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Abstract. In this paper, we introduce the family DeuringVRFy,z of Ver-
ifiable Random Function (VRF) protocols. Based on isogenies between
supersingular curves, the random function at the heart of our scheme is
the one that computes the codomain of an isogeny of big prime degree
from its kernel.
In DeuringVRFy,z, the evaluation is done with algorithms for the Deuring
correspondence that make use of isogenies in dimension z, and the ver-
ification is based on the isogeny representation obtained from isogenies
in dimension y.
The main advantage of the DeuringVRFy,z family is its compactness, with
proof sizes of a few hundred bytes, which is orders of magnitude smaller
than other generic purpose post-quantum VRF constructions.
We describe four variants of our scheme with (y, z) ∈ {(2, 1), (2, 2), (4, 1),
(4, 2)} each offering different tradeoffs between compactness, evaluation
efficiency and verification efficiency.
In the process, we introduce several new algorithms that might be of
independent interest. In particular, for the variants with z = 2, we in-
troduce the first algorithm to translate an ideal into the corresponding
isogeny of dimension 1 using isogenies between abelian variety of dimen-
sion 2 as a tool.
The main advantage of this new algorithm compared to existing solu-
tion is the relaxation of the constraints on the prime characteristic: our
new algorithm can run efficiently with “SIDH primes” that are very easy
to generate unlike “SQIsign primes” that are currently required by the
state of the art appoach. We believe that this algorithm opens a promis-
ing research direction to speed-up other schemes based on the Deuring
correspondence such as the SQIsign signature scheme.

1 Introduction

A Verifiable Random Function (VRF) is a way to generate authenticated ran-
domness in a verifiable manner. This notion was introduced in [38] and have
found several practical applications in the DNSSEC protocol [25] or in blockchain
consensus [7,24,13].

The most widely-used VRF constructions are based on pairings and elliptic
curves such as [3] and are not resistant to an attacker that can access a quantum



computer. Thus, it is an important problem to devise new schemes that are
compact, efficient and resistant to quantum attackers.

In this work, we explore the possibilities offered by isogeny-based cryptogra-
phy, one of the newest family of post-quantum candidates known for the com-
pactness of its schemes. The main tools of isogeny-based cryptography are isoge-
nies, that are maps between abelian varieties. Until very recently, only isogenies
between elliptic curves, i.e. varieties of dimension 1, had been really studied.
However, isogenies between abelian varieties of higher dimension (namely 2, 4
and 8) have recently found some surprising applications in the cryptanalysis of
the SIDH key-exchange protocol [28]. A series of paper by Castryck and Decru
[5], Maino, Martindale, Panny, Pope and Wesolowski [37], and Robert [41] have
shown how to use isogenies of higher dimension to break completely SIDH. This
breakthrough has produced a small revolution in the field, first by breaking its
most famous protocol, and more recently by finding several new constructive
applications [12,1,16].

In this article, we follow the example set in [12] and explore the combina-
tions of these new techniques with another sub-domain of the field related to the
study of the Deuring correspondence, a link between quaternion algebras and
isogenies between elliptic curves. As for isogenies of higher dimension, the Deur-
ing correspondence was first explored for its cryptanalitic applications [31,17]
before revealing its constructive potential in signature schemes [23,14]. These
protocols rely on some complex algorithms to realize effectively the Deuring
correspondence: i.e. the translation from isogenies to ideals (their quaternionic
counterparts) and vice versa. These algorithms will also be crucial for our new
VRF construction. In this work, we also tackle the important problem of im-
proving their efficiency.

Related Works. There exists several other proposals of quantum-resistant VRF.
Lattice-based constructions were the first to appear with [26,44]. These first
constructions suffered from huge proof sizes and has been subsequently improved
[45,21]. Among those, the recent proposal from [21] appears to be quite practical
with reasonable key and proof sizes of around 10KB. We can also mention [20]
that introduces a practical few-times construction.

There are other existing solutions relying on the security of symmetric prim-
itives such as [4] that introduces several construction based on hash functions.

Finally, two proposals based on isogenies have been recently introduced in
[33]. The VRF protocol presented in [33] are constructed from isogeny-based
group actions and share almost nothing with our new VRF construction apart
from the fact that isogenies are involved in both cases. Our construction uses a
lot of different techniques and is much more compact. Conceptually, our Deuring-
VRFy,z schemes is much closer to the recent weak VDF proposal of [16] or the
new SQIsignHD [12] variant of the SQIsign signature scheme.

Contributions. Our contributions can be summarized in the following manner:

– A new family DeuringVRFy,z of VRF protocols based on the Deuring cor-
respondence and isogenies between abelian varieties of high dimension. The
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security of the construction is based on a new hardness assumption in the
random oracle model that is related to well-studied algorithmic problem of
isogeny-based cryptographic. Every variant of DeuringVRFy,z is much more
compact than all existing post-quantum constructions as exhibited in Ta-
ble 1.

– A new algorithm for the effective Deuring correspondence to translate ideals
to their corresponding isogenies using isogenies in dimension 2. This new
algorithm relaxes the constraints of previous existing solutions and requires
only “SIDH primes” of the form c2f3e − 1 for the characteristic of the un-
derlying field. These primes are easy to find at any level of security unlike
the “SQIsign primes” required by the algorithms used in [14,15]. This new
approach appears to be a promising direction to explore in order to improve
the efficiency of the SQIsign [14] signature scheme.

– A new algorithm to evaluate an isogeny from its ideal representation with
less torsion requirement than existing solutions.

In Table 1, we compare the concrete sizes we obtain for the example param-
eters that we will introduce in Section 5.2 with other existing constructions. We
see that all our new protocols are much more compact than all existing solutions.

Public Key Proof No restrictions Assumption Security
(bytes) (bytes) level

LB - VRF [20] 3.3K 4.9K ✗ MSIS/MLWE (Lattice) 128

X - VRF [4] 64 2.6K ✗ XMSS (Hash) 128
SL - VRF [4] 48 40K ✓ LowMC(Hash) 128

LaV [21] 8.81K 10.27K ✓ MSIS/MLWR (Lattices) 128

CAPYBARA [33] 8.3K 39K ✓ DDH (Isogenies) 128
TSUBAKI [33] 5.3K 34K ✓ sDDH (Isogenies) 128

DeuringVRF2,1 944 224 ✓ OMIP2dim (Isogenies) 128
DeuringVRF2,2 304 224 ✓ OMIP2dim (Isogenies) 128
DeuringVRF4,1 832 112 ✓ OMIP4dim (Isogenies) 128
DeuringVRF4,2 192 112 ✓ OMIP4dim (Isogenies) 128

Table 1. Comparison of the sizes of several post-quantum VRF schemes with our
DeuringVRFy,z family for (y, z) ∈ {(2, 1), (2, 2), (4, 1), (4, 2)} and the parameters of
Section 5.2.

,

1.1 Technical overview

The high-level idea of our DeuringVRFy,z construction is the following: given a
supersingular curve E (the public key), the DeuringVRFy,z function associates
the curve E/G to the subgroup G of E. Computing E/G is difficult from the sole
knowledge of E and G when the order of G is a big prime, but it can be done
efficiently when one knows the endomorphism ring of E (and a few additional
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information) using the Deuring correspondence. The parameter z defines which
dimension is going to be used to perform this computation.

The main feature of a VRF is the verifiability of the output. The correct-
ness of the result can be proven by embedding the isogeny E → E/G in a
y-dimensional isogeny using the techniques recently introduced to attack SIDH
[5,37,41].

At its heart, our construction exploits the difference between the different
known ways of representing a cyclic isogeny.

First, there is the kernel representation made of one generator of the kernel.
When the kernel is defined over a small field extension, this representation is
quite easy to sample from the domain curve and it enables simple verification
of the correctness of the computation by evaluating the isogeny on its kernel.
However, there is no known efficient algorithm to compute or evaluate an isogeny
from the kernel in the generic case. All those characteristics makes the kernel
representation a perfect input to our random function.

Then, there is the ideal representation obtained from the Deuring correspon-
dence. This representation is the most powerful one as it allows us to perform all
the possible operations efficiently. However, as it also encodes the knowledge of
the endomorphism ring of the domain, it essentially contains all the information
there is to know about the isogeny, its domain and its codomain. This is why the
ideal representation matches exactly the requirements of a secret key/trapdoor.

Finally, there is the y-dimensional isogeny representation (noted ydim here-
after) introduced recently by Robert [40]. It allows us to evaluate efficiently the
isogeny with the help of dimension y isogenies without revealing anything on the
endomorphism ring. This is ideal for the proof as it provides verifiability when
combined with the kernel representation while not leaking anything secret.

Below, we give a more precise description of the various mechanisms and
parameters constituting our DeuringVRFy,z scheme. The notations introduced
below are kept throughout the paper.

Parameters. Let p,N be two distinct primes. For a supersingular elliptic curve
E defined over Fp2 , k is the smallest exponent such that E[N ] is defined over
Fpk . Let f be the biggest exponent such that E[2f ] is defined over Fp2 .

Keys. The public keys are made of:

1. a supersingular curve E,
2. a basis ⟨P,Q⟩ of E[N ],
3. some additional information cNydim(E) (defined in Section 2.3).

Secret keys are constituted by:

1. an ideal I connecting a fixed maximal order O0 to O ∼= End(E).
2. the ideal IP corresponding to the kernel ideal associated to ⟨P ⟩
3. an endomorphism θ ∈ End(E) such that θ(P ) = Q
4. a basis U0, V0 of E0[2

f ].
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Evaluation Mechanism. On input x, the VRF evaluation is as follows: hash
x into one element (a : b) ∈ P1(Z/NZ), compute Rx = [a]P + [b]Q and compute
Ex = E/⟨Rx⟩. The output is then y = H(x || j(Ex)). The knowledge of IP
and θ enables the efficient computation of the kernel ideal Ix of ⟨Rx⟩. Then, the
Deuring correspondence can be used to find the curve whose endomorphism ring
is isomorphic to the right order of Ix.

Proof and Verification Protocol. Proving the correctness of the computation
can be done by revealing a representation of the isogeny φx : E → Ex. If the
verifier can check the degree of this isogeny and evaluate it on Rx, then the
output must be correct. For that, we propose to use the representation of [40]
obtained by embedding φx inside a 2h-isogeny in dimension 2 or 4 (with h < 2f).

In both cases, the crucial step to compute this high-dimensional representa-
tion is the evaluation of some isogenies on well-chosen torsion points. Using the
secret key and the ideal Ix, the prover will be able to evaluate these isogenies
efficiently using the Deuring correspondence (with the IsogEvalzid algorithm that
we describe in Section 4.2). After that, the verification simply consists in check-
ing that the isogeny representation is valid and has kernel Rx. This last part can
be done with an IsogEvalydim algorithm to evaluate the isogeny from its ydim
representation.

New algorithm to evaluate an isogeny of big prime degree from its
ideal. The algorithm IsogEvalid that allows us to evaluate any isogeny from the
Deuring correspondence plays an important role in our new construction. The
principle of this algorithm is now pretty standard in isogeny-based cryptography
(see [22, Algorithm 1] or [34, Algorithm 4] for instance): first, compute with the
Deuring correspondence an alternate isogeny of same domain and codomain and
having smooth degree coprime to the order of the points to be evaluated with
the IdealToIsogeny algorithm. Then, use this alternate isogeny to evaluate the
first one. While this algorithm works pretty well in theory, in practice it requires
a lot of available torsion (partly due to the IdealToIsogeny algorithm but also to
the requirement that the degree of the alternate isogeny is coprime to the order
of the points to be evaluated). When the order of the points to be evaluated
is pretty big, the torsion requirement might simply be too big (this will be the
case for our DeuringVRFy,1 constructions). In that case, it might be useful to
remove the coprimality requirements. This is what we do with our new IsogEval-
NonCoprime1id algorithm by reusing the ideas introduced for the IdealToIsogeny
Eichlerℓ• algorithm in [15] to “push” ℓe torsion points through an isogeny of
degree ℓ•.

