

is distributed as prescribed by the target distribution, and vice versa. Since the conditional distri-
bution on outputs is correct on average, it is sufficient to show that the marginal distribution of,
say, the sender’s output is correct. To show this, we consider two experiments; in the first one, we
sample the receiver’s output conditioned on sender’s output and then sample back the receiver’s
output conditioned on the receiver’s output according to conditional distributions prescribed by
the output distribution of the OMSR. In the second, we do the same sampling but according to
conditional distributions prescribed by the target correlation. These are Markov processes with
the stationary distributions being the sender’s output distribution and marginal distribution at
the sender in the target distribution, respectively. We then use the closeness of the two Markov
processes to show that stationary processes are close in total variation distance. This proves the
theorem.
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3 Preliminaries

Notation. We use calligraphic letters (e.g., X , Y) to denote finite sets or alphabets; the corre-
sponding small letter x is used for members in X , while the capital letter X is used for a random
variable with values in X . The distribution induced by X is denoted by pX , while X ∼ µ means
that X follows the distribution µ.

For random variables X, and X ′ over the same domain X , the total variation (aka statistical)
distance TVD between their distributions is defined as:

TVD(pX , pX′) =
1

2

∑
x∈X

∣∣Pr [X = x]− Pr
[
X ′ = x

] ∣∣
For ease of exposition, without loss of generality, we may also often use the notation TVD(X,X ′);
this will be equivalent to using TVD(pX , pX′). For any ϵ ≥ 0, X ≈ϵ X ′ denotes that TVD(pX , pX′) ≤
ϵ.

We write (Xi)i∈[n]
i.i.d.∼ pX to mean that X1, . . . , Xn are i.i.d. according to pX . A sequence

of random variables (X1, . . . , Xn) will be succinctly represented as Xn; similarly, joint random
variables (X1, Y1) to (Xn, Yn) will be represented as (Xn, Y n).

Random variables (X,Y, Z) satisfy the Markov chain X ↔ Y ↔ Z if X and Z are conditionally
independent conditioned on Y ; i.e., for all x, y, z.

Pr[X = x|Y = y, Z = z] = Pr[X = x|Y = y].

The unit vector with 1 at the ith position is denoted by ei. The elements of the field F4 are
represented by {0, 1, α, β} where α+ 1 = β.

Useful quantities. We recall some basic information-theoretic quantities (see [20] for a primer).

The Shannon entropy of X, denoted by H(X), is defined as
∑

x∈X Pr[X = x] log
(

1
Pr[X=x]

)
. The

binary entropy function for parameter ρ ∈ [0, 1] is defined as Hb(ρ) = −ρ log(ρ)− (1− ρ) log(1− ρ).
The mutual information of (X,Y ), denoted by I(X;Y ) is defined as H(X,Y )−H(X|Y )−H(Y |X).

Correlations. The central objects of interest in this work are pairwise joint distributions or
correlations. We will often write “correlation (X,Y )” to refer to the correlation pXY induced by
(X,Y ). We write “parties A and B receive/possess correlation (X,Y ) ∼ pXY ” to mean that A and
B receive/possess random variables X and Y , respectively, where (X,Y ) are jointly distributed
according to the distribution pXY .

Definition 3.1 (S∗ value of a correlation [5]). For a correlation (X,Y ), the quantity S∗(X,Y ) is
defined as

sup
U

I(U ;Y )

I(U ;X)
,

where the supremum is taken over all random variables U generated from X; i.e., (U,X, Y ) satisfy
the Markov chain U ↔ X ↔ Y (See Notations in Section 3) and not independent of X; i.e.,
I(X;U) > 0. Observe that S∗ is not necessarily symmetric.
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S R

X1, X2, . . . Y1, Y2, . . .

Û1, . . . , Ûn V̂1, . . . , V̂n

M

Figure 1: The random variables involved in an OMSR converting pXY into pUV . Parties receive,
(X1, Y1), (X2, Y2) . . . , which are i.i.d. according to correlation pXY . M denotes the single message
sent from S to R. Parties output (Û1, V̂n), . . . , (Û

n, V̂ n) which are (close to being) i.i.d. according
to correlation (U, V ).

Definition 3.2 (Geometric Random Variable). A geometric random variable X with success prob-
ability 0 ≤ ρ ≤ 1, denoted by X ∼ Geo(ρ) is defined by Pr[X = k] = (1 − ρ)kρ, for every
k = 0, 1, 2, . . . .

Fact 1. If X ∼ Geo(ρ) then H(X) = Hb(ρ)
ρ .

4 One-Message Secure Reductions

We now formally introduce one-message secure reductions, or OMSRs. Abstractly, an OMSR is a
secure protocol for converting copies of a source correlation (X,Y ) to copies of a target correlation
(U, V ) by using only a single (uni-directional) message. Later, in Section 4.3, we also define several
simple but useful correlations considered by our protocols.

4.1 OMR and OMSR Definitions

Basic model. In an OMSR protocol, there are two parties: a sender S and receiver R. Consider
two distributions (correlations) pXY and pUV referred to as the source correlation and the target
correlation respectively. S and R are given an unbounded number of independent copies of cor-
relation pXY ; i.e., for i = 1, 2, . . ., S gets Xi and R gets Yi, where (Xi, Yi) are i.i.d. according to
pXY .

The goal now is for S and R to generate n independent copies of the target correlation (U, V ).
Based on its copies of the source correlation, S will be allowed to send a single message to R.
Following this message, S and R compute the required copies target correlations based on their
local views. Of particular interest to us are two efficiency metrics: the (expected) number of
instances m = m(n) of X needed to generate n instances of Y , and the (expected) length l = l(n)
of the message from S to R. Hence, we define the expected amortized communication cost as
lim supnE[l(n)]/n and the worst case amortized communication cost as lim supnmax(l(n))/n.

Before detailing the security properties of OMSRs, we first introduce its non-secure counterpart—
the one-message reduction (OMR).

Definition 4.1 (One-Message Reduction (OMR)). An ϵ-error one-message reduction (ϵ-OMR)
over (m, pXY , n, pUV , l) is a pair of randomized algorithms ⟨S,R⟩ for (non-securely) converting m
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copies of a source correlation pXY (over the domain X × Y) to n copies of target correlation pUV

(over the domain U × V) using l bits of communication.
Let the private randomness of the sender and receiver be uniformly distributed in arbitrary

finite domains Q and Q′, respectively. The algorithms are defined as S : Xm × Q → Un × {0, 1}l
and R : {0, 1}l × Ym ×Q′ → Vn and they satisfy the following correctness condition:

Correctness. Let (Xi, Yi)i∈[m]
i.i.d.∼ pXY , and (Ui, Vi)i∈[n]

i.i.d.∼ pUV . Let Q,Q′ be uniformly dis-

tributed in Q,Q′, respectively. Then, (Ûn,M) ← S(Xm, Q) and V̂ n ← R(M,Y m, Q′) are such
that: (

Ûn, V̂ n
)
≈ϵ (Un, V n) (1)

We say that an OMR is perfect if ϵ = 0. When m is omitted (or m =∞), the OMR will be given an
unbounded number of copies of the source correlation. We also allow for m and l to be randomized
functions of the n, in which case we will look at the expected number of source correlations used
and the expected number of bits communicated as our efficiency metrics.

OMSR security. An OMSR is an OMR where the conversion is also done securely. Informally, we
define security as neither party learning more about the output of the other party than it should.
We formalize this in Definition 4.2.

Definition 4.2 (One-Message Secure Reduction (OMSR)). An ϵ-error one-message secure reduc-
tion (ϵ-OMSR) over (m, pXY , n, pUV , l) is an ϵ-OMR ⟨S,R⟩ (for converting m copies of the source
correlation pXY to n copies of the target correlation pUV using l bits of communication) which also
satisfies the following security properties:
Privacy against S. Let Xm, Y m, Q,Q′,M, Ûn, V̂ n be as defined in Definition 4.1. Then,

EXm,Q

[
TVD

((
V̂ n
∣∣∣Xm, Q

)
,
(
V̂ n
∣∣∣Ûn

))]
≤ ϵ. (2)

Privacy against R. For Xm, Y m, Ûn, V̂ n and M as defined above,

EY m,M,Q

[
TVD

((
Ûn
∣∣∣M,Y m, Q′

)
,
(
Ûn
∣∣∣V̂ n

))]
≤ ϵ. (3)

We say that an OMSR is perfect if ϵ = 0.

We provide an alternate definition for OMSR with simulation-based security in Appendix A
and prove that both definitions are equivalent with a comparable error.

Statistical OM(S)R. For a function ϵ : N → R≥0, we say there is an ϵ(n)-statistical one-
message (secure) reduction converting pXY to pUV if, for each n, there exists an ϵ(n)-OM(S)R
converting (arbitrarily many copies of) pXY to n copies of pUV using l(n) bits of communication.
The communication cost for the OM(S)R is computed as lim supn l(n)/n. If ϵ(n) is a negligible
function, we call the reduction an OM(S)R with negligible error.

The lower bounds we develop in this paper apply to statistical OMSR, in fact, more generally to
statistical OMR. Note that the lower bounds also apply to OM(S)R with expected communication
cost with variable message length and perfect correctness (and privacy). This can be seen as follows:
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suppose the OM(S)R has an expected communication cost of ℓ. Suppose the scheme is run n times
independently, and let ℓi be the length of the message in the i-th execution of the scheme. The
amortized length of the combined message is (ℓ1+ . . .+ℓn)/n; to combine messages we crucially use
the fact that they are prefix-free. Fix ϵ > 0; by the law of large numbers, for any δ > 0, there exists
a large enough n such that the amortized length is ℓ+ ϵ with probability 1− δ. Hence, by aborting
(sending ⊥) whenever the amortized length is more than ℓ + ϵ, we obtain a statistical OM(S)R
with a communication cost of ℓ+ ϵ. Thus, a lower bound on the communication cost of statistical
OM(S)R implies a lower bound on the expected amortized communication cost of OM(S)R.

OMSR for distribution families. In many cases, we are also interested in generating families of
correlations starting from a given source correlation. Here, a family F of correlations is a sequence
of correlations parameterized by n ∈ N, i.e., F = {(Un, Vn)}n∈N. Generating correlation families
are of practical interest. Examples include, the unit vector correlation family–a sequence of n-bit
unit vector correlations for n ∈ N, the string-OT correlation family–a sequence of n-bit 1-out-of-2
OT correlations for n ∈ N, etc.

Note that, in Definition 4.1 and Definition 4.2, the correlations families of interest are F =
{(Un, Vn)}n∈N, where (Un, Vn) is a sequence of n i.i.d. copies of a target distribution. Hence, the
definitions for OMR and OMSR in Definition 4.1 and Definition 4.2 naturally extend to correlation
families. We provide a formal definition of OMSR for distribution families in Appendix A.

4.2 OMSR in the Las Vegas Model

The Las Vegas model of computation requires algorithms or protocols to always output the correct
result whenever some result is produced but allows for the output of a special failure symbol ⊥, in
which case no guarantees are made about correctness. In the Las Vegas model, the runtime may
also depend on the input (and randomness). Many of our concrete constructions use this Las Vegas
model; we formally define OMSR in this model below.

Definition 4.3 (OMSR in the Las Vegas Model). A OMSR in the ρ-Las-Vegas model is the same
as a perfect (i.e., with ϵ = 0) OMSR from Definition 4.2 over the parameters (m, pXY , n, pUV , l)
except for the property that the parties are additionally allowed to output a failure symbol ⊥ (with
probability ≤ ρ). The correctness and security properties are exactly the same as Definition 4.2
except that now they are conditioned on the output not being ⊥.

Las-Vegas OMSR is a stronger notation than statistical OMSR. Hence, we use this notion in our
constructions. The lower bounds we develop for statistical OMSR naturally applies to Las-Vegas
OMSR as well.

The accept-reject paradigm. To build OMSR protocols in the Las Vegas model, we find
it useful to define a simpler primitive where only a single symbol is sent from the sender to the
receiver, after which both parties produce an output. Informally, this symbol represents an “accept”
indication which signals that a target correlation can be realized based on the sender’s view of the
source correlation. Following this, the receiver can locally convert its view of the source correlation
to the target correlation. If there is no communication, both parties output the failure symbol ⊥ in
which case no instance of the target correlation is produced. We refer to this as the accept-reject
paradigm.
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More formally, a probability ρ (secure) accept-reject protocol ρ-Acc-Rej from a source correlation
(X,Y ) to a target correlation (U, V ) is an OMSR in the Las Vegas model over the parameters
(m, pXY , n = 1, pUV , l = 1) where S sends an “accept” symbol to R with probability ρ (taken
over the the source correlations Xm). The goal is to generate just a single instance of the target
correlation (as opposed to the general Las Vegas model). We often use the terminology that the
sender’s view is accepting if it results in an accept message being sent. While we denote l = 1,
note that only a single symbol (rather than a bit) needs to be transmitted when accepting while
nothing is communicated when rejecting.

4.3 Useful Correlations

We now define several simple but useful (2-party) correlations that are widely applicable for build-
ing efficient secure computation protocols. Several of our OMSR protocols will involve securely
converting between these correlations.

Oblivious transfer (OT) correlation. A 1-out-of-k OT correlation over group G is a tuple
(r, (b, rb)) where r = (r0, . . . , rk−1) is uniform over Gk and b is uniform over Zk.

Oblivious linear evaluation (OLE) correlation. OLE can be viewed as an arithmetic exten-
sion of 1-out-of-2 OT. Specifically, an OLE correlation over a field F is a tuple ((a, s), (b, r)) where
a, b, s are uniform over F and r = ab+ s.

Non-zero OLE correlation. An nzOLE correlation is simply an OLE correlation that is con-
ditioned on the event that a, b ̸= 0.

(t, q)-correlation for t < q. A (t, q)-correlation where t < q is the tuple ((x0, r0), (x1, r1)) where
we choose x0, x1 ∈ Zt and r0, r1 ∈ Zq at random under the constraint that x0+x1 (mod t) = r0+r1
(mod q). This generalizes the (2, 3)-correlation used by Dinur et al. [24] to securely convert an
additively shared bit over F2 to an additive sharing of the same bit over F3.

(3, 2)-correlation. A (3, 2)-correlation is the tuple ((x0, u0, v0), (x1, u1, v1)) where we choose xi ∈
Z3, ui, vi ∈ Z2 at random under the following constraints: x0, u0, v0, x1 are uniformly random and
independent. Define x = x0 + x1 mod 3, u = u0 + u1 mod 2, v = v0 + v1 mod 2. Then we require
that u = x mod 2 and v = (x + 1 mod 3) mod 2. This correlation was used in [24] to securely
convert a mod-3 sharing of x to a mod-2 sharing of x mod 2. Perhaps surprisingly, we show that
the (3, 2)-correlation is also isomorphic to a non-zero OLE over F4.

n-bit unit vector (n-UV) correlation. An n-UV correlation is a tuple (u0, u1) where u0, u1 ∈ Fn
2

and u0 + u1 is a random unit vector.

Additive correlation. We will say a correlation (X,Y ) is an additive correlation if there exists
a distribution ψ over an abelian group G such that X+Y ∼ ψ and X and Y are both uniform over
the group. Note that this generalizes several correlations, including n-UV and the (2, 3)-correlation.
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5 Concrete OMSR Protocols

In this section, we provide concrete one-message secure reductions for converting from a source
correlation (X,Y ) to a target correlation (U, V ). As mentioned earlier, we find it useful to build
accept-reject protocols as a stepping stone to building Las Vegas OMSRs. We start with a general
transformation that enables us to, in many cases, work with simpler accept-reject protocols.

Theorem 5.1. Suppose that there exists a secure accept-reject protocol π from source correlation
(X,Y ) to target correlation (U, V ) with accept probability ρ. Then, for every ϵ > 0, there exists
a perfect OMSR converting from (X,Y ) to (U, V ) with an expected amortized communication cost
smaller than log(1/ρ) + ϵ.

Proof. Suppose that the protocol π has an accept probability ρ. We show how to use this in a
black-box way to construct an OMSR; the key idea is to process source correlations in batches of
size km (where m in the number of correlations used by π) before sending a message.

Concretely, suppose that π involves the sender S looking at m source correlations, and based on
some (possibly randomized) function computation f(Xm; r) with private randomness r resulting in
1, decides on whether to send an accept symbol to R. For the OMSR model, recall that we always
want to produce the target correlation (instead of e.g., with probability ρ). To achieve this, the
basic idea is to have S send the index of the first set of correlations for which π would result in an
accept message.

It turns out that we can substantially bring down the asymptotic cost by considering batches
of size km. Notice as a first step that we can directly get an accept-reject protocol to generate k
target copies; for this, S will look at km copies of the source correlation (as k batches Xm

i each of
size m) and send a single-bit accept message only when f(Xm

i ; ri) = 1 is true for all i ∈ {1, . . . , k}.
This however results in accept probability ρk, i.e., exponentially decreasing in k. Now, to convert
this into an OMSR, we can let S look at its source copies in batches of size km, and now send the
index of the first batch where all the k instances in the batch would result in an accept message in
π. Upon receiving this index, the receiver R can use its corresponding set of source correlations;
this generates k copies of the target correlation. We denote this protocol by π∗k.

Observe that the message from S is now a geometric random variable with success probability
ρk. We can compress this message down to its entropy and achieve an expected amortized commu-

nication cost of (1/ρ)k·Hb(ρ
k)

k . Notice that by taking a larger k, the communication cost is reduced
at the cost of consuming more source copies. Since the limit of the function as k →∞ is log(1/ρ),
for any ϵ > 0, we can choose an appropriate k such that the expected amortized communication
cost is smaller than log(1/ρ) + ϵ.

To complete the proof, we now show the privacy of π∗k. This is easy to see intuitively: all of
the copies of the correlation are independent, the output is only dependent on the utilized batch
of the km source correlations, and the message from S doesn’t reveal any more information than
the message in π. Therefore, since π is secure, π∗k should also be secure.

More formally, let us prove the privacy against R. Let M = i be the message sent, Y ki that
was used by R and V̂ n the output of the protocol. We will denote by π(Y ) the output of R when
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an accept message was sent.

(Ûn|V̂ n, Y ki,M = i) ≡ ((π(Yk(i−1)+1), . . . , π(Yk(i−1)+k))|Y ki,M = i)

≡ ((π(Y1), . . . , π(Yk))|Y k,M = i)

≡ ((π(Y1), . . . , π(Yk))|Y k)

≡ (Un|V n)

The distributions are equivalent for every message and copies of the source correlation used, and
thus in expectation over M and copies of the source, their total variation distance will be 0.

The proof of privacy against S proceeds in a similar manner; Let M = i be the message sent,
Xki that was used by S and Ûn the output of the protocol. Note that in this case we know that
the first (i−1) k-tuples will be rejected, and the last one will be accepted. We will denote by π(X)
the output of S when an accept message was sent.

(V̂ n|Xki,M = i) ≡ ((π(Xk(i−1)+1), . . . , π(Xk(i−1)+k))|Xki,M = i)

≡ ((π(X1), . . . , π(Xk))|Xk,M = i)

≡ ((π(X1), . . . , π(Xk))|Xk)

≡ (V n|Un)

The distributions are equivalent for every message, copies of the source correlation used and the
output and thus in expectation over them, the total variation distance between the distributions
will be 0.

Remark (Extensions). In Section 5.3, we further optimize the above transformation for better
concrete efficiency in a number of metrics. We also present a modified construction for which we
can bound the worst-case communication (as opposed to the expected communication); this can be
done within the Las Vegas model by outputting a failure symbol with only negligible probability.

5.1 Efficient OMSR for (t, q)-correlations

In this section, we show efficient OMSR protocols for generating (t, q)-correlations from OT-
correlations. This provides concrete improvements as well as generalizes the protocol from [24,
Protocol 5.2] for generating (2, 3)-correlations.

Theorem 5.2. There exists a secure accept-reject protocol π for source 1-out-of-t OT correlation
over Zq and target (t, q)-correlation with accept probability tq

qt . In particular, for (2, 3)-correlations,

the accept probability is 2
3 .

Proof. Recall that in a 1-out-of-t OT correlation over Zq, the sender S is given a tuple r =
(r0, . . . , rt−1) that is uniform over Zt

q, and the receiver R is given (b, rb) where b is a uniformly
random over Zt and rb is its corresponding element in r.

Now, define a function fr,s(x) : Zt → Zq, parameterized by r ∈ Zt and s ∈ Zq as fr,s(x) = w
where w ∈ Zq is such that (r + x) mod t = (s + w) mod q. In other words, the output w is such
that ((r, s), (x,w)) is a valid (t, q)-correlation. Note that the function f(r,s) is distinct for distinct
(r, s).

18



Now, for each (r, s), define the vector a(r,s) = (f(r,s)(0), . . . , f(r,s)(t − 1)), i.e., defined by eval-
uating f(r,s) at each i ∈ Zt. Denote by Φ, the set of all possible vectors r ∈ Zt

q for which there
exist some (r, s) such that a(r,s) = r. Intuitively, Φ denotes the accept set for the conversion—when
the OT source correlation r given to S is in Φ, then it will send an “accept” message after which
both parties will compute the target (t, q) correlation by local computation; when r /∈ Φ, then both
parties will abort.

Now, given r ∈ Φ, to generate required the (t, q) correlation, S will find the (r, s) such that
r = a(r,s) and output it; the receiver R will simply output (b, rb).

Notice that this results in a valid (t, q)-correlation since f(r,s)(b) = rb, and therefore r+b mod t =
s+ rb mod q.

Observe that there are tq valid tuples (r, s), each corresponding to a unique “accepting” r as
given above. Therefore, over a random r ∈ Zt

q, the probability that r ∈ Φ will be tq
qt ; this is exactly

the accept probability of the accept-reject protocol. Notice that this protocol works best when t is
a small number.

It is easy to see that both parties don’t learn any additional information about the other’s
output; The sender doesn’t know which value of b the receiver has. The receiver’s view consists of
only b, rb and he doesn’t know which r, s were consistent with the sender’s part of the correlation.

Corollary 5.2.1. For every ϵ > 0, there exists an OMSR for converting from 1-out-of-2 OT over
Z3 to (2, 3)-correlations with an expected amortized communication cost smaller than log(3/2) + ϵ.

Proof. This is a direct consequence of Theorems 5.1 and 5.2.

Remark. Our protocol provides concrete improvements in generating (2, 3)-correlations compared
to the protocol from [24]. In particular, the protocol from [24] has an expected communication
cost of 1.5 ·Hb(1/3) ≈ 1.377 bits to generate one (2, 3)-correlation instance; our protocol brings this
cost down to just log(3/2) + ϵ ≈ 0.585 + ϵ for any ϵ > 0—an over 2x improvement to an already
optimized protocol.

Remark. In the lower bounds section, we show a lower bound of log(q/2)/2 for any OMR converting
OT to (2, q) correlation, exactly a half of our upper bound (Corollary 6.7.1). In addition, we also
show that an optimal OMR converting OT correlation to (2, 3) correlation would be with 1-out-of-2
OT (Corollary 6.7.2).

5.2 Efficient OMSR for (3, 2)-correlations

We now show efficient OMSR protocols for generating (3, 2)-correlations from OT. An interesting
result we show is that (3, 2)-correlations are isomorphic to non-zero OLE correlations. The full
proofs are deferred to Appendix B.

Lemma 5.3. The non-zero OLE (nzOLE) over F4 is isomorphic to the (3, 2)-correlation. In other
words, there is a secure no-communication reduction (i.e., an SNIR) between the two correlations
(in both directions).

This lemma is proved in Appendix B.1.

Theorem 5.4. There exists a secure accept-reject protocol π for source 1-out-of-3 OT over F4 and
target (3, 2)-correlation with accept probability 3

16 .

19



This protocol is quite similar to the one for (t, q) correlation. For completeness, the full proof
is given in Appendix B.2.

Corollary 5.4.1. For every ϵ > 0 there exists an OMSR for converting 1-out-of-3 OT over F4 to
(3, 2)-correlations with expected amortized communication cost of log(163 ) + ϵ.

Proof. This is a direct consequence of Theorems 5.1 and 5.4.

Remark. Our protocol provides concrete improvements in generating (3, 2)-correlations compared
to the protocol from [24]. In particular, the protocol from [24] has a communication cost of 6 bits to
generate one (3, 2)-correlation instance; our protocol brings this cost down to just log(16/3) + ϵ ≈
2.415 + ϵ for any ϵ > 0—an over 2x improvement.

Remark. In the lower bounds section, we show a lower bound of log(16/3)/3 for any OMR (i.e.,
even without security) for converting 1-out-of-3 OT to a (3, 2) correlation—exactly a third of our
upper bound (Corollary 6.7.3).

5.3 Efficiency Metrics and Optimizations

In this section, we present several optimizations for our generic transformation (Theorem 5.1) from
accept-reject protocols to OMSRs in the Las Vegas model.

Number of source correlation copies used. In the context of Theorem 5.1, the number of
copies of the source correlation used grows exponentially with k. We now show how to use fewer
copies of an OT source correlation while keeping communication the same by using long string
OT-correlations instead of OT correlations over a small group. This technique is highly useful in
practice since string OT-correlations are equally easy to produce as regular OTs—a trivial use of
a PRG can extend short random strings to long pseudo-random strings.

For the optimization, first notice that the decision for whether to accept or reject a k-tuple of
the source correlation is only based on the view of the sender S. We exploit this observation in
the following way: Consider the source correlation to be a long string-OT. S proceeds to “cut”
the long string into small segments according the size of the original OT correlation required (for
example, if the source correlation in the original protocol was OT over F4 then each segment will
be of length of two bits). Now, S just needs to send the index of the first batch of k segments
where the underling accept-reject protocol would send an accept message. This results in the same
communication as before since the message here again is the same geometric random variable; note
that it also does not decrease the computation required in terms of bits that the sender has to read.
Still, the upshot of this technique now is that it only requires 1 string-OT correlation to generate
k instances of the target correlation.

Optimizing computation. While the optimization using string-OT reduces the number of
source correlations required, the computation required in terms of the number of bits read does not
decrease; it is still exponential in k. More specifically, for an accept-reject protocol with probability
ρ, the computation per instance of the target correlation generated is proportional to (1/ρ)k. We
will now show how to optimize the number of source copies in the original protocol, thereby also
reducing the computation required by the parties.
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Correlation Efficiency
k value

1 2 5 10 15 ∞

(2, 3)-correlation
comm. (bits) 1.377 1.114 0.853 0.727 0.681 0.585
computation 1.5 2.25 7.59 57.66 437.8 ∞

(3, 2)-correlation
(optimized)

comm. (bits) 3.08 2.87 2.66 2.55 2.51 2.415
computation 1.33 1.77 4.21 17.75 74.83 ∞

Table 1: Trade-off between the communication (in bits) and the computation (in terms of the
expected number of original source copies to be read) per instance of the target correlation generated
as the value of k increases.

As a specific illustrative example, we focus on the protocol to generate (3, 2)-correlations. Recall
that for k = 1, using the notation from Theorem 5.4, the sender will first check whether its view r =
(r0, r1, r2) of the OT correlation is of the form (fa,s(1), fa,s(α), fa,s(β)) for some a ∈ F4 \{0}; s ∈ F4

where F4 is written as {0, 1, α, β = α+1}. The protocol accepts if the sender’s OT correlation is of
the correct form, following which both parties can locally compute the target (3, 2)-correlation. It
is easy to see that there are 3× 4 = 12 distinct valid OT-correlations that will result in an accept
message; equivalently, for a particular (r0, r1), there is exactly 1 r′ such that (r0, r1, r

′) results
in an accept message. This happens only with probability 1/4 over a random source correlation,
which makes the probability of the accept-reject protocol 12

16 ·
1
4 = 3

16 . In turn, this affects the
communication and the source copies used (i.e., computation) of the compiled Las Vegas OMSR
protocol.