New algorithms for the effective Deuring correspondence. As we ex-
plained above, the IsogEvalzid algorithm that constitutes the main algorithmic
building block of DeuringVRFy,z is based on a IdealToIsogenyz algorithm to trans-
late ideals into their corresponding isogenies (of dimension 1) with the help of
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isogenies in dimension z. A relatively efficient algorithm to do so for z = 1 was
introduced in [14] and later improved in [15]. We introduce a new algorithm to
do the same thing with z = 2.

The motivation for this new algorithm is to overcome the obstacles of IdealTo-
Isogeny1 with the new possibilities offered by high-dimensional isogenies. More
specifically, the bottleneck in IdealToIsogeny1 is the computation of some en-
domorphisms. While the best solution in dimension 1 is to require that these
endomorphisms have big smooth norm T 2 for some smooth integer T , we can
remove this requirement by using embedding the endomorphisms in isogenies of
dimension 2. This is roughly the same idea that led to the SQIsignHD variant [12]
of the SQIsign signature scheme. This idea simplifies a lot the choice of parame-
ters by removing the need of so-called “SQIsign primes” (and replacing them by
“SIDH primes”) and could have interesting consequences on the efficiency of the
ideal-to-isogeny algorithm. We discuss in more details the comparison between
z = 1 and z = 2 at the end of this section.

Hard Problem and security. The security of our new VRF scheme essentially
stems from the problem of computing the codomain of an isogeny from its kernel.
The best known algorithm to solve this problem has polynomial complexity in the
degree of the isogeny. Since the pseudo-randomness property of our scheme allows
the adversary to evaluate the function on several inputs, the concrete security is
based on the OMIPydim, a variant of this problem, where the adversary has access
to an oracle that computes the codomain and a ydim isogeny representation on
given instances. The goal is then to find the answer for one instance that was not
queried to this oracle. This problem has not been used anywhere in cryptography
before, but the problem of computing the codomain of an isogeny from its kernel
has been studied extensively due to its impact on the efficiency of several schemes
in isogeny-based cryptography and has been recently considered for a proposal
of weak post-quantum VDF [16].

The formal description of our DeuringVRFy,z scheme can be found in Sec-
tion 3.1. The concrete protocols include several additional steps to meet the
requirements of a cryptographic VRF.

Comparison between the different variants. One might wonder why we
introduce four different variants for (y, z) ∈ {(2, 1), (2, 2), (4, 1), (4, 2)} instead
of choosing the best one and stick with it. The main reason is that there is
currently no clear answer to the question: what is the best version of Deuring-
VRFy,z? Our parametrization is made of two variables y and z, and each of them
have a different role that we try to explain below.

On y = 2 vs. y = 4. The 2dim and 4dim representations have quite different
performance profiles. We refer the reader to Section 2.3 for a detailed descrip-
tion of these two representation. In both cases, the algorithm IsogEvalydim (used
during the verification of our protocol) essentially consists in the evaluation of
a 2h-isogeny between abelian variety of dimension y. Thus, IsogEval2dim will be
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clearly faster than IsogEval4dim as any operation in dimension 2 will be faster
than the corresponding operation in dimension 4 (the complexity is in fact expo-
nential in the dimension y). However, the 2dim representation in itself requires
to compute strictly more things than the 4dim representation. Thus, the com-
putation of the isogeny representation (done during the evaluation algorithm of
the VRF protocol) will be faster for the 4dim and its size is essentially half the
size of the 2dim isogeny representation.

Hence, the choice between y = 2 and y = 4 will amount to a tradeoff be-
tween efficiency of the verification for y = 2, and compactness and efficiency of
evaluation for y = 4.

On z = 1 vs. z = 2. The main advantage of z = 2 compared to z = 1 is the
simplification of the parameter selection (and in particular the computation of
the prime characteristic) that we already mention. There are two clear positive
impacts:

1. A better asymptotic scaling for z = 2 due to the expected sub-exponential
growth of the smoothness bound of the parameter T of the IdealToIsogeny1

algorithm.
2. A better compactness of DeuringVRFy,2 due to the field of definition of the
N -torsion points (more details on that in Section 5.1).

The only remaining open question is: at the lower levels of security, what
value of z is more efficient? Unfortunately, it is still too early to give a defi-
nite answer to this question and it is clearly out of the scope of this paper. It
was demonstrated in [14,15] that implementing the algorithm IdealToIsogeny1

efficiently is a daunting task and finding the best way of implementing this al-
gorithm remains an active research question.

The state of the algorithms to compute the dimension 2 isogenies required
by our IdealToIsogeny2 algorithm is even less stable. Some relatively efficient
algorithms have been known for quite some time with the so-called Richelot
correspondence [39] and new algorithms have been the focus of a lot of recent
works [6,32,37,16,1,12,9].

Despite this uncertainty, the cost estimates for the computation of dimension
2 isogenies in the theta model provided in [12] allow us to be quite optimistic
that a careful implementation of our new IdealToIsogeny2 algorithm might be
competitive with the state of the art implementation of IdealToIsogeny1, even
for the lower levels of security. This is particularly true in the context of our
DeuringVRFy,z protocol where the value of p is even more constrained than for
the SQIsign signature scheme (see Section 5).

The rest of this paper is organized as follows. Section 2 introduces prelim-
inaries on VRFs and the Deuring correspondence. Our VRF construction is
introduced and analyzed in Section 3. In Section 4, we present all the algorithms
required to instantiate the protocols. In Section 5.1, we look at parameters, size
and efficiency for the proposed VRF construction.
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2 Background material

We call negligible a function f : Z>0 → R>0 if it is asymptotically dominated
by O(x−n) for all n > 0. When a quantity a depending on some parameter x is
negligible we will sometimes write a ≤ nelg(x).

2.1 Verifiable Random Function

A Verifiable Random Function (VRF) is a way to generate authenticated ran-
domness that can be verified. It constist of the following protocols:

– SetUp(1λ), returns a set of public parameters pp.
– KeyGen(pp), returns a pair (pk, sk) of public key and secret key from the

public parameters.
– VRFEval(sk, x) = (v, π), takes the secret key sk and an input x ∈ {0, 1}n1(λ)

and computes the output v ∈ {0, 1}n2(λ) along with a proof π.
– Verif(pk, π, x, v) takes the VRF public key, proof, input and output and

returns 0 or 1.

In this article, we construct a VRF satisfying the following properties:

– Provability: The verification always returns 1 on correctly generated proof
and output from a given input (see Definition 2).

– Pseudo-randomness: With access to an oracle computing VRFEval(sk, x)
for x ̸= x0, an adversary cannot distinguish between VRFEval(sk, x0) and a
random value (see Definition 3).

– Uniqueness: There does not exist a key and input and two pairs (v1, π1)
and (v2, π2) with v1 ̸= v2 both passing the verification (see Definition 5).

2.2 Elliptic curves, quaternion algebras and the Deuring
correspondence

Below, we briefly expose the useful features and definitions of the Deuring cor-
respondence. For a more complete treatment of supersingular elliptic curves
and quaternion algebras and their link through the Deuring correspondence see
[27,30,35,42].

The Deuring correspondence is an equivalence of categories between iso-
genies of supersingular elliptic curves and the left ideals over maximal order
O of Bp,∞, inducing a bijection between conjugacy classes of supersingular j-
invariants and maximal orders (up to equivalence) [30]. Moreover, this bijection
is explicitly constructed as E → End(E). Hence, given a supersingular curve
E0 with endomorphism ring O0, the pair (E1, φ), where E1 is another super-
singular elliptic curve and φ : E0 → E1 is an isogeny, is sent to a left integral
O0-ideal. The right order of this ideal is isomorphic to End(E1). One way of
realizing this correspondence is obtained through the kernel ideals defined in
[43]. Given an integral left-O0-ideal I, we define the kernel of I as the subgroup
E0[I] = {P ∈ E0(Fp2) : α(P ) = 0 for all α ∈ I}. To I, we associate the isogeny
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φI : E0 → E0/E0[I]. Conversely, given an isogeny φ, the corresponding kernel
ideal is Iφ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(φ)}. Sometimes, when the
kernel of φ is given as a group G generated by a point P , we also write IG or
IP for this ideal. Two ideals I, J are said to be equivalent if I = Jβ for some
β ∈ B×

p,∞ and we write I ∼ J .
The main properties of the Deuring correspondence are summarized in Ta-

ble 2.

Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, φ) with φ : E → E1 Iφ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ
deg(φ) n(Iφ)

φ̂ Iφ
φ : E → E1, ψ : E → E1 Equivalent Ideals Iφ ∼ Iψ
τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ

Table 2. The Deuring correspondence, a summary from [14].

On push-forward isogenies and ideals. Given two isogenies φ,ψ of coprime de-
gree. We can define the push-forward of φ by ψ that we denote by [ψ]∗φ as
the isogeny of degree degφ and kernel ψ(kerφ). The same can be done for the
push-forward of φ by ψ. This way, we get the following commutative diagram.

E3

[ψ]∗φ // E4

E1

ψ

OO

φ // E2

[φ]∗ψ

OO

Under the Deuring corresponding we can define the push-forward of an ideal
I by another ideal J of coprime norm as the ideal [J ]∗I corresponding to the
push-forward isogeny [φJ ]∗φI . Formulas to compute the push-forward ideals are
given in [14, Lemma 3].

In this work, we build upon several existing algorithms of the Deuring cor-
respondence. We give precise references for all of them when they appear. Note
that a description for all those algorithms can be found in [35, Chapters 3 and
4].

2.3 Isogeny Representation

The formal notion of isogeny representation is gaining more and more importance
as the variety of existing method to build these representations is expanding.
This definition appears at various places in the literature [34,35,12] with some
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small changes. The common and most important part is the existence of an
algorithm to evaluate the isogeny from its representation. The representation is
called efficient when the size of the representation and the complexity of the
evaluation algorithm is polylogarithmic in the degree and field characteristic p.

Since, we are going to work with several family of representations, we will
label each of those families with a tag xx. All the data and algorithms associated
with the family xx will bear the same tag.

To avoid redundant computation we are going to divide the representation
in two parts : one that is unique to the isogeny φ that we will write sφxx (and that
sometimes might be called the representation of φ), and one that is common to
all isogenies of same domain E and degree N . This second part will be denoted
by cNxx(E) and will be called the “common information”. The distinction between
sφxx and cNxx(E) will be useful for an efficient instantiation (to avoid recomputing
cNxx(E) for each new isogeny).

Definition 1. An efficient isogeny representation xx for an isogeny φ : E → E′

of degree N defined over Fq is in two parts: cNxx(E) (the same for all isogeny of
degree N having domain E), and sφxx. Both have size O (polylog(qN)), and there
exists the following algorithm: IsogEvalxx that takes E, sφxx, c

N
xx(E) and a point P

in E[Fqk ] in input, and computes φ(P ) ∈ E′[Fqk ] in time O
(
polylog(qkN)

)
.

On existing isogeny representations. There exists several isogeny representation
in the literature. A non-exhaustive list of them can be found in [35, chapter
4]. In this work, we will use two of the representations presented there: the
kernel representation based on the Vélu formulas (which is one of the “histori-
cal” isogeny representation) and the ideal representation based on the Deuring
correspondence.

For the kernel representation, we use the tag ker. The representation sφker
is made of a generator of kerφ and cNker(E) is trivial. This representation can
be quite compact (O (polylog(p))) when the kernel points are defined over a
small field extension. However, the complexity of IsogEvalker is polynomial in the
biggest prime factor of the degree which makes it efficient only for smooth degree
isogenies. Hence, it does not meet our definition of efficient isogeny (but this gap
is actually desirable for our construction). The kernel representation has another
advantage : it is quite efficient to “sample” when the kernel points of order N
are defined over a small extension. By efficient to sample, we mean that, for a
given supersingular curve E, it is easy to compute the kernel representation of
a random isogeny of degree N (we can even sample uniformly at random from
the set of N -isogenies starting from E).