We use a simple optimization trick here—instead of hoping for r2 in (r0, r1, r2) to be of the
correct form, the sender can simply force it to be so by sending the F4 element r∗ such that
(r0, r1, r2+r

∗) will result in an accepting execution. This results in an extra 2 bits of communication
from the sender. But since it increases the accept probability by a factor of 4, there is no change
in the communication cost. Still, the upshot is that it decreases the number of source correlation
copies used from (163 )

k to (43)
k, i.e., an improvement by a factor of 4k. Such optimization can

therefore exponentially improve the computation cost of the protocol.
We point out that this optimization is quite general. Whenever the sender correlation is (u, v)

and conditioned on u, there is only one accepting v, acceptance can be forced by sending an
appropriate v′ such that (u, v+ v′) is now accepting. Such an optimization can drastically improve
the computation cost.

Computation vs communication trade-off. Following our string-OT optimization, a trade-
off between computation and communication is uncovered as we increase the value of k; while the
use of string-OT allows reducing the number of instances of the source correlation used, the number
of bits read (or in other words, the computation required) is still exponential in k. In particular,
observe that as k →∞, while the amortized communication tends to log(1/ρ) where ρ is the accept
probability of the underlying protocol, the amortized computation required grows exponentially.
Despite this, we find that we can choose k to be fairly small and still achieve a substantial reduction
in the communication cost. This is illustrated in Table 1 for the (2, 3) and (3, 2)-correlations.
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Expected to worst-case. So far, for the general protocol (Theorem 5.1), we only looked at the
expected communication and computation cost; the worst case cost is unbounded, of course with
exponentially decreasing probability. We now show that in the Las Vegas model, by allowing a
negligible (in n) failure probability, we can bound even the worst case cost of the protocol; notably,
this worst case bound is only slightly worse than the expected cost of the original protocol.

Consider t mk-tuples of the source correlation copies. Let B be the event that among the t
tuples, the number of accepted ones is smaller than n

k . We now want to bound the probability of
the event B.

Let {Ii}ti=1 be indicator variables for whether the i-th mk-tuple is accepted and µ denote the
expected number of total tuples accepted. The indicators are all i.i.d. and binomially distributed
with probability ρk. Observe also that E

[∑t
i=1 Ii

]
= µ = ρkt. Define δ = 1− n/k−1

µ . Now,

Pr[B] = Pr

[
t∑

i=1

Ii ≤ n/k − 1

]
= Pr

[
t∑

i=1

Ii ≤ (1− δ) · µ

]
≤ 2

−Ω
(
(1−n/k−1

µ
)2µ

)

where the inequality is by using the Chernoff bound.
Therefore, for µ ≥ (1 + ϵ)(n/k − 1) (which can be achieved with t = ⌈(1 + ϵ) · n/k

ρk
⌉), it

holds that Pr[B] ≤ 2−Ω(nϵ2/k). Thus by using ϵm(n/ρk) more copies of the source correlation
and with all but negligible probability, the OMSR will succeed and we can bound the worst-
case complexity for the number of source correlations used. In order to achieve a worst case
bound on the amortized communication cost, we cannot use compression like in Theorem 5.1;
note however, that we can encode the indices of the batches that we accepted using n

k log(t) =
n
k (log(1+ ϵ)+k log(1/ρ)+ log(n/k)) bits and achieve an amortized communication cost of log(1/ρ)
as k → ∞ and thus achieve the same asymptotic communication cost. An implicit point to be
noted here is that in order for the probability of the event B to be negligible using the Chernoff
bound, it must be that k = o(n); for instance, we can use k =

√
n.

5.4 Concrete Improvements for Existing Applications

We now show how our OMSR protocols for (2, 3) and (3, 2)-correlations lead to concrete efficiency
improvements for existing applications. As mentioned earlier, a primary motivation for our study of
(2, 3) and (3, 2)-correlations was their importance in recent work by Dinur et al. [24]; we significantly
improve over their optimized constructions for these types of correlations.

In particular, [24] proposes candidate constructions in the so called alternating moduli paradigm
for symmetric-key primitives like weak-PRFs, OWFs, and PRGs; the key idea here being that by
mixing linear functions over different moduli (e.g., 2 and 3), resistance to known cryptanalysis
techniques can be argued. At the same time, this leads to highly efficient evaluations particularly
in distributed settings since most parts of the construction involve linear operations which are
cheap to perform. The only non-linear operations required in these constructions were conversions
of secret shared values from Z2 to Z3 and vice versa. Both the (2, 3) and (3, 2)-correlations were
introduced in this context to enable more efficient online protocols; optimized ways to generate
these correlations from OT were also constructed.

Our OMSR protocols show further improvements to the generation of these useful correlations;
This directly translates to significant improvements in the distributed protocols, which were shown
to already be competitive compared to prior work. Table 2 shows a 2x improvement across the
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MPC-Friendly
Constructions [24]

Parameters
(η, υ, τ)

Offline comm.
Online comm.
(for both)[24]

This work
(asymp.)

(2, 3)-wPRF (256, 256, 81) 353 150 1536
LPN-wPRF (256, 256, 128) 1889 768 2860
(2, 3)-OWF (128, 452, 81) 623 265 904
LPN-PRG (128, 512, 256) 3249 1312 1880

Table 2: Concrete comparison of our OMSRs vs [24] in the context of the cost for different MPC-
friendly constructions in the distributed 2PC setting. All numbers in the table are in bits. The
parameters (η, υ, τ) denote the length of the input, the length of the intermediate layer, and the
length of the output in the constructions. Concrete parameters were chosen in [24] based on
cryptanalysis.

board for the prepossessing cost associated with 2PC distributed protocols for all constructions
studied in [24]. Concrete applications of our efficiency gains include:

• (Oblivious PRFs). The (2, 3)-weak-PRF was shown to have significantly better performance
(4-5x faster) in the oblivious evaluation setting compared to existing algebraic OPRFs at the cost
of requiring some prepossessing; our optimizations provide the same performance while reducing
the client’s offline communication by roughly 33%.

• (MPC-in-the-head signatures). The (2, 3)-OWF, when used to generate signatures through
the MPC-in-the-head paradigm, resulted in roughly 10% smaller signatures sizes than using the
LowMC blockcipher; our optimizations would result in even smaller signature sizes.

• (Function secret sharing and applications). The LPN-PRG is useful for several distributed
applications that require length-doubling PRGs with the same input and output space. Of par-
ticular relevance are the distributed generation of function secret sharing (FSS) keys, distributed
point functions (DPF), and distributed comparison functions (DCF); the core operation here is
the distributed evaluation of the PRG, which is significantly more communication efficient through
an MPC-friendly PRG than e.g., using AES. For all these applications, our optimizations provide
further efficiency by reducing the preprocessing cost of the LPN-PRG by roughly 2.5x.

FSS has also found applications in privacy-preserving machine learning for dealing with
non-linear functions, which arguably contribute to the bulk of the cost in the secure computation
setting. In this vein, the usefulness of an MPC-friendly PRG was recently demonstrated by [47] to
build a DCF for neural network training (each ReLU activation function involves a DCF evaluation
which translates to n distributed PRG evaluations when the data values are over Z2n) . Prior
work either required distributed evaluation of a PRG that was not MPC-friendly which led to
high communication cost, or used a technique by Doerner-shelat [25] which requires computation
exponential in the input size and therefore is useful only for small input domains (< 216). In
contrast, [47] used the LPN-PRG from [24] to efficiently support large input domains of size 232.
Concretely, given inputs in Z232 , each ReLU evaluation requires 32 PRG evaluations; therefore, for
each non-linear ReLU layer, as earlier, our optimizations translate to roughly 2.5x smaller offline
and 1.6x smaller total communication.
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6 Lower Bounds

In this section, we prove lower bounds on the communication cost of (non-secure) one-message
reduction.

6.1 Linear Lower Bound for One-Message Reductions

Theorem 6.1 proves a constant lower bound on amortized communication cost of statistical OMR
converting a target correlation to another with larger S∗ value. In Corollaries 6.7.1 to 6.7.3, we use
a more fine-grained analysis to prove concrete lower bounds for the correlations we considered in
the previous section.

Theorem 6.1. Amortized communication cost of statistical OMR converting a correlation (X,Y )
to (U, V ) is strictly positive if S∗(X,Y ) < S∗(U, V ).

We will assume that the sender’s algorithm is a deterministic function of their part of the
correlation and that of the receiver is a deterministic function of the received message and their
part of the correlation. This is without loss of generality because the protocol can keep aside
sufficiently many copies of the source correlation for both sender and receiver to extract private
randomness from. Our lower bounds allow the parties to use arbitrarily many copies of source
correlation.

We first state Lemmas 6.2 to 6.4 which together imply the theorem.

Lemma 6.2. Amortized communication cost of OMR converting a correlation (X,Y ) to common
randomness is lower bounded by 1− S∗(X,Y ).

We will show that any achievable amortized communication cost c of OMR converting a corre-
lation (X,Y ) to common randomness satisfies

c ≥ 1− sup
U :U↔X↔Y

I(U ;Y )

I(U ;X)
,

where U is any random variable that is generated from X, i.e., it satisfies Markov chain U ↔ X ↔
Y . Since S∗(X,Y ) is defined as the expression in the RHS, the lemma follows. In order to prove
the above inequality, we revisit the problem of common randomness capacity of a correlation which
was studied by Ahlswede and Csiszar in [4]. For communication rate R ≥ 0, common randomness
capacity C(R) of a correlation (X,Y ) is the asymptotic rate at which common randomness can be
derived per use of (X,Y ) using only one-way communication (from S to R) with rate limited to R.
By retracing the proof of converse for common randomness capacity, we show that the amortized
communication cost of statistical OMR converting (X,Y ) to common randomness cannot be lower
than the smallest ratio between R to C(R) as R tends to zero. Our proof closely follows the
aforementioned converse; this is provided in Appendix C.1.

Lemma 6.3. For any correlation (U, V ) and c > 1− S∗(U, V ), there exists a constant λ > 0 such
that, for each ϵ > 0 and for all sufficiently large n, there are functions S : Un → [⌊2n/λ⌋]× [⌈2c·n/λ⌉]
and R : Vn × [⌈2c·n/λ⌉]→ [⌊2n/λ⌋] such that, when (Ui, Vi) is i.i.d. according to pUV for all i ∈ [n],
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(K,M)← S(Un) and L← R(V n,M),

Pr [K ̸= L] ≤ ϵ, (4)∑
k∈[⌊2n/λ⌋]

∣∣∣Pr [K = k]− 1

⌊2n/λ⌋

∣∣∣ ≤ ϵ. (5)

Proof. To prove this lemma, we once again invoke a result from [4]. The common randomness
capacity C(r) of correlation (U, V ) for communication rate of r ≥ 0 from sender to receiver is
defined as the supremum of all s ≥ 0 such that for each ϵ > 0 and all sufficiently large n, there
exist functions S : Un → [⌊2s·n⌋]× [⌈2r·n⌉] and R : Vn × [2r·n]→ [⌊2s·n⌋] such that, Eqs. (4) to (5)
are satisfied for λ = 1

s . [50, Theorem 3] showed that

lim
r↓0

C(r)

r
= inf

p(u|x)

I(U ;X)

I(U ;X)− I(U ;Y )
=

1

1− S∗(U, V )
. (6)

Hence, by basic real analysis, for any c > 1− S∗(U, V ), there exists r > 0 such that C(r)
r > 1

c .
Define s = r

c ; since C(r) > s, by definition of C(r), for each ϵ > 0 and all sufficiently large n,
there exist functions S : Un → [⌊2s·n⌋]× [⌈2c·s·n⌉] and R : Vn× [2c·s·n]→ [⌊2s·n⌋] such that, Eqs. (4)
to (5) are satisfied for λ = 1

s . The proof follows by taking λ = 1
s .

Lemma 6.4. For any correlation (U, V ), suppose λ > 0 and c > 0 are such that, for each ϵ > 0 and
for all sufficiently large n, there are functions S : Un → [⌊2n/λ⌋]×[⌈2c·n/λ⌉] and R : Vn×[⌈2c·n/λ⌉]→
[⌊2n/λ⌋] such that, when (Ui, Vi) is i.i.d according to pUV for all i ∈ [n], (K,M) ← S(Un) and
L← R(V n,M),

Pr [K ̸= L] ≤ ϵ, (7)∑
k∈[⌊2n/λ⌋]

∣∣∣Pr [K = k]− 1

⌊2n/λ⌋

∣∣∣ ≤ ϵ. (8)

If c < 1 − S∗(X,Y ), then the amortized communication cost of OMR converting (X,Y ) to (U, V )
is at least 1

λ(1− S∗(X,Y )− c).

Proof. Suppose an amortized communication cost c′ > 0 is achievable for OMR converting (X,Y ) to
(U, V ). Then, for each i ∈ N, there exist functions S′

i : Xmi → Uni × [2c·ni ] and R′
i : Ymi × [2c·ni ]→

Vni such that, for each i, when (Xmi , Y mi) is i.i.d. according to pXY , (U
ni , V ni) is i.i.d. according

to pUV , (Û
ni ,M)← S′

i(X
mi) and V̂ ni ← R′

i(V
ni ,M),(

Ûni , V̂ ni

)
≈ϵi (Uni , V ni), (9)

where, ϵi → 0 as i→∞.
We can choose i such that 1) S′

i, R
′
i in the aforementioned sequence satisfies Eq. (9) with ϵi ≤ ϵ,

and 2) there exist Si : Uni → [⌊2ni/λ⌋]× [⌈2c·ni/λ⌉] and Ri : Vni × [⌈2c·ni/λ⌉]→ [⌊2ni/λ⌋] such that,
Eqs. (7) to (8) are satisfied for n = ni.

We construct an OMR converting (X,Y ) to common randomness as follows:

1. Using (Xmi , Y mi) and c′ · ni bits of communication, generate (Ûni , V̂ ni), where (Ûni ,M) ←
S′
i(X

mi) and V̂ ni ← R′
i(V

ni ,M).
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2. Using (Ûni , V̂ ni) and c ·ni/λ bits of communication, generate (K,L), where (K,M)← S(Un)
and L← R(V n,M).

By Eqs. (7) to (9) and the data processing inequality of total variation distance,

Pr [K ̸= L] ≤ ϵ+ ϵi ≤ 2ϵ,∑
k∈[⌊2ni/λ⌋]

∣∣∣Pr [K = k]− 1

⌊2ni/λ⌋

∣∣∣ ≤ ϵ+ ϵi ≤ 2ϵ.

Thus, we have established that, there is a 2ϵ-OMR converting mi copies of (X,Y ) to ni/λ − 1
bits of common randomness using ni(c

′/λ + c) + 1 bits of communication. Hence, an amortized
communication cost of c + λc′ is achievable for OMR converting (X,Y ) to common randomness.
But then, by Lemma 6.2,

c+ λc′ ≥ 1− S∗(X,Y ) =⇒ c′ ≥ 1

λ
(1− S∗(X,Y )− c).

This proves the lemma.

Proof of Theorem 6.1. Choose c such that 1−S∗(U, V ) < c < 1−S∗(X,Y ). Invoking Lemma 6.3,
we get λ that satisfies the conditions in Lemma 6.4. Hence, by Lemma 6.4, since c < 1− S∗(X,Y ),
the amortized communication cost of OMR converting (X,Y ) to (U, V ) is at least 1

λ(1−S
∗(X,Y )−c).

This proves the theorem.
The above approach for lower bound can be used to get concrete lower bounds for OMR between

specific correlations. For this, we first calculate S∗ of some correlations of interest.

Lemma 6.5. For any finite group G and k ∈ N, S∗ of 1-out-of-k OT correlation over G is 1
k .

Using an information theoretic argument, we prove that I(U ;Y )/I(U ;X) ≤ 1
k for any U gen-

erated from X. Taking U = X we achieve this upper bound implying the lemma. A full proof of
this lemma is provided in Appendix C.2.

In a similar manner, we prove in Appendix C.3 the next lemma.

Lemma 6.6. For any finite field F, S∗ of OLE correlation over F is 1
2 .

We prove the following lemma in Appendix C.4.

Lemma 6.7. For any group G, S∗ of the additive correlation over G is strictly larger than 1
2 , if

H(ψ) < log |G|
2 (where ψ is as described in the definition of additive correlation in Section 4.3),

Using the above characterizations of S∗ and Lemma 6.4, we get the following lower bounds on
statistical OMR which justify our constructions in Section 5.

Corollary 6.7.1 (Corollary of Lemma 6.4 and Lemma 6.5). The amortized communication cost of
statistical OMR converting 1-out-of-k OT correlation over any group G to (2, q) correlation is at
least log( q2)/2.
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We can construct a simple OMR converting (2, q) correlation to CR, by simply sending x0, and
both outputting x0||r0. Thus we achieve the following functions S : Un → [⌊2n/λ⌋]× [⌈2c·n/λ⌉] and
R : Vn × [⌈2c·n/λ⌉] → [⌊2n/λ⌋] with λ = c = 1

log(2q) . Now, Lemma 6.4 with S∗(X,Y ) = 1
k gives us

the lower bound of k−1
k log(2q) − 1. This is an increasing function of k. Plugging k = 2, will give

us the desirable log( q2)/2 lower bound.

Remark. The same lower bound can be given for source correlation OLE due to Lemma 6.6.

Corollary 6.7.2. The optimal (in terms of amortized communication cost) protocol for (2, 3) cor-
relation using OT will be with 1-out-of-2 OT.

From the proof of Corollary 6.7.1, we know that the amortized communication cost using
source correlation 1-out-of-k OT, with k ≥ 3, we get a lower bound of 2

3 log(6) − 1 ≈ 0.72. Since
in Corollary 5.2.1 we achieve an OMSR with amortized communication cost log(3/2) < 0.72 using
1-out-of-2 OT, we can infer that the optimal OMSR will also need to have the source correlation
1-out-of-2 OT.

Corollary 6.7.3 (Corollary of Lemma 6.4 and Lemma 6.5). The amortized communication cost
of OMR converting 1-out-of-3 OT correlation over any group G to (3, 2) correlation is at least
log(163 )/3.

We can construct a simple OMR converting (3,2) correlation to CR, by simply sending x0, and
both outputting x0||u0||v0. In a similar manner as in Corollary 6.7.1 we will achieve a lower bound
of log(16/3)/3.

Corollary 6.7.4 (Corollary of Theorem 6.1, Lemma 6.5 and Lemma 6.7). The amortized com-
munication cost of OMR converting 1-out-of-2 OT (or OLE) correlation over any group G1 to an

additive correlation over a group G2 where H(ψ) < log |G2|
2 (where ψ is as described in the definition

of additive correlation in Section 4.3) is strictly greater than 0.

This simple corollary is due to the fact that S∗ of the additive correlation is strictly greater
than 1

2 .

6.2 Linear lower bound for interactive reductions

Our next result establishes a much more general lower bound albeit for a more restricted class
of correlations. We show that generating an n-bit vector correlation using any correlation (X,Y )
such that S∗(X,Y ) < 1 requires Ω(n) bits of interactive communication. We note that, as intuition
suggests, S∗(X,Y ) < 1 if and only if the correlation lacks common randomness. We refer to
Appendix E for a detailed discussion. Observe that we are interested in generating a single copy of
a correlation of length n from a class of correlations (for increasing value of n). As n approaches
infinity, S∗ of n-bit vector correlation approaches 1; hence, in the case of OMR, the linear lower
bound on communication cost is intuitively implied by our previous result. The following theorem
makes a strictly stronger claim.

Theorem 6.8. Let π be an interactive protocol between S and R using (arbitrarily many copies of)
correlation (X,Y ) and ℓ bits of communication which computes n-bit unit vector correlation with
ϵ ≤ 1

6 error. That is, S and R output Û and V̂ , respectively, where (Û , V̂ ) is ϵ far from being an
n-bit unit vector correlation in total variation distance. If S∗(X,Y ) < 1, there exists 1 < q < p that
depend only on the description of distribution pXY such that ℓ ≥ n

2 (
p−q
pq )− 1

2 log(n)− 1.
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We state a couple of lemmas that will be used to prove the theorem.

Lemma 6.9. Let π be an interactive protocol between S and R using correlation (X,Y ) and ℓ bits
of communication in which S and R output Û and V̂ , respectively, where Û and V̂ are uniformly
distributed over {0, 1}n and (Û , V̂ ) ≈ϵ (U, V ), where (U, V ) is an n-bit unit vector correlation.

Using π, we can construct f : X → {0, 1}n and g : Y → {0, 1}n such that, f(X) and g(Y ) are
uniformly distributed over {0, 1}n, and

Pr [f(X) = g(Y )] ≥ 4−ℓ

32n
(1− ϵ)3.

Lemma 6.10. Let (Xi, Yi) be i.i.d. pXY for each i ∈ [m]. Let f : X → {0, 1}n and g : Y →
{0, 1}n be any pair of functions such that f(X) and g(Y ) are uniformly distributed over {0, 1}n. If
S∗(X,Y ) < 1, there exist 1 < q < p that depend only on the description of pXY such that

Pr [f(X) = g(Y )] ≤ 2
−n

(
p−q
pq

)
.

Proof of Lemma 6.9 follows the same blueprint as the proof of [18, Theorem 2.6]. We provide
the proof in Appendix C.5. Before proving Lemma 6.10, we show how they imply the theorem.

Proof of Theorem 6.8 If Û and V̂ are not uniformly distributed over {0, 1}n, we transform π into
π′ which outputs correlation (Ũ , Ṽ ) with uniform marginals as follows: Let Sup ⊂ {0, 1}n, where
u ∈ Sup if Pr

[
Û = u

]
< 1

2n . Let W be a random variable over the domain Sup s.t. Pr [W = u]

is proportional to 1
2n − Pr

[
Û = u

]
. Now, S on receiving u /∈ Sup, w.p. 1

Pr[Û=u]
1
2n , S outputs u,

and with the remainder probability, he outputs a sample from W . R outputs Ṽ which is sampled
analogously. It is easy to see that Ũ and Ṽ are distributed uniformly over {0, 1}n. Since (Û , V̂ ) is
ϵ far from n-bit unit vector correlation in total variation distance,∑

u∈{0,1}n,Pr[Û=u]> 1
2n

Pr
[
Û = u

]
− 1

2n
≤ ϵ.

A similar condition holds for V̂ . By a union bound, Pr
[
Ũ = Û , Ṽ = V̂

]
≥ 1 − 2ϵ. From this it

follows that, when (U, V ) is distributed according to n-bit unit vector correlation,

TVD
(
(Ũ , Ṽ ), (U, V )

)
≤ (1− 2ϵ)TVD

(
(Û , V̂ ), (U, V )

)
+ 2ϵ ≤ 3ϵ.

Since (Ũ , Ṽ ) has uniform marginals, invoking Lemma 6.9 with π′, we obtain f, g such that f(Xm)
and g(Y m) are uniform in {0, 1}n and

Pr [f(Xm) = g(Y m)] ≥ 4−ℓ

32n
(1− 3ϵ)3.

However, by Lemma 6.10,

Pr [f(Xm) = g(Y m)] ≤ 2
−n

(
p−q
pq

)
.

The above inequalities together imply that 2(ℓ + 1) ≥ n(p−q
pq ) − log(n) when ϵ < 1

6 , proving the
theorem.

We conclude by proving Lemma 6.10.
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Proof of Lemma 6.10. This lemma is proved along the lines of [10, Theorem 1]. Bogdanov and
Mossel’s showed in [10, Theorem 1] that deriving n bits of common randomness using a source
of noisy common randomness and zero communication succeeds only with 2−Ω(n) probability. A
noisy common randomness correlation with ϵ crossover probability is one in which the sender gets
a random bit and the receiver gets the same bit with probability 1 − ϵ and its complement with
the remaining probability. Their approach used a version of hypercontractive inequality for noisy
common randomness distribution. The following argument is a generalization of their argument.
For every z ∈ {0, 1}n, define fz : Xm → {0, 1} and gz : Ym → {0, 1} as

fz(x
m) =

{
1, if f(xm) = z

0, otherwise,
gz(y

m) =

{
1, if g(ym) = z

0, otherwise.

Then,

Pr [f(Xm) = g(Y m)] =
∑

z∈{0,1}n
Pr [f(Xm) = z ∧ g(Y m) = z]

=
∑

z∈{0,1}n
EXm,Y m [fz(X

m) · gz(Y m)]. (10)

If S∗(X,Y ) < 1, there exist 1 < q < p such that, defining p′ = p
p−1 , for any pair of functions

f : Xm → R and g : Ym → R,

EXm,Y m [f(Xm) · g(Y m)] ≤
(
EXm [fp

′
(Xm)]

) 1
p′
(EY m [gq(Y m)])

1
q .

This follows almost immediately from known results; a formal proof is provided in Appendix F.
Using this in Eq. (10), and noting that fz and gz are Boolean functions,∑

z∈{0,1}n
EXm,Y m [fz(X

m) · gz(Y m)]

≤
∑

z∈{0,1}n
(EXm [fz(X

m)])
1
p′ (EY m [gz(Y

m)])
1
q

≤

 ∑
z∈{0,1}n

(EXm [fz(X
m)])

p′
p′

 1
p′
 ∑

z∈{0,1}n
(EY m [gz(Y

m)])
p
q

 1
p

. (11)

Here, the last inequality used Holder’s inequality:

k∑
i=1

|ai| · |bi| ≤

(
k∑

i=1

|ai|p
′

) 1
p′
(

k∑
i=1

|bi|p
) 1

p

.

Since f(Xm) and g(Y m) are uniform over {0, 1}n, for all z ∈ {0, 1}n,

EXm [fz(X
m)] = 2−n EY m [g(Y m)] = 2−n.
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Hence,
∑

z∈{0,1}n (EXm [fz(X
m)]) = 1, and since p > q,

∑
z∈{0,1}n

(EY m [gz(Y
m)])

p
q =

∑
z∈{0,1}n

2−n (EY m [gz(Y
m)])

p
q
−1

= 2
−n

(
p
q
−1

)
.

Using these observations in Eq. (11), we get Pr [f(Xm) = g(Y m)] ≤ 2
−n

(
p−q
pq

)
.

Remark. It is clear from the proof of Lemma 6.9 that n-bit unit vector correlation can be replaced by
any correlation that can be converted to common randomness with n-bits of common randomness
with success probability that is inverse polynomial in n. Hence, the result in Theorem 6.8 holds more
generally for families of correlations with this property; this includes 1-out-of-k(n) OT correlations
of string length n when k(n) is polynomial in n.

7 Role of Common Randomness in OMSR

In general, common randomness does not aid in OMSR whenever the target correlation does not
have inherent common randomness. Correlation (U, V ) is said to have non-trivial common ran-
domness if it can be represented as ((W,U ′), (W,V ′)) where W has non-zero entropy. In other
words, there are deterministic functions f and g such that f(U) = g(V ) with probability 1 and
H(f(U)) > 0. All (target) correlations considered in this work lack common information; more
generally, this holds for most correlations with cryptographic applications because, intuitively,
common information does not enable cryptographic tasks. In the case of perfect OMSR, by simply
conditioning on any realization of common randomness we get a perfect OMSR without common
randomness setup. However, for statistical OMSR, such a restriction need not necessarily be secure.
The following theorem is proved by showing the existence of a realization of common randomness
such that, restricted to this realization the OMSR still guarantees comparable security. A concrete
consequence of the following theorem is that common randomness does not aid in statistical OMSR
with negligible error for target correlations without common randomness. A proof of the theorem
is provided in Appendix D.