For the ideal representation we use the tag id. The representation sφid is made
of a basis of the ideal Iφ corresponding to φ under the Deuring correspondence.
As for the kernel representation, the common information cNid (E) is trivial. The
ideal representation matches our definition of efficient, however it requires to
know the endomorphism ring of the domain. When End(E) is known, we can
also efficiently sample ideal representations of uniformly random N -isogenies.
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The recent attacks against the scheme SIDH [5,37,41] have introduced a
new way to build an isogeny representation, as was noted by Robert in [40], by
evaluating φ on a basis of the T -torsion for T ≥

√
N . The evaluation can be

performed by computing an isogeny between abelian varieties of dimension y > 1
that embeds the isogeny φ. There are different variants of this idea for different
values of y. In this work, we will look at the version for y = 2 and y = 4. We will
call dimension-y representation (with the tag ydim, the isogeny representation
obtained from this principle. In most of this work, we are going to use these
representations in a black box manner. We refer the reader to [5,37,41,40,12] to
see how to instantiate the required algorithms. We give a brief summary below.

Embedding isogenies in higher dimension isogenies with Kani’s lemma. The
goal of this paragraph is to explain how one can embed isogenies in higher
dimension using Kani’s lemma. This result introduced in [29] describe how to
build isogenies of dimension 2y from isogenies in dimension y.

Lemma 1 (Kani). Let us consider a commutative diagram of isogenies between
principally polarized abelian varieties of dimension g

A′ φ′
// B′

A

ψ

OO

φ // B

ψ′

OO

where φ and φ′ are a-isogenies and ψ and ψ′ are b-isogenies for coprime integers
a, b. The isogeny F : A×B′ −→ B ×A′ given in matrix notation by

F :=

(
φ ψ̃′

−ψ φ̃′

)

is a d-isogeny between abelian varieties of dimension 2g with d = a+ b, for the
product polarisations.

If a and b are coprime, the kernel of F is

ker(F ) = {(φ̃(x), ψ′(x)) | x ∈ B[d]}.

Similarly,

ker(F̃ ) = {(φ(x), ψ(x)) | x ∈ A[d]}.

Remark 1. This lemma was first proven in [29, Theorem 2.3]. We are going
to use it for g = 1 and g = 2 to obtain the 2dim and 4dim representations
respectively. The idea is that the isogeny F provides a representation for the
isogeny φ : A → B since φ can be recovered as ρ2 ◦ F ◦ ρ1 where ρ1 is any
embedding morphism from A to A×B′ and ρ2 is the projection from B×A′ to
B.
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Moreover, we are going to make good use of the trick presented in [12, Sec-
tion 5.4] to cut the isogeny F in half to greatly lower the amount of torsion
information required.

Indeed, when the isogeny F from Lemma 1 has degree d1d2, then it can be
factored as F = F2 ◦ F1 where each Fi has degree di. In that case, we get that

ker(F1) = {(φ̃(x), ψ′(x)) | x ∈ B[d1]} (1)

ker(F̃2) = {(φ(x), ψ(x)) | x ∈ A[d2]}.

This means that we can use the d1-torsion and d2-torsion instead of the d1d2-
torsion (the two situations are really different only if d1 and d2 are not coprime
to eachother). This trick will prove to be necessary to obtain an efficient scheme
in our case as we will take d1 and d2 as big powers of 2, which will essentially
divide by 2 the torsion requirement by 2 (in bitsize).

More details on Kani’s Lemma and the ways to compute isogenies in di-
mension g > 1 can be found in the appendices of [12]. Below, we explain more
concretely how Kani’s Lemma can be applied to get our isogeny representations
for an isogeny φ : E1 → E2.

The 2dim isogeny representation. In dimension g = 1, Lemma 1 can be applied
to embed φ in an isogeny of dimension 2 with A = E1 and B = E2. The degree
d is chosen to be 2h for the smallest exponent h such that 2h > N . In that case,
the isogeny ψ is any isogeny of degree 2h −N coprime to N of domain E1. This
will define an isogeny diagram of the form

E3
φ′
// E4

E1

ψ

OO

φ // E2

ψ′

OO

The isogeny ψ can be the same for every isogeny φ of the same degree and
codomain. Let f be an exponent such that 2f > h. The isogenies F1 and F2 are
chosen to be of degree 2h1 and 2h2 for h = h1+h2 and hi < f for i = 1, 2. Then,
we can define the 2dim isogeny representation as follows. Let P,Q be a basis of
E1[2

f ].
The common information cN2dim(E) is made of the curve E3 and the points

P,Q, ψ(P ), ψ(Q). Then, we define sφ2dim as E2, E4 and the points φ(P ), φ(Q), ψ′◦
φ(P ), ψ′ ◦ φ(Q).

After the isogeny F1, F̃2 have been computed, the full isogeny F can be
recovered. Then, φ can be evaluated on any point as π ◦ F ◦ ι. This is how we
get the algorithm IsogEval.2dim

The 4dim isogeny representation. The 4dim isogeny is a bit trickier to obtain.
In fact, we will not provide a representation for φ directly, but for [α]φ for some

12



integer α coprime to N . This scalar is unfortunately necessary because 2h−α2N
must be represantable as the sum of two squares (which might not always be
true for α = 1). Let us now assume that we have chosen a scalar α such that
2h − α2N = a21 + a22 for h the smallest exponent such that 2h > α2N and two
integers a1, a2. We will later explain in Section 3.2 a bit more concretely how
this integer can be chosen as it will play a role in the efficiency of the verification
of our DeuringVRF4,z scheme.

In dimension g = 2, Kani’s lemma is applied to the isogeny Diag([α]φ) :
E2

1 × E2
2 . We abuse notation by denoting this diagonal isogeny as [α]φ as well.

Then, we take A = E2
1 and B = E2

2 . The degree d is 2h where h is the smallest
exponent such that the quadratic equation 2h − [α]2N = a21 + a22 has a solution.
Then, the isogeny ψ : E2

1 → E2
1 is defined as the matrix

ψ :=

(
[a1]E1

[a2]E2

−[a2]E2 [a1]E1

)
In that case, the parameters a1, a2, α can be considered as known constants

(since they are common to all N -isogenies). Thus, the common data cN4dim(E) is

made of P,Q, a basis of E1[2
f ] (with 2f > h), and the data sφ4dim is constituted

by the curve E2 and the points φ(P ), φ(Q).
Similarly to the 2dim representation, the isogeny F can be recovered from

sφ4dim and the constants f, h, a1, a2, α and this allow us to instantiate a Isog-
Eval4dim algorithm.

3 New post-quantum VRF from isogenies

In this section, we provide a generic description of our DeuringVRFy,z proto-
col. The protocoles are presented in Section 3.1. The security of the scheme is
analyzed in Section 3.2.

3.1 Formal description

In this section, we give a formal description of the different protocols that com-
poses our DeuringVRFx,y protocol for two integers y, z ∈ {(2, 1), (2, 2), (4, 1), (4, 2)}.
We provide a common framework for all values of y, z to allow the reader to grasp
the idea of the construction without wondering too much about the technical
details. We postpone the detailed description of the most complicated building
blocks to Sections 3.2 and 4. We also omit the parameter generation; it will be
discussed later in Section 5.1.

Henceforth, let us assume that there are three distinct primes ℓ, p,N , and
exponents e, f, k such that all the 2f and ℓe torsion points of supersingular curves
can be defined over Fp2 , and the N -torsion can be defined over Fpk .

There is also a curve E0 over Fp2 of known endomorphism ring O0. The
public parameters also include a basis (P0, Q0) of E0[N ] and the related kernel
ideal IP0 together with an endomorphism ι ∈ O0 such that ι(P0) = Q0. We write
pp = (p,N, ℓ, E0, P0, Q0, IP0 , ι).
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We write fin : {0, 1}n1(λ) → P1(Z/NZ) an injective function, and Hout :
{0, 1}∗ → {0, 1}n2(λ) a hash function, where n1(λ), n2(λ) are functions of the
security parameter λ.

Algorithm 1 KeyGeny,z(pp)

Input: Public parameters pp.
Output: A pair of DeuringVRFy,z keys sk, pk.
1: Take some e0 = 2λ and generate a random O0-ideal I of norm ℓe0 .
2: Compute φI = IdealToIsogenyzℓ•(I).
3: Set θ = φI ◦ ι0 ◦ φ̂I , R = φI(P0) and S = [ℓe0 ]φI(Q0).
4: Generate a random M = ( a bc d ) ∈ GL2(Z/NZ).
5: Set (P,Q)← ([a]R+ [b]S, [c]R+ [d]S).
6: Compute IP = [I · (a+ bθ)]∗IP0 .
7: Compute the scalars λ, µ such that (λ+ µθ)(P ) = Q and set θ as λ+ µθ.
8: Compute U, V , a basis of E[2f ], and U0, V0 = φ̂I(P,Q).
9: Compute cNydim(E) = CommonIsogenyRepresentationy,z(I, U, V, U0, V0).

10: return (sk, pk) =
(
(I, IP , θ, U0, V0), (E,P,Q, c

N
ydim(E))

)
.

Algorithm 2 VRFEvaly,z(sk, x)

Input: A DeuringVRFy,z secret key, and an input x ∈ {0, 1}n1(λ).
Output: A proof π and the evaluation v of the DeuringVRFy,z function on input x.
1: Parse sk as I, IP , θ, U0, V0.
2: Compute (r : s) = fin(x).
3: Compute Ix = [O(r + sθ)]∗IP .
4: Compute Ex and sφydim = IsogenyRepresentationy,z(I, Ix, U0, V0).
5: Set π as j(Ex), s

φ
ydim.

6: Compute v = Hout(x || j(Ex)).
7: return (π, v).

The algorithms IsogEvalydim are used as blackbox and we do not give much
details about them in this paper. There are, however, several tasks that needs
more details in the algorithms we have outlined above. We list them below. These
missing algorithms will be treated in Sections 3.2 and 4.

– The algorithm CommonIsogenyRepresentation2,z to compute the common in-
formation cN2dim(E). We do not describe CommonIsogenyRepresentation4,z which
simply takes a basis of E[2f ] and returns this basis.

– The algorithm IsogenyRepresentationy,z to compute the isogeny representa-
tion and the codomain.

– The IsogVerifydim algorithm to check that the high dimensional representation
is correct.
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Algorithm 3 Verifyy,z(pk, π, x, v)

Input: A DeuringVRFy,z public key, an input x ∈ {0, 1}n1(λ), a proof π and an output
v ∈ {0, 1}n2(λ).

Output: A bit b.
1: Parse pk as E,P,Q, cNydim(E).
2: Parse π as j, sφydim.
3: Compute (r : s) = fin(x) and Rx = [r]P + [s]Q.
4: If IsogVerifydim(s

φ
ydim, c

N
ydim(E), j) = 0, output 0.

5: If IsogEvalydim(π, s
φ
ydim, Rx) ̸= OEx or Hout(x||j) ̸= v, then output 0.

6: return 1.

3.2 Security Analysis

In this section, we study the security properties of our generic VRF scheme.

Provability. The first and most basic notions a VRF must satisfy is provability.
This notion implies that a correctly generated proof for a given input and key
will pass the verification.

Definition 2. A VRF scheme is said to be provable if, for any x ∈ {0, 1}n1(λ),
(sk, pk)← KeyGeny,z(pp) and (π, v)← VRFEvaly,z(sk, x), the following equality
is satisfied:

Verifyy,z(pk, π, x, v) = 1

Using results proven in Section 4, we are able to show that our DeuringVRFy,z
scheme has provability.

Proposition 1. The DeuringVRFy,z scheme has provability for (y, z) ∈ {(2, 1),
(2, 2), (4, 1), (4, 2)}.

Proof. In KeyGeny,z, the correctness of IdealToIsogeny
z
ℓ• , ensures that the isogeny

φI is the one corresponding to the ideal I. Then, with θ = φI ◦ ι ◦ φ̂I , we see
that if Q0 = ι(P0) the definition of S = [ℓe]φI(Q0) ensures that θ(R) = S. After
the change of basis is applied on R,S to get the basis P,Q, the value of θ is
adjusted to ensure that θ(P ) = Q.