Theorem 7.1. Suppose there exists an ϵ-OMSR ⟨S,R⟩ converting a correlation (X,Y ) to n copies
of a target correlation (U, V ) using common randomness Q. If (U, V ) lacks common information,
there exists an O(n2

√
ϵ)-OMSR converting correlation (X,Y ) to n copies of a target correlation

(U, V ) with the same cost without using common randomness.
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A Details omitted from Section 4

Definition A.1 (Simulator based security for OMSR). An ϵ-error one-message secure reduction
(ϵ-OMSR) over (m, pXY , n, pUV , l) is an ϵ-OMR ⟨S,R⟩ (for converting m copies of the source cor-
relation pXY to n copies of the target correlation pUV using l bits of communication) which also
satisfies the following security properties:

Privacy against S. Let (Xi, Yi)i∈[m]
i.i.d.∼ pXY and Q,Q′ distributed uniformly over Q and Q′ are

the private randomness of S and R, respectively. Let (Ûn,M) ← S(Xm, Q), V̂ n ← R(M,Y m, Q′)
be the outputs for the sender and the receiver respectively. There exists a randomized simulator
SS : Un → Xm ×Q such that, (

Xm, Q, V̂ n
)
≈ϵ (SS(Un), V n) . (12)

Privacy against R. There exists a randomized simulator SR : Vn → Ym ×M×Q′ such that,(
Ûn, Y m,M,Q′

)
≈ϵ (Un,SR(V n)) . (13)

We say that an OMSR is perfect if ϵ = 0.

Security conditions in Definition 4.2 imply simulators with comparable security. Consider a
simulator SS such that for all un ∈ Un,

Pr [SS(un) = (xm, q)] = Pr
[
Xm = xm, Q = q|Ûn = un

]
From correctness, we have (

SS(Ûn), V̂ n
)
≈ϵ (SS(Un), V n) .

Consider the joint distribution (Xm, Y m, Q,Q′, Ûn,M, V̂ n) induced by OMSR, and the joint dis-
tribution (Ûn, V̂ n,SS(Un) induced by the simulation (when fed Ûn). Since xm and q completely
determine ûn, both in the real execution and the simulation,

TVD
[(
Xm, Q, V̂ n

)
,
(
SS(Ûn), V̂ n

)]
=

∑
xm,q,ûn,v̂n

∣∣∣ Pr
Xm,Q,Ûn,V̂ n

(xm, q, ûn, v̂n)− Pr
SS(Ûn),Ûn,V̂ n

(xm, q, ûn, v̂n)
∣∣∣

=
∑

xm,q,ûn,v̂n

∣∣∣Pr
Ûn

(ûn) Pr
XmQ|Ûn

(xm, q|ûn) Pr
V̂ n|XmQÛn

(v̂n|xm, q, ûn)

− Pr
Ûn

(ûn) Pr
XmQ|Ûn

(xm, q|ûn) Pr
V̂ n|Ûn

(v̂n|ûn)
∣∣∣

=
∑

xm,q,ûn,v̂n

Pr
Ûn

(ûn) Pr
XmQ|Ûn

(xm, q|ûn)
∣∣∣ Pr
V̂ n|XmQÛn

(v̂n|xm, q, ûn)− Pr
V̂ n|Ûn

(v̂n|ûn)
∣∣∣

= EXmQTVD[V̂
n|XmQÛn, V̂ n|Ûn] < ϵ.
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The other direction is true as well; simulators imply the security conditions in Definition 4.2
with comparable security. For simplicity, we restrict the analysis to senders that do not use pri-
vate randomness. The case of randomized senders can be proved similarly by introducing private
randomness as a random variable in the below argument.

Note that, since (X̃m, Ũn, V n) ≈ϵ (Xm, Ûn, V̂ n), there exists a distribution PXm,Ûn,V̂ n,X̃m,Ũn,V n

such that Pr[XmÛnV̂ n ̸= X̃mŨmV m] ≤ ϵ. Now, let A be an indicator of the event of XmÛnV̂ n =
X̃mŨnV n.

EXmTVD[V̂ n|XmÛn, V̂ n|Ûn]

=
∑
xm

Pr
Xm

(xm)
∑
vn

∣∣∣ Pr
V̂ n|Xm

(vn|xm)− Pr
V̂ n|Ûn

(vn|un)
∣∣∣

=
∑
xm

Pr
Xm

(xm)
∑
vn

∣∣∣∑
i

Pr
V̂ n,A|Xm

(vn, i|xm)− Pr
V̂ n,A|Ûn

(vn, i|un)
∣∣∣

≤
∑
xm

Pr
Xm

(xm)
∑
vn

∑
i

PrA(i)
∣∣∣ Pr
V̂ n|A,Xm

(vn|i, xm)− Pr
V̂ n|A,Ûn

(vn|i, un)
∣∣∣

≤ ϵ+
∑
xm

Pr
Xm

(xm)
∑
vn

∣∣∣ Pr
V̂ n|A,Xm

(vn|1, xm)− Pr
V̂ n|A,Ûn

(vn|1, un)
∣∣∣

= ϵ+
∑
i

Pr
A
(i)
∑
xm

Pr
Xm|A

(xm|i)
∑
vn

∣∣∣ Pr
V̂ n|A,Xm

(vn|1, xm)− Pr
V̂ n|A,Ûn

(vn|1, un)
∣∣∣

≤ 2ϵ+
∑
xm

Pr
Xm|A

(xm|1)
∑
vn

∣∣∣ Pr
V̂ n|A,Xm

(vn|1, xm)− Pr
V̂ n|A,Ûn

(vn|1, un)
∣∣∣

= 2ϵ+
∑
xm

Pr
X̃m|A

(xm|1)
∑
vn

∣∣∣ Pr
V n|A,X̃m

(vn|1, xm)− Pr
V n|A,Ũn

(vn|1, un)
∣∣∣.

The last line follows from the fact that we are conditioning on the event of XmÛnV̂ n =
X̃mŨnV n. Note also, that for ϵ < 1/2, and using the fact that the probability of the event
A = 1 to occur is at least 1− ϵ, we can upper bound the last line by

2ϵ+ 2
∑
xm

Pr
X̃m

(xm)
∑
vn

∣∣∣ Pr
V n|X̃m

(vn|xm)− Pr
V n|Ũn

(vn|un)
∣∣∣.

Before wrapping up the proof, let us prove the following claim.

Claim. Un = Ũn with a probability of at least 1− ϵD, where ϵD = n · k · ϵ and k is a constant that
depends on the description of the correlation (U, V ).

Proof. We will show that, for each 1 ≤ i ≤ n, Ui ̸= Ũi with probability at most kϵ. The claim then
follows by a union bound.

We will prove that Ui ̸= Ũi with probability at most kϵ when i = 1. The argument is similar
for any i ̸= 1. Let T be |U| × |U| dimensional matrix representing the conditional distribution of
Ũ1 conditioned on U1. We will refer to any rows and columns of T by the corresponding element in
U . That is, the value in row u ∈ U and column ũ ∈ U is denoted by Tu,ũ. Clearly, T is a stochastic
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matrix since each entry is non-negative and each row adds to 1. We have, Tu,ũ = PrŨ1|U1
(ũ|u) for

all u, ũ ∈ U .

Pr[U1 ̸= Ũ1] =
∑
u∈U

∑
ũ∈U\{u}

Pr
[
U1 = u, Ũ1 = ũ

]
=
∑
u∈U

Pr
U
(u)

∑
ũ∈U\{u}

Pr
[
Ũ1 = u|Ũ1 = ũ

]
≤
∑
u∈U

∑
ũ∈U\{u}

Tu,ũ. (14)

By the security definition, (V n, Un) ≈2ϵ (V
n, S(SS(Un)) = (V n, Ũn). Consequently,

(V1, U1) ≈2ϵ (V1, Ũ1). (15)

Let the |V|×|U| dimensional matrices D and D̃ denote the joint distributions (V1, U1) and (V1, Ũ1),
respectively. That is, Dv,u = PrV1,U1(v, u) and Dv,ũ = PrV1,Ũ1

(v, ũ). By the definition of matrices

T,D and D̃, it holds that DT = D̃. Furthermore, let E = |D − D̃|, where LHS is the absolute
value of the difference between D and D̃. By Eq. (15), the sum of all entries of E is at most 4ϵ. It
is shown in [1, Lemma 6] that this implies that the stochastic matrix T is kϵ close to I, the identity
matrix, for a constant k that depends only on the description of the distribution (U1, V1). In other
words, the sum of all entries of |I − T | is at most kϵ. Along with Eq. (14) and the fact that I is
diagonal, this implies that Pr[U1 ̸= Ũ1] ≤ kϵ.

We note a caveat that the result from [1] holds only when correlation (U1, V1) is non-redundant,
wherein non-redundancy requires that there exist no u, u′ such that the conditional distribution of
V1 conditioned on U1 = u is identical to that conditioned on U1 = u′. However, [1] also showed
that there is a perfectly secure non-interactive reduction (perfect NISR) from any correlation to
its so-called core which is obtained by collapsing the redundant symbols together and back. Thus,
using any source correlation, OMSR of n copies of a target correlation is equivalent to OMSR of n
copies of the core of the target correlation. This concludes the proof.

Now, let us denote byB an indicator of the event Un = Ũn. Since Ũn = S(X̃m), PrV n|X̃m(vn|xm) =

PrV n|X̃mŨn(vn|xm, un). Thus, we have,∑
xm

Pr
X̃m

(xm)
∑
vn

∣∣∣ Pr
V n|X̃m

(vn|xm)− Pr
V n|Ũn

(vn|un)
∣∣∣

=
∑
xm

Pr
X̃m

(xm)
∑
vn

∣∣∣ Pr
V n|X̃mŨn

(vn|xm, un)− Pr
V n|Ũn

(vn|un)
∣∣∣

=
∑
xm

Pr
X̃m

(xm)
∑
vn

∑
i

Pr
B
(i)
∣∣∣ Pr
V n|BX̃mŨn

(vn|i, xm, un)− Pr
V n|BŨn

(vn|i, un)
∣∣∣

≤ ϵD +
∑
xm

Pr
X̃m

(xm)
∑
vn

∣∣∣ Pr
V n|BX̃mŨn

(vn|1, xm, un)− Pr
V n|BŨn

(vn|1, un)
∣∣∣

= ϵD +
∑
xm

Pr
X̃m

(xm)
∑
vn

∣∣∣ Pr
V n|BX̃mUn

(vn|1, xm, un)− Pr
V n|BUn

(vn|1, un)
∣∣∣

= ϵD + 0.
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Overall, we have EXmTVD[V̂ n|XmÛn, V̂ n|Ûn] ≤ 2(ϵ+ ϵD).

Definition A.2 (OM(S)R for distribution families). Let p(Un,Vn), n ∈ N be a family of correlations
over the domains Un×Vn for each n ∈ N. For ϵ : N→ R≥0, an ϵ-error one-message (secure) reduction
(ϵ-OM(S)R) for converting the source correlation pXY over the domain X ×Y to correlation family
p(Un,Vn), n ∈ N is a sequence of of randomized algorithms ⟨Sn, Rn⟩, for each n ∈ N, where Sn :

Xm(n) → Un × {0, 1}ℓ(n) and R : {0, 1}ℓ(n) × Ym(n) → Vn such that ⟨Sn, Rn⟩ is an ϵ-OM(S)R
converting m(n) copies of pXY into a copy of pUnVn .
Correctness. For i.i.d. (Xi, Yi) ∼ pXY , i ∈ [m], and (Un, Vn) ∼ p(Un,Vn), when (Ûn,M)← S(Xm)

and V̂n ← R(M,Y m), (
Ûn, V̂n

)
≈ϵ (Un, Vn) (16)

An ϵ-OMR ⟨S,R⟩ is an ϵ-error one-way secure message reduction (ϵ-OMSR) if the following security
conditions are met:
Privacy against S. There exists a randomized simulator SS : Un → Xm such that,(

Xm, V̂n

)
≈ϵ (SS(Un), Vn) . (17)

Privacy against R. There exists a randomized simulator SR : Vn → Yn × L such that,(
Ûn,M, Y m

)
≈ϵ (Un,SR(Vn)) . (18)

We say that an OMR (resp. OMSR) is perfect if ϵ(n) = 0 for all n. The communication cost for the
OM(S)R is computed as lim sup ℓ(n)/n. If ϵ(n) is a negligible function, we say we can the sequence
of reductions a statistical one-message (secure) reduction with negligible error.

B Details omitted from Section 5

B.1 Proof of Lemma 5.3

Proof. We will use the F2
2 representation for F4, i.e., we represent F4 as {0 = 00, 1 = 01, α = 10, β =

11}. We will show how to locally convert an nzOLE to a (3, 2)-correlation; since this conversion is
a bijection, the conversion in the other direction will hold as well. This will allow us to generate
nzOLE instead of (3, 2)-correlations in our protocols.

Consider an nzOLE correlation ((a, s), (b, r)) where ab = s + r (and a, b ̸= 0). Denote the bit
decomposition of r and s by r = r1 ∥ r0 and s = s1 ∥ s0. Define x0 such that αx0 = a (in the
multiplicative subgroup F∗

4). Similarly define x1 such that αx1 = b. Note that both α and β are
generators of F∗

4
∼= Z3 and that x0, x1 ∈ Z3. Let x = x0 + x1 (in Z3).

Now, given (a, s), the first party will output w = (x0, u0, v0) = (x0, s0 + 1, s1 + 1); similarly,
given (b, r), the second party will output y = (x1, u1, v1) = (x1, r0, r1). It is easy to see that (w, y)
forms a (3, 2)-correlation, as illustrated below:

• When x = 0, we have ab = α0 = 01 = s+ r which makes s0 + r0 = 1 and s1 + r1 = 0.
Therefore, (u, v) = (0, 1) since u = u0+u1 = (s0+1)+r0 = 0, and v = v0+v1 = (s1+1)+r1 =
1.
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• When x = 1, we have ab = α1 = α = (10) = s+ r which makes s0 + r0 = 0 and s1 + r1 = 1.
Therefore, (u, v) = (1, 0) since u = (s0 + 1) + r0 = 1 and v = (s1 + 1) + r1 = 0.