Next, we show that the ideal IP is the kernel ideal corresponding to the
point P . The point P is equal to (a + bθ)φI(P0). By property of the Deuring
correspoding, ideal multiplication corresponds to isogeny composition. Thus, the
ideal I · (a+ bθ) corresponds to the isogeny (a+ bθ)φI . Then, by definition of the
push-forward ideals, the ideal [I(a+bθ)]∗IP0

has kernel equal to (a+bθ)φ(ker IP0
)

and this is indeed the group generated by P .
The correctness of the computation of the DeuringVRFy,z keypair follows from

the correctness of CommonIsogenyRepresentationy,z.
In VRFEvaly,z, we can use the same reasoning as for IP to prove that Ix

is indeed the kernel ideal corresponding to the subgroup generated by [r]P +
[s]θ(P ).
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The correctness of the computation of sφydim follows from the correctness of
IsogenyRepresentationy,z.

Since we have the equality [r]P + [s]θ(P ) = [r]P + [s]Q, the evaluation of
the point Rx in Verifyy,z will be OEx , and since cNydim(E) and sφydim are honestly
computed as a valid representation of an isogeny of degree N , the output of
IsogVerif will be 1 by Proposition 3. ⊓⊔

Pseudo-randomness. This security notion implies that it is hard to distinguish
the output from a random value without knowing the secret key.

Definition 3. Let A = (A1,A2) be an algorithm running in time t and playing
the following experiment:

1. pp← ParamGen(1λ)
2. (pk, sk)← KeyGeny,z(pp).

3. (x⋆, st1)← A
VRFEvaly,z(·),Hout(·)
1 (pk).

4. (v0, π0)← VRFEvaly,z(sk, x
⋆).

5. v1
$←− {0, 1}n2(λ).

6. b
$←− {0, 1}.

7. b′ ← AVRFEvaly,z(·),Hout(·)
2 (vb, st).

where the query of VRFEvaly,z on x
⋆ are implicitly forbidden. The pseudo-random-

ness advantage of A is defined as

AdvAPR(t) = Pr{b = b′} (2)

The advantage of the scheme is defined as AdvPR(t) = maxA AdvAPR(t)
The VRF is pseudo-random if

AdvPR(t) ≤ 1/2 + negl(λ)

when t is in O (poly(λ)).

The pseudo-randomness property of our VRF is based on the hardness of
Problem 1 that we introduce below. This problem is defined with respect of an
isogeny representation with the tag xx. This problem uses an isogeny oracle in
the fashion of the RADIO and RUGDIO introduced in [12]. We call this new
oracle a N -FIXDIOxx.

Definition 4. Given two odd prime N ̸= p, a FIXed Degree N -Isogeny Oracle
(N -FIXDIO) takes in input a supersingular elliptic curve E/Fp2 , some common
information cNxx(E), and a point P ∈ E[N ] and outputs the j-invariant j(E/⟨P ⟩)
and an isogeny representation sφxx for the N -isogeny φ : E → E/⟨P ⟩.

Problem 1. One-More Isogeny Problem (OMIPxx) Given two odd primes
N ̸= p, let E be a supersingular elliptic curve and cNxx(E) the associated common
information. Given access to the N -FIXDIOxx on input E, cNxx(E), the goal is to
compute the j-invariant of the codomain of an isogeny not given as the output
of the N -FIXDIOxx.
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We define AdvOMIPxx
(t) = maxA Pr{AN-FIXDIOxx(·)(E, cNxx(E)) solves Pb. 1}

for A ranging over all algorithms running in time t.
The hardness of Problem 1 underlies the pseudo-randomness of our VRF as

we prove in Proposition 2.

Proposition 2. In the random oracle model, the scheme DeuringVRFy,z satisfies

AdvPR(t) ≤
1

2
+ qAdvOMIPydim

(t′)

against any adversary A = A1,A2 allowed less than q query to the random oracle
Hout for some time t′ polynomial in t in the random oracle model.

Proof. Let G0 be the pseudo-randomness game as given in Definition 3.
Let us define the game G1 where the random oracle Hout answers ⊥ on input

x⋆, j(Ex⋆) (after the value x⋆ has been defined). Let us call E⋆, the event “Hout

is queried on x⋆, j(Ex⋆)”. It is clear that the two games are identical when
¬E⋆. Hence, Pr{A wins G0|¬E⋆} = Pr{A wins G1|¬E⋆} and the conditional
probability formula leads to

|Pr{A wins G0} − Pr{A wins G1}| ≤ Pr{E⋆}.

With the modifications defining G1, the output of Hout is always independent
of v0. In that case, given that v0 and v1 are distributed as uniformly random
values, A has no way to distinguish between the two without making a forbidden
evaluation query and so Pr{A wins G1} = 1/2.

It now remains to bound Pr{E⋆}. For that, we will build an adversary C
against the OMIP from A. This adversary proceed as follows :

1. C receives E, cNydim(E).

2. C generates a random basis of E[N ] and transmits pk = (E,P,Q, cNydim(E))
to A1.

3. C answers to any query to VRFEvaly,z(x) by using the N -FIXDIOydim on
input Rx = [r]P + [s]Q where (r : s) = fin(x) to compute Ex and the proof
π. Then, C computes vx = Hout(x, j(Ex)) and returns j(Ex), π, vx.

4. C answers to all queries to Hout as a random oracle would.
5. C receives x⋆ from A1, and aborts if VRFEvaly,z has been queried on x⋆.
6. C generates the bit b and the values v0, v1 as in the PR-experiment.
7. C transmits vb to A2 and continues to simulate the evaluation oracle.
8. When A is done, C picks a random query to Hout of the form x⋆, j and output

the value j.

By definition of the N -FIXDIOydim, C is able to simulate honestly all the
requests to VRFEvaly,z. Since the basis P,Q in KeyGeny,z is rerandomized by a
random invertible matrix M , it behaves as a random basis of E[N ]. Moreover,
until E⋆ happens, all the queries to Hout are also answered honestly. Thus,
until E⋆ happens C simulates perfectly the game G1 for A. This means that
the probability that E⋆ happens during G1 is exactly the probability that E⋆

happens during the simulation by C.

17



Moreover, it is clear that Pr{C solves Problem 1 |E⋆} ≥ 1/q. Thus, since
Pr{C solves Problem 1} ≥ Pr{E⋆}Pr{C solves Problem 1 |E⋆}, we get

Pr{E⋆} ≤ qAdvOMIPydim
(t′)

where t′ is the running time of C which is polynomial in t. This proves the desired
result. ⊓⊔

Below, we analyze the complexity of the OMIPxx in the two cases relevant
to our construction : xx ∈ {2dim, 4dim}. We start with the OMIP4dim which is
simpler to analyze.

Analysis of the OMIP4dim. The most obvious way to attack the OMIP4dim is to
try to compute directly any isogeny of domain E and degree N from its kernel.
The best known method is the

√
élu algorithm from [2]. This algorithm takes

O(
√

maxd|N d) (ignoring logarithmic factors) operations over the field of defini-
tion of the kernel. Thus, even when E[N ] is defined over a small extension (which
will be the case in our protocols), the complexity is exponential when N is a
prime number. Another approach would be to try to compute the endomorphism
ring End(E) (which would amount to key recovery in the context of our Deuring-
VRFy,z protocols). As our protocols can run in polynomial-time, the knowledge
of the endomorphism ring is obviously enough to break the OMIP4dim. However,
the complexity to compute the endomorphism ring of a random supersingular
curve is O(

√
p) (see [18] for instance).

The two methods we described above are rather generic attacks that are not
really using the fact that an access to the N -FIXDIO4dim is provided in the
OMIP4dim. In particular, the attacker has access to several isogenies of degree
N that he can evaluate. One might wonder if there could be a way to “tweak”
one of the isogenies given by the N -FIXDIO4dim to obtain a new isogeny that
would lead to a suitable solution to the OMIP4dim. However, there does not
seem to be an obvious way to do so. The only way to “tweak” an isogeny seems
to be to apply some kind of push-forward and realize a commutative diagram
where two parallel arrows are isogenies of degree N , one that is the output of
the N -FIXDIO and the other one that would be the “tweaked” isogeny. There
is nothing to prevent this from happening, however the tweaked isogeny will not
have E as domain with overwhelming probability. The only possibility to have E
as the domain of the “tweaked” isogeny would be that one of the perpendicular
arrows of the commutative diagram is an endomorphism of E. Computing one
endomorphism of a random supersingular curve also has complexity O(

√
p) and

so this is not possible.
Finally, one might wonder if the access to the N -FIXDIO might help finding

endomorphisms. It was argued in [12, Section 6.4] that the RADIO and RUGDIO
oracles introduced there should not help to compute some endomorphisms of a
given supersingular curve as we already know how to compute efficiently all
isogenies of smooth degree. Given that our N -FIXDIO oracle is pretty similar
to the RADIO and RUDGIO, the same reasoning applies in our case to justify
that the N -FIXDIO should not be of any help.
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Analysis of the OMIP2dim In dimension 2, both cN2dim(E) and sφ2dim contain more
informations than their counterpart in dimension 4. However, there does not
seem to be any relevant way to exploit this additional information. Indeed, the
main difference between the dimension 2 and dimension 4 is that the dimension 2
embedding is constructed from two non-trivial isogenies (and the commutative
diagram they generate) instead of one in dimension 4 (since one side of the
commutative diagram in 4dim is obtained from scalar multiplications isogenies
that anyone can compute efficiently). However, since the additional isogenies
revealed in dimension 2 do not satisfy any specific property, there does not seem
to be a reason that they would make the OMIP2dim more vulnerable. We will
see later with the CommonIsogenyRepresentation2,z algorithm, that the isogeny
ψ used in our 2dim representation is distributed uniformly among all isogenies
of the same degree and domain. This should prevent any weird behaviour that
might leak some information on the endomorphism ring of E.

Comparison between the two problems. Note that in general the OMIP2dim and
the OMIP4dim do not appear to be equivalent. Indeed, if the degree 2h − N of
the extra isogeny required in 2dim is not smooth, then computing any isogeny
of degree N − 2h from its domain E is believed to be hard (for the same reasons
that we assume that the OMIP is hard) and so translating 4dim representa-
tions to 2dim representations should be hard. However, note that if N − 2h is
powersmooth, then any isogeny of degree N − 2h can be computed from E in
polynomial time and so the OMIP2dim and OMIP4dim are in fact equivalent.
This fact might appear surprising, but in our opinion it is only one more reason
to believe that the additional information revealed in the OMIP2dim should not
make it easier than the OMIP4dim for any N .

Uniqueness. A VRF scheme satisfy unconditional full uniqueness when there
cannot be two possible output for the same input. This is formalized in Defini-
tion 5 below.

Definition 5. A VRF is said to satisfy unconditional full uniqueness when no
values pk, v, v′, x, π, π′ can satisfy Verifyy,z(pk, π, x, v) = 1 and Verifyy,z(pk, π

′, x, v′) =
1 with v ̸= v′.

To prove the uniqueness of our scheme, we need to give more details about
the verification procedure. In particular, we need to details the IsogVerifydim
algorithms for y = 2, 4.

Verification in dimension 2. The verification in dimension 2 is pretty simple:
we need to verify that the provided isogeny representation is well-formed. This
means verifying that we can compute F , an isogeny of dimension 2 that rep-
resents an isogeny between E and a curve of the correct j-invariant. This part
of the verification is handled by the IsogVerif2dim algorithm. For uniqueness, we
also need to verify that the degree and kernel are correct. These two properties
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Algorithm 4 IsogVerif2dim(E1, c
N
2dim(E), sφ2dim, j)

Input: A curve E1, a 2dim isogeny representation cN2dim(E), sφ2dim, and a j-invariant j.
Output: A bit b.
1: Parse cN2dim(E) as E3, P1, Q1, P3, Q3.
2: Parse sφ2dim as E2, E4, P2, Q2, P4, Q4.
3: if j(E2) ̸= j then
4: Return 0.
5: end if
6: Compute G1 = [2f−h1 ]⟨([N ]P1, P4), ([N ]Q1, Q4)⟩ and G2 =

[2f−h2 ]⟨(P2, P3), (Q2, Q3)⟩.
7: if Gi is not a kernel of a 2hi -isogeny of dimension 2 for i = 1, 2 then
8: Return 0.
9: end if
10: Compute F1 of kernel G1 and F̃2 of kernel G2.
11: if the codomain of F1, F̃2 do not agree. then
12: Return 0.
13: end if
14: return 1.

will be verified during the check that φ(Rx) = 0 performed in Verifyy,z (see the
proof of Proposition 4 for the full reasonning that this is enough).