• When x = 2, we have ab = α2 = β = (11) = s+ r which makes s0 + r0 = 1 and s1 + r1 = 1.
Therefore, (u, v) = (0, 0) since u = (s0 + 1) + r0 = 0 and v = (s1 + 1) + r1 = 0.

Observe that u = u0 + u1 = x mod 2, and v = v0 + v1 = (x + 1 mod 3) mod 2 and that both u
and v are shared randomly. Therefore, we can conclude that the parties indeed output a (3, 2)-
correlation. Moreover, since this transformation was a bijection, we can also reverse the process to
locally convert from a (3, 2)-correlation to a nzOLE correlation.

B.2 Proof of Theorem 5.4

Proof. It suffices to show a protocol for non-zero OLE over F4 since using Lemma 5.3, the parties
can locally convert it into a (3, 2)-correlation.

We will first note that it is possible for the following protocol to be generalized to non-zero OLE
over any field, but its efficiency scales poorly with the field size. The protocol will be quite similar
to the one in Theorem 5.2.

Recall that in a 1-out-of-3 OT correlation over F4, the sender S is given a tuple r = (r0, r1, r2)
that is uniform over F3

4. For ease of presentation the receiver R is given (b, rb) where b is a uniformly
random over F4\{0} and rb is its corresponding element in r.

Now, define a function fa,s(b) : F4\{0} → F4, parameterized by a, s as fa,s(b) = r where
r = ab+ s. In other words, the output r is such that ((a, s), (b, r)) is a valid nzOLE. Note that the
function f(a,s) is distinct for distinct (a, s).

Now, for each (a, s), define the vector r(a,s) = (f(a,s)(1), f(a,s)(α), f(a,s)(β)), i.e., defined by
evaluating f(a,s) at each b ∈ F4\{0}. Denote by Φ, the set of all possible vectors r ∈ F3

4 for which
there exist some (a, s) such that r(a,s) = r. Intuitively, Φ denotes the accept set for the conversion—
when the OT source correlation r given to S is in Φ, then it will send an “accept” message after
which both parties will compute the target nzOLE correlation by local computation; when r /∈ Φ,
then both parties will abort.

Now, given r ∈ Φ, to generate required the nzOLE correlation, S will find the (a, s) such that
r = r(a,s) and output it; the receiver R will simply output (b, rb).

Notice that this results in a valid nzOLE correlation since f(a,s)(b) = rb, and therefore r = ab+s.

Over a random r, the probability that r ∈ Φ can be given by 12
64 = 3

16 ; this is exactly the accept
probability of the protocol.

It is easy to see that both parties don’t learn any additional information about the other’s
output; The sender doesn’t know which value of b the receiver has. The receiver’s view consists of
only b, rb and he doesn’t know which a, s were consistent with the sender’s part of the correlation.

C Details omitted from Section 6

C.1 Proof of Lemma 6.2

If the amortized communication cost of c is achievable for OMR converting pXY to common ran-
domness, for an increasing sequence n1, n2, n3, . . ., there exist functions Si : Xmi → [2ni ] × [2c·ni ]
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and Ri : Ymi × [2c·ni ]→ [2ni ] for each ni such that, when (Xmi , Y mi) ∼ p⊗mi
XY , Si(X

mi) = (Ki,Mi)
and Ri(Y

mi ,Mi) = Li,

Pr [Ki ̸= Li] ≤ ϵi, (19)∑
k∈[2ni ]

∣∣∣Pr [Ki = k]− 1

2ni

∣∣∣ ≤ ϵi, (20)

where, ϵi → 0 as i → ∞. Fix some ni in the sequence; we will drop the subscript to avoid
redundancy and denote mi by m, Si by S, Ki by K and so on.

H(K|Y m) = I(K;M |Y m) +H(K|Y m,M)

≤ H(M) +H(K|L)
≤ c · n+ h(ϵ) + nϵ. (21)

Since M is distributed over 2c·n, H(g(Xn)) ≤ c · n. The next bound follows from a fundamental
result in information theory–Fano’s inequality. K takes values in [2n], by Eq. (19) and Fano’s
inequality [20, Theorem 2.10.1], H(K|L) ≤ h(ϵ) + nϵ.

The last inequality follows from these observations.
Next, since H(K|Y m) = H(K)− I(Y m;K) = I(Xm;K)− I(Y m;K) = H(K|Y m)−H(K|Xm),

expanding RHS using a telescopic summation,

H(K|Y m) = H(K|Y m)−H(K|Xm)

=

m∑
i=1

H(K|Xi−1Y m
i )−H(K|Xi, Y m

i+1)

=
m∑
i=1

H(K|Xi−1, Y m
i+1)−H(K|Xi, Y m

i+1)

−H(K|Xi−1, Y m
i+1) +H(K|Xi−1Y m

i )

=
m∑
i=1

I(K;Xi|Xi−1, Y m
i+1)− I(K;Yi|Xi−1, Y m

i+1). (22)

Let J be uniformly distributed over the set [m] independent of all the previously defined random
variables.

m∑
i=1

I(K;Xi|Xi−1, Y m
i+1)− I(K;Yi|Xi−1, Y m

i+1)

= mI(K;XJ |XJ−1, Y m
J+1, J)−mI(K;YJ |XJ−1, Y m

J+1, J)

= mI(K,XJ−1, Y m
J+1, J ;XJ)−mI(K,XJ−1, Y m

J+1, J ;YJ)

The last equality used the independence between YJ (and XJ) and X
J−1, Y 1

J+1, J . Hence, defining
U = KX1, . . . , XJ−1, YJ+1, . . . , YmJ , by Eq. (21) and Eq. (22),

c · n+ h(ϵ) + nϵ ≥ mI(U ;XJ)−mI(U ;YJ). (23)
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Furthermore, by Eq. (20), f(Xm) is ϵ-close to the uniform distribution over [2n]. Hence, by Fano’s
inequality, H(K) = H(f(Xm)) ≥ n− h(ϵ)− nϵ. Thus,

n− h(ϵ)− nϵ ≤ H(K) = I(K;Xm)

=
m∑
i=1

I(K;Xi|X1, . . . , Xi−1)

= mI(K;XJ |X1, . . . , XJ−1)

≤ mI(U ;XJ).

Finally, since K is a function of Xm, the following Markov chain holds:

U ↔ XJ ↔ YJ .

We may identify (XJ , YJ) with generic random variables (X,Y ) ∼ pXY and conclude from the
above observations that there exists a random variable U satisfying the Markov chain U ↔ X ↔ Y
such that n − h(ϵ) − nϵ ≤ mI(U ;X) and c · n + h(ϵ) + nϵ ≥ mI(U ;XJ) −mI(U ;YJ). Hence, we
conclude that, for each ni,

c+ ϵi + h(ϵi)/ni
1− ϵi − h(ϵi)/ni

≥ I(Ui;X)− I(Ui;Y )

I(Ui;X)
≥ inf

p(u|x)

I(U ;X)− I(U ;Y )

I(U ;X)
.

Since ϵi → 0 as i→∞, by definition of S∗(X,Y ),

c = lim
i→∞

R+ ϵi + h(ϵi)/ni
1− ϵi − h(ϵi)/ni

≥ inf
p(u|x)

I(U ;X)− I(U ;Y )

I(U ;X)
= 1− S∗(X,Y ).

This concludes the proof.

C.2 Proof of Lemma 6.5

Let (Xk, Y ) be a 1-out-of-k correlation OT over Zn. That is, Xi is i.i.d. according to uniform
distribution over Zn for all i ∈ [k] and Y = (B,XB) where B is uniform over [k] independent of
Xk.

S∗(Xk, Y ) ≥ 1
k - Let U∗ = Xk. Then, U∗ satisfies the Markov chain U∗ ↔ Xk ↔ Y . We have,

S∗(Xk, Y ) = sup
p(u|xk)

I(U ;Y )

I(U ;Xk)
≥ I(U∗;Y )

I(U∗;Xk)
=
I(Xk;XB, B)

I(Xk;Xk)
=

1

k
.

S∗(Xk, Y ) ≤ 1
k - Let U be any random variable satisfying the Markov chain U ↔ Xk ↔ Y . U

can be equivalently described as U = f(Xk, R) where R is independent of both Xk and Y .

I(U ;Y )

I(U ;Xk)
=

I(f(Xk, R);Y )

I(f(Xk, R);Xk)
=

∑
r Pr [R = r] I(f(Xk, r);Y )∑
r Pr [R = r] I(f(Xk, r);Xk)

≤ max
r

I(f(Xk, r);Y )

I(f(Xk, r);Xk)

where the inequality follows from the fact that, for any finite k,
∑k

i=1 ai∑k
i=1 bi

≤ ak
bk

if ai
bi
≤ ai+1

bi+1
for all i,

which in turn can be proved using induction.
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Claim. For any finite k,
∑k

i=1 ai∑k
i=1 bi

≤ ak
bk

if ai
bi
≤ ai+1

bi+1
for all i

Proof. We prove this using induction: The claim clearly holds for k = 1. Suppose the claim holds
for k − 1, then ∑k−1

i=1 ai∑k−1
i=1 bi

≤ ak−1

bk−1
≤ ak
bk

But, since x+x′

y+y′ ≤
x′

y′ whenever x
y ≤

x′

y′ , we get∑k
i=1 ai∑k
i=1 bi

≤ ak
bk
.

Note that, we can get rid of r such that I(f(Xk, r);Xk) = 0 (which implies H(f(Xk, r) = 0)
from both numerator and denominator before applying the mentioned induction.

The above discussion essentially shows that we need to consider only U such that U = f(Xk)
for some deterministic function f . Hence, proceeding with U = f(Xk) for some function f ,

I(U ;Y )

I(U ;Xk)
=
H(f(Xk))−H(f(Xk)|XB, B)

H(f(Xk))
.

We first establish a claim to help us bound this term.

Claim.
∑k

i=1H(f(Xk)|Xi) ≥ (k − 1)H(f(Xk)).

Proof. Firstly, for every i ∈ [k], denoting X1, . . . , Xi−1, Xi+1, . . . , Xk by X−i,

H(f(Xk)) = I(f(Xk);Xk) = I(f(Xk);Xi) + I(f(Xk);X−i|Xi)

= I(f(Xk);Xi) +H(f(Xk)|Xi).

The last equality is due to the fact that H(f(Xk)|Xk) = 0. Next,

k∑
i=1

I(f(Xk);Xi) ≤
k∑

i=1

I(f(Xk), Xi−1
1 ;Xi)

=

k∑
i=1

I(f(Xk);Xi|Xi−1
1 )

= I(f(Xk);Xk) = H(f(Xk)).

The first equality in the second line is due to the chain rule for mutual information and {Xi}i=[k]

being independent of each other. Now we can conclude the proof by

kH(f(Xk)) =

k∑
i=1

H(f(Xk)) =

k∑
i=1

H(f(Xk)|Xi)) +

k∑
i=1

I(f(Xk);Xi)

≤
k∑

i=1

H(f(Xk)|Xi) +H(f(Xk))

This proves the claim.

41



Using the above claim,

H(f(Xk))−H(f(Xk)|XB, B)

H(f(Xk))
= 1−

∑k
i=1H(f(Xk)|Xi)

kH(Xk)
≤ 1− k − 1

k
=

1

k
.

Thus, we conclude that S∗ of 1-out-of-k OT is 1
k .

C.3 Proof of Lemma 6.6

Let (X,Y ) be an OLE correlation over a field F. That is X = (A,S), Y = (B,R), where A,B, S
are i.i.d. according to uniform distribution over F and R = S − AB. Note that this is isomorphic
to the definition we gave in the preliminaries.

S∗(X,Y ) ≥ 1
2 - Let U∗ = X. Then, U∗ satisfies the Markov chain U∗ ↔ X ↔ Y . We have,

S∗(X,Y ) = sup
p(u|x)

I(U ;Y )

I(U ;X)
≥ I(U∗;Y )

I(U∗;X)
= 1− H(X|Y )

H(X)
= 1− log |F|

2 log |F|
=

1

2
. (24)

S∗(X,Y ) ≤ 1
2 - Let U be any random variable satisfying the Markov chain U ↔ X ↔ Y . Similarly

to the discussion in Appendix C.2, it is sufficient to consider U in the form of U = f(X) for some
deterministic function f . Thus, let us continue with the analysis:

I(U ;Y )

I(U ;X)
=
H(f(A,S))−H(f(A,S)|B,R)

H(f(A,S))
.

Claim. 2H(f(A,S)|B,R) ≥ H(f(A,S))

Proof. We have

2H(f(A,S)|B,R) = 2H(f(A,S)|S −AB,B)

= 2
∑
b

Pr [B = b]H(f(A,S)|S − bA)

=
1

|F|
∑
b

H(f(A,S)|S − bA) +H(f(A,S)|S − (1 + b)A)

Let U = S − bA and V = S − (1 + b)A. We will show that, for each b ∈ F, W and V are
independent, and H(f(A,S)|W,V ) = 0. Then, the claim follows from the same argument as in the
proof of Appendix C.2.

Firstly, since S and A are independent and uniform over F, for any b, U−V = A is independent
of U = S−bA. Hence, U and V are independent. Secondly, for each b, A = U−V and S = U+bA.
Hence, (A,S) is fully determined by (U, V ). Hence, H(f(A,S)|U, V ) = 0 for all b. This concludes
the proof.

42



C.4 Proof of Lemma 6.7

Let (X,Y ) be an additive correlation over a group G, and let D be the distribution promised from

the definition. We will prove that if H(D) < log|G|
2 then S∗(X,Y ) > 1

2 .