Note that, in the statement below, when the output IsogVerif is 1, there is
no guarantee that the degree of the isogeny represented is N exactly.

Proposition 3. If IsogVerif2dim(E1, c
N
2dim(E), sφ2dim, j) = 1, then cN2dim(E), sφ2dim

constitute a valid 2dim isogeny representation for an isogeny φ : E1 → E2 of
degree smaller than 2h where j(E2) = j.

Conversely, if cN2dim(E), sφ2dim is a valid 2dim isogeny representation for an
isogeny of degree N from E1 to E2, then IsogVerif2dim(E1, c

N
2dim(E), sφ2dim, j(E2)) =

1.

Proof. When IsogVerif2dim(E1, c
N
2dim(E), sφ2dim, j) = 1, then, since the codomain

of F̃2 and F1 agree, there exists a 2h-isogeny F = F2 ◦ F1 : E1 × E4 → E2 × E3

with 2h1+h2 = 2h and j(E2) = j. Kani’s Lemma imply that we have a valid 2dim
representation for the isogeny ρ2 ◦ F ◦ ρ1 : E1 → E2 where ρ1, ρ2 are defined as
in Remark 1, and that the degree of this isogeny must be smaller than 2h.

Conversely, when cN2dim(E), sφ2dim are a valid representation for an isogeny φ
of degree N , then by definition, we must have P3, Q3 = ψ(P1, Q1), P2, Q2 =
φ(P1, Q1) and P4, Q4 = ψ′ ◦ φ(P1, Q1). In the case, it can be verified that the
two subgroup G1, G2 agree exactly with the subgroups defined in Equation 1.
Thus, G1 and G2 are correct kernels of dimension 2 isogenies and the codomains
of F1 and F̃2 agree. Thus, the output of IsogVerif2dim is 1. ⊓⊔

Proposition 4. The scheme DeuringVRF2,z satisfies unconditional full unique-
ness.
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Proof. Let us assume that we have a value v = Hout(x||j(E′)) passing the veri-
fication for an input x, a public key pk and proof π. We want to prove that the
only possibility is that j(E′) = j(E/⟨Rx⟩).

By Proposition 3, we know that a valid isogeny representation for an isogeny
φ : E → E′ can be extracted from pk and π. Since φ(Rx) = 0, we know
that ⟨Rx⟩ ⊂ kerφ. This implies that N divides the degree of φ. But since φ
has degree smaller than 2h and we assumed that h was the smallest exponent
such that 2h > N then degφ must be N . So kerφ = ⟨Rx⟩ and so E′ must be
isomorphic to E/⟨Rx⟩ which proves the result. ⊓⊔

Verification in dimension 4. The verification in dimension 2 is quite simple
because the 2dim isogeny representation embeds the isogeny φ directly. However,
the situation is a bit more complicated in dimension 4 because the concrete
isogeny that is represented is [α]φ as we explained in Section 2.3. Thus, checking
the degree is slightly harder. In particular, checking that ρ2◦F ◦ρ1(Rx) = 0 is not
enough anymore as this only proves that ρ2◦F◦ρ1 can be factored by φ. To ensure
uniqueness, the verifier must be able to ensure that ρ2 ◦ F ◦ ρ1 = [α]φ. This is
why IsogVerif4dim will include another step compared to IsogVerif2dim: check that
E[α] ⊂ ker ρ2◦F ◦ρ1. This is why the exact choice of α is important. To enable an
efficient verification, we need that the α-torsion points are defined over a small
field extension. That way, it can be easily checked that ρ2 ◦ F ◦ ρ1(E[α]) = 0
with IsogEval4dim. We will specify in Section 5.2 an example of parameters for
which the α-torsion is defined over Fp2 .

Proposition 5. If IsogVerif4dim(E1, c
N
4dim(E), sφ4dim, j) = 1, then cN4dim(E), sφ4dim

constitute a valid 4dim isogeny representation for an isogeny φ : E1 → E2 of
degree smaller than 2h/α2 where j(E2) = j.

Conversely, if cN4dim(E), sφ4dim is a valid 4dim isogeny representation for an

isogeny φ : E1 → E2 of degree N , then IsogVerif4dim(E, c
N
4dim(E), sφ4dim, j(E2)) =

1.

Proof. When IsogVerif4dim(E1, c
N
4dim(E), sφ4dim, j) = 1, then, since the codomain

of F̃2 and F1 agree, there exists a 2h-isogeny F = F2 ◦ F1 : E2
1 → E2

2 with
2h1+h2 = 2h and j(E2) = j. Kani’s Lemma, imply that we have a valid 4dim
representation for the isogeny ρ2 ◦ F ◦ ρ1 : E1 → E2 where ρ1, ρ2 are defined
as in Remark 1, and that the degree of this isogeny must be smaller than 2h.
Moreover, since ρ2 ◦ F ◦ ρ1(E1[α]) = 0, then ρ2 ◦ F ◦ ρ1 can be factored by [α]
and so the degree of the isogeny from E1 to E2 is smaller than 2h/α2.

Conversely, when cN4dim(E), sφ4dim is a valid representation for an isogeny φ of
degree N , then by definition, we must have P2, Q2 = φ(P1, Q1). In that case, it
can be verified that the two subgroup G1, G2 agree exactly with the subgroups
defined in Equation 1. Thus, G1 and G2 are correct kernels of dimension 4 2h1 -
isogenies and 2h2-isogenies and the codomains of F1 and F̃2 agree. Finally, since
the points have been multiplied by α in the definition of G1,G2. The isogeny
ρ2 ◦F ◦ ρ1 can be factored by [α] and so the evaluation on the points of order α
will be 0. Thus, the output of IsogVerif4dim is 1. ⊓⊔
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Algorithm 5 IsogVerif4dim(E1, c
N
4dim(E), sφ4dim, j)

Input: A 4dim isogeny representation cN4dim(E), sφ4dim, a j-invariant j.
Output: A bit b.
1: Parse cN4dim(E) as P1, Q1.
2: Parse sφ4dim as E2, P2, Q2.
3: if j(E2) ̸= j then
4: Return 0.
5: end if
6: Compute

G1 = [2f−h1 ]⟨([a1]P1, [a2]P1, [α]P2, 0), ([a1]Q1, [a2]Q1, [α]Q2, 0),

(−[a2]P1, [a1]P1, 0, [α]P2), (−[a2]Q1, [a1]Q1, 0, [α]Q2, )⟩

G2 = [2f−h2 ]⟨([a1]P1,−[a2]P1,−[α]P2, 0), ([a1]Q1,−[a2]Q1,−[α]Q2, 0),

([a2]P1, [a1]P1, 0,−[α]P2), (−[a2]Q1, [a1]Q1, 0,−[α]Q2, )⟩.

7: if Gi is not a kernel of a 2hi -isogeny of dimension 4 for i = 1, 2 then
8: Return 0.
9: end if
10: Compute F1 of kernel G1 and F̃2 of kernel G2.
11: if the codomain of F1, F̃2 do not agree. then
12: Return 0.
13: end if
14: Compute a basis Pα, Qα of E1[α].
15: Set ρ1 : E1 → E2

1 ×E2
2 any embedding that is the identity on the first coordinate,

and ρ2 : E2
1 × E2

2 → E2 as the canonical projection on the third coordinate.
16: if ρ2 ◦ F2 ◦ F1 ◦ ρ1(Pα) ̸= 0 or ρ2 ◦ F2 ◦ F1 ◦ ρ1(Qα) ̸= 0 then
17: Return 0.
18: end if
19: return 1.
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Proposition 6. The scheme DeuringVRF4,z satisfies unconditional full unique-
ness.

Proof. Let us assume that we have a value v = Hout(x||j(E′)) passing the veri-
fication for an input x, a public key pk and proof π. We want to prove that the
only possibility is that j(E′) = j(E/⟨Rx⟩).

By Proposition 5, we know that a valid isogeny representation for an isogeny
φ : E → E′ can be extracted from pk and π. Since φ(Rx) = 0, we know that
⟨Rx⟩ ⊂ kerφ. This implies that N divides the degree of φ. But since φ has degree
smaller than 2h/α2 and we assumed that h was the smallest exponent such that
2h > Nα2 then degφ must be N . So kerφ = ⟨Rx⟩ and so E′ must be isomorphic
to E/⟨Rx⟩ which proves the result. ⊓⊔

4 The algorithmic instantiation of DeuringVRFy,z.

In this section, we fill the blanks left in Section 3.1, and dive into the more com-
plicated sub-algorithms of our VRF construction. Our goal is to be able to instan-
tiate the DeuringVRFy,z family for (y, z) ∈ {(2, 1), (2, 2), (4, 1), (4, 2)}. Thus, this
section will introduce the three following algorithms: IsogenyRepresentation4,z,
CommonIsogenyRepresentation2,z and IsogenyRepresentation2,z for z ∈ {1, 2}. The
description of those algorithms can be found in Section 4.3, but several building
blocks are required before that.

The most crucial sub-algorithm is an algorithm to evaluate an isogeny from
its ideal representation. This will be the focus of Section 4.2. This evaluation
algorithm itself is built on top of another algorithm, which is our most basic
build block : IdealToIsogenyz, an algorithm to realize the effective the Deuring
correspondence by translating an ideal of smooth norm given in input to its
corresponding isogeny. Here, the label z plays the same role as in DeuringVRFy,z,
it indicates that the algorithm will make use of isogenies in dimension z. The
algorithm IdealToIsogenyz is introduced in Section 4.1 with all the necessary
building blocks to instantiate it with z = 1, 2.

We will provide in Section 5.3 a complete discussion on the various parameter
constraints and choices to instantiate our DeuringVRFy,z family. In the rest of
this section, we omit most efficiency considerations even when they underlie
some of the design choices and focus on obtaining correct algorithms.

4.1 Algorithms for the effective Deuring correspondence

The goal of this section is to instantiate the algorithm IdealToIsogenyzℓ• to trans-
late an ideal of norm a power of ℓ into their corresponding isogeny for some small
prime ℓ and z = 1, 2. The isogeny to be computed is always of dimension 1 (even
when z > 1), but isogenies of dimension z will be used during the execution of
IdealToIsogenyzℓ• .

For the rest of this section, we fix an exponent e such that the ℓe torsion
of supersingular curves can be defined over Fp2 . For simplicity, we will target
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the case where the norm of the input to IdealToIsogenyzℓ• is exactly ℓne for some
integer n. The generic case can be derived trivially from there.

In fact, our algorithm IdealToIsogenyzℓ• is not new. It has been introduced as
IdealToIsogenyEichlerℓ• for z = 1 in [15, Algorithm 5] in the context of the SQIsign
signature scheme. When the input has norm ℓne, the algorithm IdealToIsogeny
Eichlerℓ• consists in n sequential executions of a sub-algorithm IdealToIsogeny
Eichlerℓe ([15, Algorithm 4]) that performs the translation for inputs of norm ℓe

exactly.
For z = 2, we will keep the same structure as z = 1 for the high-level

algorithm IdealToIsogeny2ℓ• . Thus, we give a common description (with z as a
non-specified parameter) at the end of this section as Algorithm 8.

We introduce an algorithm IdealToIsogeny2ℓe to replace IdealToIsogenyEichlerℓe
when z = 2. A detailed description of IdealToIsogenyEichlerℓe (that we relabel as
IdealToIsogeny1ℓe) can be found in Appendix A.

We start with a brief summary of the ideas underlying IdealToIsogeny1ℓe to
provide some insights on how and why its dimension 2 counterpart was designed.

Translating ideal to isogenies with isogenies in dimension 1, a summary. The
main subtlety in IdealToIsogeny1ℓ• is that each translation of length e “consumes”
the ℓe torsion points (those points are necessary to express the kernel of the ℓe-
isogenies to be translated). This is why the algorithm IdealToIsogeny1ℓe performs
a “refresh” operation, necessary to all its subsequent executions inside Ideal-
ToIsogeny1ℓ• . In IdealToIsogeny1ℓe , this refresh is done by evaluating some well-
chosen endomorphism θ of the domain curve on the ℓe torsion. In dimension
1, there is only one way to ensure that this endomorphism θ can be efficiently
evaluated: ensure that deg θ|T 2 where T is a smooth integer such that the T -
torsion points are defined over a small field extension. Endomorphisms satisfying
these constraintes can be found using the SpecialEichlerNormT algorithm [15,
Algorithm 3]. But this algorithm only succeeds when the value of T is quite big
(T ≈ p5/4).