S∗(X,Y ) = sup
p(u|x)

I(U ;Y )

I(U ;X)
≥ I(X;Y )

I(X;X)
= 1− H(X|Y )

H(X)
= 1− H(D)

log |G|
>

1

2

C.5 Proof of Lemma 6.9

Proof of Lemma 6.9. The construction of f, g from π in our proof is similar to the construction
of zero communication protocol in the proof of [18, Theorem 2.6] with a notable difference: In
the latter, the output of the interactive protocol is a pair of random vectors that agree with high
probability, whereas in our case, the n-bit vector correlation output by π disagree on at most one
coordinate with high probability. Hence, to get agreement, we flip the value at a random coordinate
of one of the output vectors; this achieves agreement with protbability 1

n .
Let πS(X,Y ) and πR(X,Y ) be the outputs of S and R, respectively. Functions f and g are

defined as follows:

f(X): Sample Ŷ according to pY |X conditioned on X and output Û = πS(X, Ŷ ).

g(Y ): Sample X̂ according to pX|Y conditioned on Y and compute V̂ = πR(X, Ŷ ). Flip a uniformly

random coordinate i of V̂ to obtain Ṽ and output Ṽ .

Since (X, Ŷ ) and (X,Y ) are identically distributed, Û = (X, Ŷ ) is uniformly distributed over
{0, 1}n. Similarly, V̂ is uniformly distributed over {0, 1}n. Ṽ is also uniformly distributed over
{0, 1}n since it is obtained by flipping a random coordinate of V̂ . Hence, to prove the lemma, it

suffices to upper bound Pr
[
Û = Ṽ

]
.

Let θ = (θS , θR), where θS and θR are any realization of private randomness of S and R in π.
Let |a− b| denote the Hamming distance between two strings a and b. Define the following events:

• Eθ is the event “|πS(X,Y ) − πR(X,Y )| = 1 conditioned on private randomness of S and R
being θS and θR, respectively”.

• E′
θ is the event “|Û − V̂ | = 1 conditioned on private randomness used by f and g in π(X, Ŷ )

and π(X̂, Y ) are θS and θR, respectively”.

Claim. For any θ = (θS , θR), Pr [E
′
θ] ≥

(Pr[Eθ])
3

32 4−ℓ.

We first prove the lemma assuming the claim and prove the claim afterwards. Since the coordinate
i that was flipped to obtain Ṽ from V̂ was chosen uniformly and independently, by definition of
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E′
θ, Pr

[
Û = Ṽ |E′

θ

]
= 1

n . Hence,

Pr
[
Û = Ṽ

]
=
∑
θ

Pr [θ] Pr
[
E′

θ

]
Pr
[
Û = Ṽ |E′

θ

]
=

1

n

∑
θ

Pr [θ] Pr
[
E′

θ

]
≥ 1

n

∑
θ

Pr [θ]
(Pr [Eθ])

3

32
4−ℓ

≥ 4−ℓ

32n

(∑
θ

Pr [θ] Pr [Eθ]

)3

.

Finally, ∑
θ

Pr [θ] Pr [Eθ] = Pr [|πS(X,Y )− πR(X,Y )| = 1] ≥ 1− ϵ.

The last inequality used correctness of π by which, when (U, V ) is an n-bit unit vector correlation,

(πS(X,Y ), πR(X,Y )) ≈ϵ (U, V )

=⇒ Pr [|πS(X,Y )− πR(X,Y )| = 1] ≥ Pr [|U − V | = 1]− ϵ,

where the implication follows from data processing inequality for total variation distance. We
conclude the proof of the lemma by proving the above claim

of claim. When private randomness is fixed to θ, for any realization (x, y) = (X,Y ), the transcript
of π is a deterministic function of (x, y), which we denote by t(x, y). For a transcript t ∈ {0, 1}ℓ,
let Qx(t) be the probability with which the transcript of π is t conditioned on X = x and the
private randomness of S is θS ; similarly, let Qy(t) be the probability with which the transcript of
π is t conditioned on Y = y and the private randomness of R is θS . Let G = {(x, y) : |πS(x, y) −
πR(x, y)| = 1}; by definition of Eθ, Pr [(X,Y ) ∈ G] = Eθ.

Define

B =
{
(x, y) :

(
Qx(t(x, y)) < Pr [Eθ] 2

−ℓ/4
)
∨
(
Qy(t(x, y)) < Pr [Eθ] 2

−ℓ/4
)}

.

We will show that B occurs with probability at most Pr [Eθ] /2.

Pr
[
(X,Y ) :

(
QX(t(X,Y )) < Eθ2

−ℓ/4
)]

=
∑
x

∑
t:Qx(t)<

Pr[Eθ]
4

2−ℓ

∑
y:t(x,y)=t

pXY (x, y)

=
∑
x

pX(x)
∑

t:Qx(t)<
Pr[Eθ]

4
2−ℓ

Qx(t)

<
∑
x

pX(x)
∑

t:Qx(t)<
Pr[Eθ]

4
2−ℓ

Pr [Eθ] 2
−ℓ/4

≤ Pr [Eθ] 2
−ℓ/4.
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Similarly,
{
(x, y) : Qy(t(x, y)) < Pr [Eθ] 2

−ℓ/4
}
also occurs with probability less that Pr [Eθ] 2

−ℓ/4.
Hence, B occurs with probability at most Pr [Eθ] /2. Now, the probability of E′

θ can be upper
bounded as

Pr
[
E′

θ

]
≥

∑
(x,y)∈G

pXY (x, y)Qx(t(x, y))Qy(t(x, y))

≥
∑

(x,y)∈G\B

pXY (x, y)Qx(t(x, y))Qy(t(x, y))

≥
∑

(x,y)∈G\B

pXY (x, y)

(
Pr [Eθ] 2

−ℓ

4

)2

≥ (Pr [Eθ])
24−ℓ

16
(Pr [(X,Y ) ∈ G]− Pr [(X,Y ) ∈ B])

≥ (Pr [Eθ])
34−ℓ

32
.

D Proof of Theorem 7.1 omitted from Section 7

Let (Ûn,M) = S(X,Q), V̂ n = R(M,Y,Q), and let (Ui, Vi) be i.i.d. according to the correlation
pUV for all i ∈ [n]. By ϵ-correctness of ⟨S,R⟩,(

Ûn, V̂ n
)
≈ϵ (Un, V n) .

We will denote un ∈ Un and vn ∈ Vn by u and v. By ϵ-security against R, denoting the private
randomness by Q′∑

xm,q′,q

Pr
[
Xm = xm, Q′ = q′, Q = q

]∑
un

Pr
[
Ûn = un|Xm = xm, Q′ = q′, Q = q

]
· TVD

((
V̂ n
∣∣∣Xm = xm, Q′ = q′, Q = q

)
,
(
V̂ n
∣∣∣Ûn = un

))
≤ ϵ.

Marginalizing over Q′ and Xm, and using the definition of TVD,∑
q∈Q

Pr [Q = q]
∑
u∈Un

Pr
[
Ûn = u|Q = q

]
∑
v∈Vn

∣∣∣Pr [V̂ n = v|Ûn = u, Q = q
]
− Pr [V n = v|Un = u]

∣∣∣ ≤ 2ϵ.

Similarly, ∑
q∈Q

Pr [Q = q]
∑
u∈Vn

Pr
[
V̂ n = v|Q = q

]
∑
u∈Un

∣∣∣Pr [Ûn = u|V̂ n = v, Q = q
]
− Pr [Un = u|V n = v]

∣∣∣ ≤ 2ϵ.
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By a Markov bound, there exists q ∈ Q such that,

Pr

(
Ûn = u :

∑
v∈Vn

∣∣∣Pr [V̂ n = v|Ûn = u, Q = q
]
− Pr [V n = v|Un = u]

∣∣∣
> 2
√
ϵ
∣∣∣Q = q

)
≤ 2
√
ϵ, (25)

Pr

(
V̂ n = v :

∑
u∈Un

∣∣∣Pr [Ûn = u|V̂ n = v, Q = q
]
− Pr [Un = u|V n = v]

∣∣∣
> 2
√
ϵ
∣∣∣Q = q

)
≤ 2
√
ϵ. (26)

Let Sq(X) = S(X, q) and Rq(M,Y ) = R(M, (Y, q)). We will show that ⟨Sq, Rq⟩ is an ϵ′-OMSR,
where ϵ′ = O(n2

√
ϵ). Since Q is independent of (Xm, Y m), the distribution over the source corre-

lation does not change when conditioning on Q = q. The above inequalities will imply that this
reduction satisfies security against S and R with O(n2

√
ϵ) error if we show that(

Ûn, V̂ n|Q = q
)
≈n2√ϵ (Un, V n) .

We now make a few definitions that we would use in the analysis: In the sequel, we allow the
rows and columns of matrices to be indexed by sets for ease of presentation. Rows, columns and
indices in the matrix will be referred to using the members from appropriate sets. For example, if
M is a X ×Y dimensional matrix, the (M)x,y is the entry in the matrix at row index x and column
index y. Similarly, if η is a X dimensional row vector, then (µ)x is the entry in the column x of the
vector. We will drop the parentheses if there is no confusion. Let P̂ and P be correlation matrices
of dimensions Un ×Vn corresponding to correlations (Ûn, V̂ n) and (Un, V n), respectively. That is,
for each u ∈ Un,v ∈ Vn,

P̂u,v = Pr
[
Ûn = u, V̂ n = v|Q = q

]
Pu,v = Pr [Un = u, V n = v] .

LetW,W ′ be matrices of dimensions Un×Vn and Vn×Un, respectively, corresponding to conditional
distributions pUn|V n and pV n|Un ; that is, for any u,v

Wu,v = Pr [V n = v|Un = u] W ′
v,u = Pr [Un = u|V n = v] .

Similarly, define matrices Ŵ , Ŵ ′ corresponding to conditional distributions p
Ûn|V̂ n and p

V̂ n|Ûn such

that, for any u,v,

Ŵu,v = Pr
[
V̂ n = v|Ûn = u, Q = q

]
Ŵ ′

v,u = Pr
[
Ûn = u|V̂ n = v, Q = q

]
.

Finally, let µ and µ̂ be the Un dimensional vectors corresponding to the marginal distribution of
Un and Ûn, and let D and D̂ be the Un × Un dimensional diagonal matrices corresponding to µ
and µ̂. That is,

µu = Du,u = Pr [Un = u] µ̂u = D̂u,u = Pr
[
Ûn = u|Q = q

]
.

The above matrices satisfy the following conditions:
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(i). DW = P and D̂Ŵ = P̂ .

(ii). µWW ′ = µ and µ̂Ŵ Ŵ ′ = µ̂.

For each u,v,

Pu,v = Pr [Un = u, V n = v] = Pr [Un = u] Pr [V n = v|Un = u] = (DW )u,v;

the other equality can be similarly shown to prove (i). For each u, w.r.t. correlation (Un, V n),

(µWW ′)u =
∑
u′

µu′

(∑
v

Wu′,vW
′
v,u

)
=
∑
u′

Pr
[
u′](∑

v

Pr
[
v|u′]Pr [u|v])

=
∑
u′,v

Pr
[
u′,v

]
Pr [u|v] =

∑
v

Pr [v] Pr [u|v] = Pr [u] = µu;

the other equality can be similarly shown to prove (ii).
Using (i),

2TVD
(
(Un, V n) ,

(
Ûn, V̂ n|Q = q

))
=
∑
u,v

|Pu,v − P̂u,v|

=
∑
u,v

|(DW )u,v −
(
D̂Ŵ

)
u,v
|

=
∑
u,v

|µu(W )u,v − µ̂u
(
Ŵ
)
u,v
|

=
∑
u,v

|µ̂u
(
Wu,v − Ŵu,v

)
+ Ŵu,v(µu − µ̂u) +

(
Wu,v − Ŵu,v

)
(µu − µ̂u)|.

We will denote the matrix obtained by taking absolute of each entry in a matrixM by |M |; similarly,
absolute value of a vector µ is denoted by |µ|. We get the following upper bound:

2TVD
(
(Un, V n) ,

(
Ûn, V̂ n|Q = q

))
≤
∑
u,v

µ̂u|Wu,v − Ŵu,v|+ Ŵu,v|µu − µ̂u|+ |Wu,v − Ŵu,v||µu − µ̂u|

≤

(∑
v

∑
u

µ̂u|Wu,v − Ŵu,v|

)
+

(∑
v

∑
u

|µu − µ̂u|2Ŵu,v +Wu,v

)
≤
∑
v

(
µ̂|W − Ŵ |

)
v
+
∑
v

(
|µ− µ̂|

(
2Ŵ +W

))
v
.
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Using the definitions of µ̂,W, Ŵ , the first term in the RHS can be bounded as∑
v

(
µ̂|W − Ŵ |

)
v

=
∑
v

∑
u

µ̂u|Wu,v − Ŵu,v|

=
∑
v

∑
u

Pr
[
Ûn = u|Q = q

]
∣∣∣Pr [V̂ n = v|Ûn = u, Q = q

]
− Pr [V n = v|Un = u]

∣∣∣
=
∑
u

Pr
[
Ûn = u|Q = q

]
∑
v

∣∣∣Pr [V̂ n = v|Ûn = u, Q = q
]
− Pr [V n = v|Un = u]

∣∣∣ ≤ 4
√
ϵ,

where the final inequality follows from Eq. (25). Next, we bound the second term. Let B = WW ′

and E = ŴŴ ′ −WW ′. For any N , repeatedly using (ii),

µ̂(B + E)N = µ̂(ŴŴ ′)N = µ̂(ŴŴ ′)N−1 = . . . = µ̂(ŴŴ ′) = µ̂ (27)

Hence,

µ− µ̂ = µ− µ̂BN − µ̂
(
(B + E)N −BN

)
The plan going forward is as follows: The stochastic matrix B can be interpreted as the state
transition matrix of a Markov process with stationary distribution µ by (ii). Using a convergence
theorem for Markov chains, we can choose N to make µ̂BN approach arbitrarily close to µ in total
variation distance. Indeed, N can be chosen to be O(n2). Further, we show that µ̂(B + E)N and
µ̂BN are close. Thus, we conclude that the total variation distance between µ and µ̂ is at most ϵ′

as required. The two conditions we require are stated in the following claims:

Claim. When the correlation (U, V ) has no common information, there exists a constant k that
depends only on entries of pUV such that, when N = kn2,

∑
u|(µ̂BN )u − µu| ≤ ϵ.