This constraint on the size of T is the main cause of the relative inefficiency
of IdealToIsogeny1ℓ• , because having the T -torsion defined over a small field ex-
tension of Fp2 implies a very strong constraint on the two integers p and T .
A suitable solution can be always be found, but the smoothness bound of T
might not be very small. This smoothness bound in turn impacts the cost of
the T -isogenies that must be computed in order to evaluate the endomorphism
θ (the smoother the faster the computation will be). Moreover, we will see in
Section 5.3 that, in the context of our DeuringVRFy,1 protocol, there are some
additional constraints to take into account that complicate even more the search
for a smooth T .

This limitation is the main motivation to introduce a variant with z = 2. The
goal of this algorithm is to overcome the obstacle of the case z = 1 by exploiting
the 2dim isogeny representation.

Translating ideal to isogenies with isogenies in dimension 2, an overview. Our
goal with the case z = 2 is to simplify the computation of the endomorpism
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θ. To overcome the obstacles encountered with the dimension 1 algorithm, we
follow a reasoning that resembles the idea behind the recent SQIsignHD scheme
[12]: by embedding θ in an 2h-isogeny of higher dimension (for some exponent
h), we can relax most of the constraints on its degree (and in particular the
smoothness). This means that we can get rid of SpecialEichlerNormT and simply
look for θ among the endomorphism of small norm in End(E). The concrete
requirements for IdealToIsogeny2ℓe are in fact slightly more complex than that. In
the next paragraph, we introduce an algorithm RandomGoodEndomorphism to
find suitable endomorphisms.

Remark 2. Unlike SQIsignHD, where the dimension 4 is required, we will see
that the dimension 2 is enough for our purpose because we can use endomor-
phisms to apply Kani’s Lemma. This idea could not be applied to obtain a
dimension 2 equivalent of SQIsignHD protocol because that would imply to re-
veal endomorphisms of the public key curve which would destroy the security of
the scheme (since the endomorphism ring of the public key must remain secret).
Also, note that it should probably be possible to devise IdealToIsogenyzℓe algo-
rithms for z = 4 (or even z = 8) following the same ideas. However, there do not
really seem to be a gain that would compensate for the efficiency loss induced
by the cost of the higher dimension computations.

In the remaining of this section, we assume ℓ ̸= 2, and we fix and exponent
f such that the 2f torsion of supersingular curves is defined over Fp2 .

Finding suitable endomorphisms for the dimension 2 representation. As ex-
plained in Section 2.3, the 2dim representation for any isogeny φ of degree a
requires a second isogeny β of degree b such that 2h = a + b. In our case, the
isogeny we want to represent is an endomorphism θ. Following an idea intro-
duced in [8], we propose to choose β as an endomorphism of E as well. With the
method described in [8], it is possible to find efficiently two endomorphisms θ, β
in the same quadratic order satisfying the norm equation 2h = n(θ)+n(β). This
can be done in the following way: let us take ω ∈ End(E) an endomorphism of
E of trace 0 and norm n. Then, for any x, c we have n(x+ cω) = x2+ c2n. Thus,
n(x1+c1ω)+n(x2+c2ω) = x21+x

2
2+(c21+c

2
2)n and it suffices to find x1, x2, c1, c2

such that x21 + x22 + (c21 + c22)n = 2h to obtain an endomorphism θ = x1 + c1ω
that we will be able to represent efficiently with the 2dim representation. This
equation can be solved quite easily using Cornacchia’s algorithm when 2h is big
enough compared to n.

As in SpecialEichlerNorm, the endomorphism θ computed by RandomGood-
Endomorphism must satisfy an additional constraint: it can not be contained
in the Eichler order Z + K for some ideal K of norm ℓ given in input. This
additional constraint is quite strong and it implies that RandomGoodEndomor-
phism will always fail for some maximal order O. Fortunately, it can be shown
heuristically that this will only happen with very small probability when we
consider a random supersingular curve, and this will be enough for our need. We
also provide some more insights on these potential failures later in this section.
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For RandomGoodEndomorphism, we define as O⊥ the sub-lattice of O made
of elements of trace 0.

RandomGoodEndomorphism makes use of the Cornacchia algorithm from [10]
that takes two integers d, n and finds (when possible) x, y such that x2+dy2 = n.

Algorithm 6 RandomGoodEndomorphism(O,K, h)
Input: A maximal order O, an O-ideal K of norm ℓ, and an integer h.
Output: θ, β ∈ O with β ̸∈ Z+K and 2h = n(θ) + n(β).
1: Compute α1, α2, α3, the three elements ofO⊥ realizing the three successive minimas

of O⊥ and set M as the set of αi with norm smaller than 2h that are not contained
in Z+K.

2: if M = ∅ then
3: Return ⊥
4: end if
5: Set found as false
6: for ω ∈M do
7: Set C as the set of coefficients c1, c2 such that 2h − (c21 + c22)n(ω) > 0.
8: for c1, c2 ∈ C do
9: Set n = 2h − (c21 + c22)n(ω).
10: if If Cornacchia(n, 1) ̸= ⊥ then
11: x1, x2 = Cornacchia(n, 1).
12: Set θi = xi + ciω for i = 1, 2.
13: Set found = true

14: end if
15: end for
16: end for
17: Set θ = θ1, β = θ2.
18: return Return θ, β

Before proving the correctness and termination of our algorithm, we need
to state a preliminary result. The following lemma, adapted from a result first
mentioned by Elkies in [19] tells us that we can always find a non-trivial endo-
morphism ω of norm smaller than 8p2/3 and trace 0. We have also included a
result by Boneh and Love regarding the number of curves having an endomor-
phism of norm smaller than some bound [36, Proposition A.3].

Lemma 2. For any supersingular curve E, there exists an endomorphism ω :
E → E of degree smaller than 8p2/3 and tr(ω) = 0.

Moreover, given any B < 8p2/3, the number of curves having a non-trivial
endomorphism of trace 0 and norm smaller than B is in O(B3/2).

Proof. Let O be isomorphic to End(E). Let us consider the rank 3 lattice O/Z.
Since the reduced discriminant of O is p, the determinant of O/Z is p2 and,
by Minkowski’s theorem, it must contain an element θ of norm smaller than
2p2/3. Either tr(θ) = 0 or we can assume w.l.o.g that tr(θ) = 1. In that case
tr(2θ − 1) = 0 and n(2θ − 1) < 8p2/3.
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The second result regaring the number of curves having a non-trivial endo-
morphism smaller than B was proven as [36, Proposition A.3]. ⊓⊔

Proposition 7. (Heuristic) For any κ > 0, there exists η = Θ(log log(p) + κ)
such that, if h > 2/3 log(p) + η, then RandomGoodEndomorphism will succeed
with probability bigger than 1−2−κ on input O,K, h if the maximal order O is a
uniformly random maximal order in Bp,∞, and K is a random O-ideal of norm
ℓ.

Proof. For the algorithm to fail, eitherM = ∅ or no suitable pair c1, c2 was found.
First, note that if n(α3) < 2h, then M cannot be empty. Indeed, we cannot have
all three elements α1, α2, α3 contained in Z +K as O/ℓO ∼= M2(Z/ℓZ) and so
O⊥/ℓO⊥ ∼=M2(Z/ℓZ)/Z (since ℓ ̸= 2).

Let us take some value A < 2h and assume that the input O is such that
n(α3) < A. By choice of A, M is not empty. Then, for a given ω ∈ M there
is #C ≥ λ02

h/n(ω) possible pairs c1, c2 where λ0 is some constant. Under the
heuristic that N = 2h − (c21 + c22)n(ω) behave as a random integer of the same
size, the success probability of Cornacchia(N, 1) is bigger than λ1/ log(p) for some
constant λ1. Thus, for anyO such that n(α3) < A we can upper-bound the failure

probability of RandomGoodEndomorphism on input O by (1−λ1/ log(p))λ02
h/A.

If we write p(A), the probability that a random O in Bp,∞ is such that
n(α3) > A, then the conditional probability formula associated to a trivial
majoration of any probability by 1 gives us that the probability of failure of
RandomGoodEndomorphism on a random input O is upper-bounded by

p(A) + (1− λ1/ log(p))λ02
h/A

We can now use Lemma 2 to upper-bound p(A).
By Minkowski’s second theorem, we know that n(α1)n(α2)n(α3) ≤ µ0p

2 for
some constant µ0. Thus, if n(α3) > A, then n(α1) ≤ µ1p/

√
A for some constant

µ1. By Lemma 2, this implies that the number of curves with n(α3) < A is
smaller than µ2p

3/2/A3/4 for some constant µ2, and so we obtain that p(A) ≤
µ3
√
p/A3/4 for some constant µ3.
We derive the following upper-bound on the failure probability:

µ3

√
p

A3/4
+

(
1− λ1

log(p)

)λ02
h/A

(3)

Now, it is easily verified that for any κ > 0, there exists η = Θ(κ+log log(p))
such that if h > 2/3 log(p) + η, then there exists a = 2/3 log(p) + Θ(κ) smaller
than 2f such that the upper-bound of the failure probability 3 is smaller than
2−κ when A = 2a. ⊓⊔

Potential failures of RandomGoodEndomorphism. We can extract from the proof
of Proposition 7 the cases where RandomGoodEndomorphism will potentially fail:
when the smallest non-trivial endomorphism of O is smaller than usual (so the
third successive minima is bigger than, or very close to, 22f ) and is contained in
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Z+K. Depending on the value of p and f , this might happen for some maximal
orders and values of K. In those cases, RandomGoodEndomorphism will simply
fail. The results of Proposition 7 allow us to adjust the value of f to reduce
the probability of this bad event as much as possible. Moreover, note that it
can be shown that the third successive minima must be in Θ(p). Thus, when
f > 1/2 log(p) the proportion of failing maximal order will decrease very quickly
to 0. In all of our applications of RandomGoodEndomorphism, it should not be
too hard to rerandomize the choice of maximal order, thus these failures should
not really be problematic as soon as we are careful to pick a value of f that is
not too close to 1/3 log(p). In particular, in our application to DeuringVRFy,2,
we need to take f ≈ 1/2 log(p) and so we expect those failures to happen with
negligible probability.

Remark 3. Note that θ and β commute because they are in the same quadratic
order. Thus, we do not need to bother with any coprimality conditions on the
norm of θ and β in RandomGoodEndomorphism because Lemma 1 applies as soon
as there is a commutative diagram. However, the formula to compute kerF and
ker F̃ needs to be adjusted (this formula is only correct if kerβ ∩ ker θ = {0},
which is always true for coprime degrees but might not be otherwise). We explain
in Appendix B that this should only happen when θ and β have a very specific
form. We expect these bad cases to occur with very small probability which is
why we do not treat them directly in the description of IdealToIsogeny2ℓe below.
In Appendix B, we explain how to solve the issue when it happens. Our proposed
solution requires a bit more available torsion than is necessary for the method
detailed in IdealToIsogeny2ℓe (we need f = h to be able to make it work in every
case whereas 2f ≥ h is usually enough).

The full ideal-to-isogeny subroutine in dimension 2. As we explained above, we
obtain IdealToIsogeny2 by adapting IdealToIsogeny1 to use RandomGoodEndomor-
phism instead of SpecialEichlerNorm and compute θ from a 2dim isogeny repre-
sentation rather than as a T -isogeny. This yields Algorithm 7. We remind the
reader that we use in a black-box manner an algorithm IsogEval2dim to evaluate
isogenies from their 2dim-representation.

The algorithm IdealToIsogeny2ℓe also assumes the knowledge of a curve E0 with
its endomorphism ring End(E0). For this curve, it is known how to evaluate any
endomorphism θ0 ∈ End(E0).

Proposition 8. Let O, I, J, φJ , P be the input to IdealToIsogeny2ℓe and let K =
J + Oℓ. If RandomGoodEndomorphism(O,K, h) ̸= ⊥, then IdealToIsogeny2ℓe re-
turns the correct output on input O, I,K, φJ , P .

Proof. By [15, Lemma 8], if the point Q is equal to θ(P ), then the group ⟨[C]P+
[D]Q⟩ is the kernel of the desired isogeny φI . Thus, for our purpose, it suffices to
show thatQ is indeed equal to θ(P ). By the presumed correctness of IsogEval2dim,

we need to show that the isogeny representation c
n(θ)
2dim(E), sθ2dim is correct. First,

note that since θ, β are commutative endomorphisms, the commutative diagram
they generate only involvde the curve E and we have θ′ = θ and β′ = β. Second,
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Algorithm 7 IdealToIsogeny2ℓe(O, I, J, φJ , P )
Input: I a left O-ideal of norm ℓe, an (O0,O)-ideal J of norm in ℓ• and φJ : E0 → E

the corresponding isogeny, the generator P ∈ E[ℓe] of kerφK s.t φ̂J = φK′ ◦ φK .
Output: φI of degree ℓe

1: Set K = J +Oℓ.
2: if RandomGoodEndomorphism(O,K, 2f) = ⊥ then
3: Return ⊥.
4: end if
5: Compute θ, β = RandomGoodEndomorphism(O,K, h).
6: Select α ∈ I s.t. I = O⟨α, ℓe⟩.
7: Compute C,D s.t. α · (C +Dθ) ∈ K and gcd(C,D, ℓ) = 1 using linear algebra.
8: Compute R,S a basis of E[2f ], t = degφ−1

J mod 2f .
9: Compute W,X = φ̂J(R,S).
10: Set θ0 = φ̂J ◦ θ ◦ φJ ∈ End(E0) and compute U, V = θ0(W,X).
11: Set β0 = φ̂J ◦ β ◦ φJ ∈ End(E0) and compute W,X = β0(W,X) and Y,Z =

β0(U, V ).
12: Compute U, V = [t2]φJ(U, V ),W,X = [t2]φJ(W,X),and Y,Z = [t3]φJ(Y,Z).

13: Set sθ2dim = E,E,U, V, Y, Z, and c
n(θ)
2dim(E) = E,R, S,W,X.

14: Compute Q = IsogEval2dim(s
θ
2dim, c

n(θ)
2dim(E), P )

15: Compute φI of kernel ⟨[C]P + [D]Q⟩.
16: return φI .

we need to verify that U, V = θ(R,S), W,X = β(R,S) and Y,Z = β ◦ θ(R,S).
Following the various computations, we see that U, V = [t2]φJ ◦ θ0 ◦ φ̂J(R,S).
By definition of θ0 this is [t2][degφ2

J ]θ(R,S) = θ(R,S). The same can be shown
forW,X, and for Y,Z with β0◦θ0 = [degφJ ]φ̂J ◦β◦θ◦φJ . This defines a correct
2dim isogeny representation according to the formulas given in Section 2.3 and
this concludes the proof. ⊓⊔

The generic ideal-to-isogeny algorithm. We are now ready to introduce
the full algorithm IdealToIsogenyz algorithm. As we said at the beginning of this
section, this is a simple generalization of [15, Algorithm 5]. We refer the reader
to [15] for the proof of correctness.

4.2 Evaluating isogenies from the ideal representation

In this section, we introduce two algorithms to evaluate isogenies from their
ideal representation. The first one is called IsogEvalzid (see Algorithm 9 below)
and works only when order of the point P is coprime to ℓ the small prime
used in IdealToIsogenyzℓ• . This algorithm is greatly inspired from [34, Algorithm
2] (or equivalently [22, Algorithm 1]). In our application ofIsogEvalzid, we will
need to evaluate points of order 2f . This will not be problematic when z = 2
because we take ℓ ̸= 2. However, with our choices of parameters when z = 1,
only the translation of isogenies of degree 2• will be efficient (more on that in
Section 5.1). Thus, IsogEval1id will not be applicable efficiently and this is why
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Algorithm 8 IdealToIsogenyzℓ•(I, J, φJ)

Input: I a left O-ideal of norm ℓne, an (O0,O)-ideal J of norm ℓ• and φJ : E0 → E
the corresponding isogeny

Output: φI of degree ℓne.
1: Set Ji = J , Ii = I + ℓfO, I ′i = I−1

i I, Oi = O.
2: Set φi of degree ℓ

f as the isogeny such that φ̂J = φ′ ◦ φi
3: Set φI = [1]E and Ei = E.
4: for i ∈ [1, n] do
5: Compute Pi ∈ Ei[ℓf ] s.t kerφi = ⟨Pi⟩.
6: Compute φIi = IdealToIsogenyzℓe(Oi, Ii, Ji, φI ◦ φJ , Pi).
7: Set φi = φ̂Ii , φI = φIi ◦ φI and Ei is the codomain of φIi .
8: Set Ji = Ji · Ii, Oi = OL(I ′i), Ii = I ′i + ℓfOi and I ′i = I−1

i I ′i.
9: end for
10: return φI .

we need to introduce a second algorithm called IsogEvalNonCoprime1id to handle
the case where the order of the points is not coprime to ℓ.

When the order is coprime to ℓ. The high level idea is the following: find an ideal
of norm ℓ• equivalent to the ideal in input with the KLPT algorithm from [31],
compute the corresponding isogeny with IdealToIsogenyzℓ• and use this isogeny to
compute the final output. As we said above, this algorithm is now pretty stan-
dard. We refer the reader to [35, Section 4.2.4] for a more detailed description,
correctness proof and complexity analysis, including the presentation of all the
necessary building blocks.

Algorithm 9 IsogEvalzid(I, E, P )

Input: I an ideal of Bp,∞, E an elliptic curve with End(E) ∼= OL(I) and P ∈ E[2f ]
where ℓ is coprime to N = n(I).

Output: φI(P ).
1: Compute J = KLPTℓ•2 (I) and set K = I ·J . Set α ∈ End(E) as the endomorphism
φK .

2: Compute α(P ).
3: Compute φJ = IdealToIsogenyzℓ•2

(J) and compute Q = φJ(α(P )).

4: Compute µ = n(J)−1 mod 2f .
5: return [µ]Q.

When the order is not coprime to ℓ. When we want to use IsogEvalzid with ℓ = 2,
the main problem we encounter is that n(J) is not invertible mod 2f . Fortu-
nately, there is a way to circumvent this issue by applying the following idea
that underlies IdealToIsogenyEichlerℓe : given an isogeny ψ : E0 → E of arbitrary
degree coprime to ℓ, another isogeny φJ : E0 → E of degree ℓ•, an endomor-
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phism θ of E of norm coprime to ℓ can be used to compute the image of any
subgroup G ⊂ E0[G] efficiently, assuming a few conditions on θ.

Our algorithm IsogEvalNonCoprime1id is obtained by combining this idea with
the algorithm introduced in the proof of Lemma 3 below to obtain the images
of an isogeny on given points of smooth order from the images of this isogeny
on subgroups of the same order.

Lemma 3. Let N be an integer coprime to some small prime ℓ. Let E0, E be
two elliptic curves connected by an isogeny ψ : E0 → E. Assume that E[2f ] is
defined over Fp2 . There is an algorithm of complexity O (poly(log(p) + f)) that
takes G1, G2, G3, H1, H2, H3 where G1, G2, G3 are three subgroups of order 2f

such that Gi ∩Gj = {0} for all 1 ≤ i < j ≤ 3 and Hi = ψ(Gi) for i = 1, 2, 3, a
point P ∈ E0[2

f ] and computes ψ(P ) up to sign.

Proof. Let Pi, Qi be the respective generators of Gi, Hi for i = 1, 2, 3. We know
there exists λi such that φ(Pi) = [λi]Qi. By assumption that G1 ∩ G2 = {0},
the two points Q1, Q2 form a basis of E[2f ]. By solving a bidimensional discrete
logarithm in E[2f ], one can find µ1, µ2 such that Q3 = [µ1]Q1+[µ2]Q2. Doing the
same on E0, we obtain P3 = [ν1]P1+[ν2]P2. Then, we get that λ3/λi = νi/µi for
i = 1, 2 (µi ̸= 0 sinceH3∩H1 = {0}, H3∩H2 = {0} because ψ has degree coprime
to ℓ). Thus, the three values Ri = λ3ψ(Pi) can be computed for i = 1, 2, 3.

Then, computing the discrete logarithm of e(P1, P2) and e(R1, R2), we get the
scalar λ23N mod 2f . Dividing by N and computing a squareroot s of the result
mod 2f , we get Si = s−1Ri = ±ψ(Pi). Then, to evaluate any point P ∈ E0[2

f ]
is suffices to find a, b such that P = aP1 + bP2 and to output aS1 + bS2.

It is clear that all the operations above can be performed inO (poly(log(p) + f)).
⊓⊔

The algorithm IsogEvalNonCoprime1id uses several building blocks of the Deur-
ing correspondence based on isogenies in dimension 1. There is the SpecialEichler-
NormT 2 algorithm (see [15, Algorithm 3]) to compute endomorphisms of norm
dividing T 2 in any maximal order barred of an Eichler order of level ℓ, and the
IdealToKernelD and IdealToIsogenyD algorithms to translate an ideal of norm D
in the corresponding kernel and isogeny respectively (see [35, section 4.2.1]). The
integer T is an implicit parameter of Algorithm 10.

Proposition 9. (Heuristic) IsogEvalNonCoprimeid1 is correct and terminates with
constant probability when T > p5/4.

Proof. The heuristics involved in this proof are the same than in the proofs
of correctness and termination of KLPT2• , IdealToKernel2f IdealToIsogeny1ℓ• and
SpecialEichlerNormT (see [35] and [15] for statements and proofs regarding the
termination and correctness of these algorithms).

The termination of IsogEvalNonCoprime1 follows from the termination of all
the building blocks. The condition on T and the constant success probability
both come from [15, Proposition 6].

Let us now prove correctness. After the ideal J and the isogeny φJ have
been computed together with the point Q. The steps 5 to 15 are essentially the
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Algorithm 10 IsogEvalNonCoprime1id(I, P )

Input: I a left O0-ideal of norm N coprime to 2, a point P ∈ E0[2
f ].

Output: ±φI(P )
1: Set O = OR(I).
2: Compute J = KLPT2•(I).
3: Compute φJ = IdealToIsogeny12•(O0, 1, J).
4: Compute Q the kernel of the dual of the last isogeny composing φJ .
5: Set K = J +O2.
6: Compute θ = SpecialEichlerNormT (O,K) of norm dividing T 2.
7: Take any n1|T and n2|T s.t. n1n2 = n(θ). Compute H1 = O⟨θ, n1⟩ and H2 =
O⟨θ, n2⟩.

8: Compute Lj = [J ]∗Hj , and φj = [φJ ]∗IdealToIsogenynj
(Lj) for j ∈ {1, 2}.

9: Compute Q′ = φ̂2 ◦ φ1(Q).
10: Compute I1, I2, I3 three O0-ideals of norm 2f such that Ii + O02 ̸= Ij + O02 for

1 ≤ i < j ≤ 3.
11: for i = 1, 2, 3 do
12: Compute ⟨Pi⟩ = IdealToKernel2f (Ii).
13: Compute αi such that [I]∗Ii = O0⟨αi, 2f ⟩.
14: Compute Ci, Di s.t. αi · (Ci + Diθ) ∈ K and gcd(Ci, Di, 2) = 1 using linear

algebra.
15: Compute the kernel Qi = [Ci]Q+ [Di]Q

′.
16: end for
17: Compute µ1, µ2 such that Q3 = [µ1]Q1 + [µ2]Q2.
18: Compute ν1, ν2 such that P3 = [ν1]P1 + [ν2]P2.
19: Set R3 = Q3 and Ri = (µi/νi mod 2f )Qi for i = 1, 2.
20: Compute λ such that e2f (P1, P2)

λ = e2f (R1, R2).

21: Compute s =
√
λ/N

−1
mod 2f .