Claim.
∑

u|
(
µ̂(B + E)N − µ̂BN

)
u
| ≤ 8N

√
ϵ.

Assuming the above claims,∑
u

(|µ− µ̂|)u ≤
∑
u

|(µ̂BN )u − µu|+ |
(
µ̂(B + E)N − µ̂BN

)
u
| (28)

≤ ϵ+ 8N
√
ϵ. (29)

We conclude by proving the claims.

Proof of the first claim. We will interpret the stochastic matrix B as the state transition matrix of
a Markov process. By (ii), µ is the stationary distribution of this stochastic process. We prove the
claim by showing an upper bound on the mixing time in terms of the eigenvalue gap of the Markov
chain. Specifically, we use the following theorem:
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Theorem D.1. Consider an ergodic, reversible Markov chain with state space Ω, state transition
matrix P and stationary distribution π. For any ϵ > 0, i ∈ Ω,∑

j∈Ω
|P τ

i,j − πj | ≤ ϵ when τ =
1

1− λ2
ln

(
1

π∗ϵ

)
,

where π∗ = mini∈Ω πi (the probability of i under distribution π) and λ2 be the second largest Eigen
value of P .

We first argue that B is reversible; i.e., µuBu,u′ = µu′Bu′,u for all u,u′. Noting that B =WW ′

and using the definitions of W and W ′,

µuBu,u′ = Pr [Un = u]

(∑
v

Pr [V n = v|Un = u] · Pr
[
Un = u′|V n = v

])
=
∑
v

Pr [Un = u] Pr [V n = v|Un = u] · Pr
[
Un = u′|V n = v

]
=
∑
v

Pr [Un = u|V n = v] · Pr [V n = v] · Pr
[
Un = u′|V n = v

]
=
∑
v

Pr [Un = u|V n = v] · Pr
[
V n = v|Un = u′] · Pr [Un = u′]

= Pr
[
Un = u′](∑

v

Pr
[
V n = v|Un = u′] · Pr [Un = u|V n = v]

)
= µu′Bu′,u.

We will show that Bk is ergodic for a constant k independent of n; this amounts to showing that all
entries of Bk are non-zero. Correlation (U, V ) has no common information, hence, the correlation
graph of (U, V ) is connected. Correlation graph is the bipartite graph on U ∪ V with an edge
between u and v if Pr [u, v] > 0. Let P1, W1 and W ′

1 be the correlation matrix of pXY , and
conditional distribution matrices for pU |V and pV |U , respectively (defined analogous to P , W and
W ′). Since the correlation graph of (U, V ) is connected, (interpreting W1,W

′
1 as state transition

matrices), W and W ′ correspond to irreducible Markov processes. Hence, state transition matrix
B1 = W1W

′
1 also correspond to an irreducible Markov process. Hence, there exists a constant k

determined entirely by the description of pUV for which (Bk
1 )u,u′ > 0 for all u,u′. Finally, observe

that P = P⊗n
1 , W = W⊗n

1 and W ′ = W⊗n
1 , where P⊗n

1 is the n fold tensor product of P1 with
itself and so on. Consequently, B = B⊗n

1 . Thus, irrespective of the value of n, all entries of Bk are
non-zero, and the corresponding Markov process is ergodic. Since B is irreversible, so is Bk.

At this point we invoke Theorem D.1 with state transition matrix Bk and stationary distribution
µ (note that the stationary distribution of B and Bk are the same). Since the largest eigenvalue
of any state transition matrix is 1, the second largest eigenvalue of Bk coincides with the second
largest eigenvalue of Bk

1 say λ2. This roots from the fact that the Eigen value of M ⊗M is the set
of all pairwise products of Eigen values of M . Finally,

µ∗ = min
u∈Un

Pr [Un = u] =

(
min
u∈U

Pr [U = u]

)n

.
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Thus, for all u,∑
u′

|(Bτ )u,u′ − µu′ | ≤ ϵ when τ =
n

1− λk2
ln

(
1

ϵ ·minu(Pr [U = u])

)
. (30)

Let B′ be a Un × Un dimensional stochastic matrix such that (B′)u,u′ = µu′ for all u,u′. Letting
N = τ , ∑

u

|(µ̂BN )u − µu| =
∑
u

|(µ̂BN )u − (µ̂B′)u| ≤
∑
u

(
µ̂|BN −B′|

)
u
≤ ϵ.

The last inequality follows the fact that each row of |Bn −B′| sums up to at most ϵ (by Eq. (30)),
and that the sum of all entries of (non-negative) vector µ is 1.

Proof of the second claim. We have

BN = (B + E)BN−1 − EBN−1

= (B + E)2BN−2 − (B + E)EBN−2 − EBN−1

= (B + E)3BN−3 − (B + E)2EBN−3 − (B + E)EBN−2 − EBN−1

...

= (B + E)N −
N∑
i=1

(B + E)i−1EBN−i.

Since µ̂(B + E)i = µ̂(ŴŴ ′)i = µ̂ for all i,

µ̂(B + E)N − µ̂BN =

N∑
i=1

µ̂(B + E)i−1EBN−i =

N∑
i=1

µ̂EBN−i.

We have µ̂E = µ̂Ŵ Ŵ ′ − µ̂WW ′ = µ̂− µ̂WW ′. Hence,

µ̂E = µ̂− µ̂WW ′ = µ̂− µ̂(Ŵ +W − Ŵ )(Ŵ ′ +W ′ − Ŵ ′)

= µ̂− µ̂Ŵ Ŵ ′ − µ̂Ŵ (W ′ − Ŵ ′)− µ̂(W − Ŵ )W ′

= µ̂Ŵ (W ′ − Ŵ ′)− µ̂(W − Ŵ )W ′. (31)
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Using the definitions of µ̂,W ′, Ŵ ′ and Ŵ ,∑
u

∣∣∣ (µ̂Ŵ (W ′ − Ŵ ′)
)
u

∣∣∣
≤
∑
u

(
µ̂Ŵ |W ′ − Ŵ ′|

)
u

=
∑
u

∑
v

(
µ̂Ŵ

)
v
|W ′

v,u − Ŵ ′
v,u|

=
∑
u

∑
v

(∑
u′

Pr
[
Ûn = u′|Q = q

]
Pr
[
V̂ n = v|Ûn = u′, Q = q

])
∣∣∣Pr [Ûn = u|V̂ n = v, Q = q

]
− Pr [Un = u|V n = v]

∣∣∣
=
∑
u

∑
v

Pr
[
V̂ n = v|Q = q

]
∣∣∣Pr [Ûn = u|V̂ n = v, Q = q

]
− Pr [Un = u|V n = v]

∣∣∣
=
∑
v

Pr
[
V̂ n = v|Q = q

]
∑
u

∣∣∣Pr [Ûn = u|V̂ n = v, Q = q
]
− Pr [Un = u|V n = v]

∣∣∣ ≤ 4
√
ϵ, (32)

where the final inequality follows from Eq. (26). We have already shown that∑
v

(
µ̂|W − Ŵ |

)
v
≤ 4
√
ϵ. (33)

If M is a stochastic matrix, for any vector µ′ (with non-negative entries),∑
u

(µ′M)u ≤ γ
∑
u

(µ)u. (34)

Hence, using Eqs. (32) to (34) in Eq. (31),∑
u

|µ̂E|u ≤
∑
u

∣∣∣ (µ̂Ŵ (W ′ − Ŵ ′)
)
u

∣∣∣+∑
u

∣∣∣ (µ̂(W − Ŵ )W ′
)
u

∣∣∣
≤ 4
√
ϵ+

∑
v

(
µ̂|W − Ŵ |

)
v
≤ 8
√
ϵ.

Noting that BN−i is stochastic, we conclude that

∑
u

∣∣ (µ̂(B + E)N − µ̂BN
)
u

∣∣ ≤ N∑
i=1

∑
u

|µ̂E|u ≤ 8N
√
ϵ.

This concludes the proof of the claim and the theorem.

51



E Remarks on Correlations that Lack Common Randomness

In the informal Theorems 2.3 and 2.4 we talked about correlations that lack common randomness.
However, in the formal versions of them, we meant two different notions. In Theorem 6.8 we meant
that S∗(X,Y ) < 1, and in Theorem 7.1 we meant that there don’t exist functions f, g such that
f(X) = g(Y ) with probability 1 where H(f(X)) > 0. We will show that these two notions are in
fact equivalent.

We will show that for a correlation (X,Y ) it holds that S∗(X,Y ) = 1 if and only if there exist
deterministic functions f and g such that f(X) = g(Y ) with probability 1 and H(f(X)) > 0.
⇒: If S∗(X,Y ) = 1, from the discussion in Appendix C.2, we know that there exists U such that
U = f(X) (for some function f) and it holds that

I(U ;Y )

I(U ;X)
=
H(f(X))−H(f(X)|Y )

H(f(X))
= 1.

This means that H(f(X)|Y ) = 0. In other words, there exists a function g such that g(Y ) =
f(X) with probability 1. Note also, that from the definition of S∗ it must be that H(U) > 0.

⇐: Let us consider U = f(X). It holds that S∗(X,Y ) ≥ I(U ;Y )
I(U ;X) =

H(g(Y ))
H(f(X) = 1. Since S∗(X,Y ) ≤ 1,

we conclude that S∗(X,Y ) = 1.

F Remarks on Hyper-Contractivity

If S∗(X,Y ) < 1, there exist 1 < q < p such that, defining p′ = p
p−1 , for any pair of functions

f : Xm → R and g : Ym → R,

EXm,Y m [f(Xm) · g(Y m)] ≤
(
EXm [fp

′
(Xm)]

) 1
p′
(EY m [gq(Y m)])

1
q .

To show this, we will use the following simplified definitions and facts from [35] and [5]:

• We will say (p, q) ∈ RX,Y , for 1 ≤ q ≤ p if and only if for any f : X → R and g : Y → R it
holds that

EX,Y [f(X) · g(Y )] ≤
(
EX [fp

′
(X)]

) 1
p′
(EY [g

q(Y )])
1
q .

• We will define q∗X,Y (p) = inf{1 ≤ q : (p, q) ∈ RX,Y }.

• limp→∞
q∗X,Y (p)−1

p−1 = S∗(X,Y ).

• S∗(Xm, Y m) = S∗(X,Y ), for any positive integer m.

Fix any positive integer m. We know that limp→∞
q∗Xm,Y m (p)−1

p−1 = S∗(Xm, Y m) = S∗(X,Y ) < 1.

Thus, there exists p > 1 such that
q∗Xm,Y m (p)−1

p−1 < 1, hence, q∗Xm,Y m(p) < p. This means that

inf{1 ≤ q : (p, q) ∈ RXm,Y m} < p, thus, there exists q′ < p such that (p, q′) ∈ RXm,Y m . This
finishes our proof.
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G Secure Reduction converting OT to n-UV

In this section, we present a protocol that achieves the asymptotic lower bound proven in Theo-
rem 6.8. Before showing the protocol we will first describe a few sub-protocols to help us out.

Basic protocol for generating n-UV. Given source correlation 1-out-of-n OT over n-bit
strings, we can generate a n-bit unit vector correlation with n2 bits of communication. This can be
done by the sender to sample a random n-bit string u and a random permutation π ∈ Sn, and to run
an OT protocol with the secrets - (s1, . . . , sn) = (u⊕eπ(1), . . . , u⊕eπ(n)). To do it with an OT corre-
lation of (r1, . . . , rn), the sender can send the receiver the vector (k1, . . . , kn) = (s1−r1, . . . , sn−rn)
and now the receiver can compute sb = kb + rb. This requires communication of n2 bits.

Converting 1-out-of-2 OT over F2 to 1-out-of-k OT over k-bit string. This protocol has
two stages.

• Create 1-out-of-2 OT over k-bit string: This can be done in the following way. By using
k copies of 1-out-of-2 OT over 1-bit string {((ri0, ri1), (bi, rib))}i∈[k], the receiver will sample

b ← {0, 1} in random. He will send to the sender b = (b ⊕ b1, . . . , b ⊕ bk). The sender will
“flip” the secrets of the ith OT copy if in the ith position of b there is a 1. In this way,
after the flip, the receiver will have the bth secret of every copy. Afterwards, each party will
concatenate the bits of ri they have. This will result in a 1-out-of-2 OT over k.

• Create 1-out-of-k OT over k-bit string: This can be done in the following simple way. By
using k copies of 1-out-of-2 OT over k-bit string the receiver will choose j uniformly over [k].
Then the two parties will run k times a 1-out-of-2 OT over k-bit string protocol where the
receiver’s choice bits will be 1 on the jth run, and 0 elsewhere. We can run this protocol using
the OT correlation with O(k) bit communication per run. The receiver will output j and the
secret he got from the jth run. The sender’s secrets would be the second secret in each run.

Overall the communication cost of this construction is O(k2) bits.

Full protocol. We will now describe a (two-way communication) protocol which converts from
source correlation 1-out-of-2 OT to n-UV.

Protocol:

◦ Create two 1-out-of-
√
n OT over

√
n-bit string.

◦ Create two
√
n-bit unit vector correlation with the basic protocol using the generated string

OT and get (u1, v1), (u2, v2) for the unit vectors ei1 and ei2 .

◦ Compute shares of ei1 · eTi2 using the 1-out-of-2 OT over bit.

The overall communication of this protocol is O(n). This result complements the Ω(n) bound that
we got.
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