22: Compute Si = [s]Ri for i = 1, 2, 3.
23: Compute a, b such that P = [a]P1 + [b]P2.
24: return [a]S1 + [b]S2.

same that are performed in IdealToIsogeny1ℓe (that we describe in Appendix A).
We refer the reader to the proof of [15, Proposition 6] for a proof that the
subgroup ⟨Qi⟩ is the kernel of the ideal [I]∗Ii for i = 1, 2, 3. This means that
⟨Qi⟩ = φI(⟨Pi⟩) for i = 1, 2, 3.

Steps 17 to 22 correspond to the algorithm described in the proof of Lemma 3.
We refer the reader to this proof to show that S1, S2, S3 = ±φI(P1, P2, P3). Then,
since P = [a]P1 + [b]P2, we get [a]S1 + [b]S2 = ±φI(P ).

⊓⊔

4.3 Computing high dimensional isogeny representation from the
ideal representation.

The goal of this section is to introduce the algorithms CommonIsogenyRepresenta-
tiony,z and IsogenyRepresentationy,z that are respectively building blocks of the
KeyGeny,z and VRFEvaly,z algorithms of our DeuringVRFy,z scheme. Given the
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pairs y, z that we target, we only need this function for y = 2, 4. These algorithms
can be derived in a straightforward manner from the definition of the 2dim and
4dim representation. They mainly consists in applications of IsogEvalidz and Isog-
EvalNonCoprimeid1 . We start with the simpler case y = 4.

Constructing the 4dim isogeny representation. The CommonIsogenyRepresenta-
tion4,z algorithm is trivial, it simply outputs the points P,Q. We do not give
a more detailed description than that. The IsogenyRepresentation4,z algorithm
simply consists in two executions of the isogeny evaluation algorithm. In our
case, we use IsogEvalzid when z ̸= 1 and IsogEvalNonCoprime1id when z = 1.

Algorithm 11 IsogenyRepresentation4,z(I, J, φ̂I(P ), φ̂I(Q))

Input: I an O0-ideal, J an OR(I)-ideal of norm N , the image φ̂I(P,Q) of a basis P,Q
of E[2f ].

Output: sφ4dim for φ the isogeny corresponding to J
1: Compute the codomain E2 of J .
2: if z ̸= 1 then
3: R = IsogEvalzid(I · J, φ̂I(P )) and S = IsogEvalzid(I · J, φ̂I(Q)).
4: else
5: R = IsogEvalNonCoprimezid(I · J, φ̂I(P )) and S = IsogEvalNonCoprimezid(I ·

J, φ̂I(Q)).
6: end if
7: return E2, R, S.

Constructing the 2dim isogeny representation. Similarly to the case y = 4, the
two algorithms CommonIsogenyRepresentation2,z and IsogenyRepresentation2,z are
mainly constitued of isogeny evaluations.

Algorithm 12 CommonIsogenyRepresentation2,z(I, P,Q, φ̂I(P ), φ̂I(Q))

Input: I an O0-ideal, the points P,Q, φ̂I(P ), φ̂(Q) where P,Q is a basis of E[2f ] for
the codomain E of φI : E0 → E.

Output: cN2dim(E)
1: Compute deterministically a random OR(I)-ideal J of norm 2h −N .
2: if z =4 then
3: R = IsogEvalzid(I · J, φ̂I(P )) and S = IsogEvalzid(I · J, φ̂I(Q)).
4: else if z=1 then
5: R = IsogEvalNonCoprimezid(I · J, φ̂I(P )) and S = IsogEvalNonCoprimezid(I ·

J, φ̂I(Q)).
6: end if
7: Set E3 the codomain of the isogeny corresponding to I · J .
8: return E3, P,Q,R, S.
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Algorithm 13 IsogenyRepresentation2,z(I, J, φ̂I(P ), φ̂I(Q))

Input: I an O0-ideal, J an OR(I)-ideal of norm N , the image φ̂I(P,Q) of a basis P,Q
of E[2f ].

Output: sφ2dim
1: if z =4 then
2: R2 = IsogEvalzid(I · J, φ̂I(P )) and S2 = IsogEvalzid(I · J, φ̂I(Q)).
3: else if z=1 then
4: R2 = IsogEvalNonCoprimezid(I · J, φ̂I(P )) and S2 = IsogEvalNonCoprimezid(I ·

J, φ̂I(Q)).
5: end if
6: Set E2 the codomain of the isogeny corresponding to I · J .
7: Compute deterministically a random OR(I)-ideal J ′ of norm 2h −N .
8: Set K = I · J · [J ]∗J ′.
9: if z =4 then
10: R4 = IsogEvalzid(K, φ̂I(P )) and S4 = IsogEvalzid(K, φ̂I(Q)).
11: else if z=1 then
12: R4 = IsogEvalNonCoprimezid(K, φ̂I(P )) and S4 =

IsogEvalNonCoprimezid(K, φ̂I(Q)).
13: end if
14: Set E4 the codomain of the isogeny corresponding to K.
15: return E2, R2, S2, E4, R4, S4.

5 Parameters and Performances

In this section we discuss the choice of parameters to instantiate our Deuring-
VRFy,z family as efficiently as possible at a given level of security λ. We propose
concrete sets of parameters for λ = 128 presumably corresponding to the NIST-I
level of security. Then, we assess the features of the different variants of our VRF
family.

We remind that we target pairs y, z ∈ {(2, 1), (2, 2), (4, 1), (4, 2)}. We will see
below that the value of z ∈ {1, 2} mostly determines our choice of prime p.

5.1 Parameter computation.

The main parameter we need to choose is the value of p. After that is done,
all the other parameters can be deduced almost directly. Before diving into
how to choose this prime concretely, let us give a brief reminder on the various
constraints and requirements.

A summary of the constraints for security. The generic key recovery attack
has complexity O(

√
p). Thus, we need to take log(p) = 2λ. Similarly, the best

known algorithm to compute N -isogenies has complexity O(
√
N). Thus, we need

to target log(N) = 2λ.

A summary of the constraints for efficiency. We need to take a prime N such
that pk = 1 mod N for the smallest possible k to ensure that the N -torsion
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points are defined over Fpk . We need that the 2f torsion is defined over Fp2 for
a value of f such that 22f > N . We also need to have other points of smooth
order defined over Fp2 , but the exact requirement depends on the value of z.

When z = 1. In that case, we need to have the T -torsion defined over Fp2
where T is a smooth and odd number bigger than p5/4 (this is a requirement
of the IdealToIsogeny12e) algorithm). In that case, the prime p that we need is a
so-called “SQIsign prime” as in [15]. The main difference between our setting
and SQIsign’s is that we have the additional constraints that the power of two
exponent f must be of size ≈ log(p)/2 and that there must be a big prime divisor
of pk − 1 for a small value of k. The second is not too hard to satisfy for any
given p if we allow the value of k to grow slightly (even though it might be hard
to compute the value of N due to the cost of factorization). However, the first
constraint on the size of f is quite restrictive and will be the main obstacle for
an efficient instantiation of our scheme. Indeed, with such a big value of f , the
smoothness bound of T is necessarily quite big.

We will give later an example of primes satisyfing almost all of our con-
straints. No extensive computation was involved to find this prime that we just
use as a proof of concept. With more work, more efficient primes can certainly
be found.

When z = 2. For our algorithms in the setting z = 2, the additional torsion
requirement comes from IdealToIsogeny2ℓ• , that we will use for some small prime
ℓ ̸= 2. This algorithm makes calls to the sub-algorithm IdealToIsogeny2ℓe for the
value of e such that the ℓe-torsion is defined over Fp2 . To reduce as much as
possible the number of calls to this algorithm it is important to maximize the
value of e. The best possible primes we can hope are the so-called “SIDH-primes”
of the form p = c2f ℓe − 1 with a value of c as small as possible. In our case,
we also need that p + 1 has a big prime factor N . Fortunately this additional
constraint is quite easy to satisfy. We can simply iterate over small values of
c until a suitable candidate is found. Asymptotically, we can expect to find it
after O(log(p)2) attempts. With this choice of prime we will be able to define
the 2f , ℓe-torsion and N -torsion on Fp2 (although not on the same curve) which
is essentially the best we can hope for.

There is a bit of freedom regarding the choice of the exact value of f . Indeed,
the minimal requirement is that 22f > N . However, the probability of success
of the executions of the algorithm RandomGoodEndomorphism inside IdealTo-
Isogeny2ℓe is directly impacted by the value of f . Given Proposition 7, the re-
quirement 22f > N , which implies that f is at least equal to 1/2 log(p), should
be enough to ensure a negligible failure probability.

Remark 4. It might be worth taking a value of f significantly bigger than this
lower bound. Indeed, even though a bigger value of f implies a smaller value of
e (which we want to maximize as we explained), if f go as far as 2/3 log(p), then
we might be able to compute the 2dim representation of the endomorphism θ
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directly (without having to cut it in half as we do now), which might allow us
to use a faster IsogEval2dim algorithm. In the toy example that we provide, we
take ℓ = 3 and 2f ≈ 3e ≈ √p, but a careful implementation might prove that
taking f ≈ 2/3 log(p) is better for effiency. We leave to future work the problem
of answering to this interrogation.

Computation of remaining public parameters. Now that we have specified
the choices of all the integral parameters, we need to explain how to compute
the remaining public parameters of our scheme. In particular, we need to find a
basis P0, Q0 of E0[N ], an endomorphism ι such that ι(P0) = Q0 and the kernel
ideal IP0 . This operation is not completely trivial as N is a large prime number,
but it can be done as we explain next. Let us take as E0 one of the curves
of known endomorphism ring O0 (for instance the curve of j-invariant 1728).
Our solution uses the fact that we can evaluate efficiently any endomorphisms
of E0 on points of E0. First, we can select R0 as any point of order N . Then,
we compute α ∈ End(E0) of norm satisfying gcd(n(α), N2) = N . Then, we can
set P0 = α(R0). If P0 = 0 we can try with another R0 until we have P0 of
order N . When P0 has order N , the ideal IP0 is equal to O0⟨α,N⟩. To finish the
precomputation, we can take any endomorphism ι of norm coprime to N and
we compute Q0 = ι(P0).

5.2 Example parameters for λ = 128

We now describe concrete parameters for λ = 128 that are estimated to reach
the NIST-I security level.

z = 1. We found the following prime p using the 2xn− 1 method introduced in
[11]. Given the requirement to have a power of 2 of size ≈ √p dividing p2−1, we
found that method more efficient than the XGCD method introduced in [14].

p+ 1 = 2 · (232 · 3029820973)4

The biggest prime factor of T |p2 − 1 is 106273. We found the following can-
didate value for N :

393726873534132384928444413735281749360848116391706711676559356809147

among the divisors of p2 + p + 1. In that case, the points of order N can be

defined over Fp12 since #E(Fp12) = (p6 − 1)2 =
(
(p3 + 1)(p2 + p+ 1)(p− 1)

)2
.

This N is only of 228 bits which is a bit short of the desired 256 bits. However,
given that the algorithm from [2] requires also O(

√
N) memory and that we

have omitted logarithmic factors in the complexity estimate, this value of N
should already be enough the make the OMIP very hard to break. If needed,
more secure parameters can be found.

36



For y = 4, we can take the parameter α to be equal to 87|p2 − 1. We have
the equality

2258 = 872 ·N + (364117604730757242963879384373328151625)2

+ (574964126494597080514483051830733885074)2

For z = 2 and y = 2. We found the prime p

p+ 1 = 2131 · 380 · 53

for which we have a value of N = (p− 1)/2 equal to

10662908524884494611631258463500002312765285143871446016985384795473930849615871.

For z = 2, y = 4. The case y = 4 is slightly harder to find, because we need
to find the parameter α. To facilitate the search, we looked for primes p of the
form 2f · 3e · c − 1 for which 2h − (α)2N is a prime equal to 1 mod 4 for some
h < 2f and α|c. Using this idea, we found the prime p

p+ 1 = 2131 · 371 · 41 · 293

for which we have a value of N = (p− 1)/2 equal to

122789151551561527349552969205324705816674834267793279136622473322950205374463

and we have α = 1 and the following equality holds

2258 = N + (538353225698644006063067721722936709209)2

+ (224844412377911053292857988960754557860)2

5.3 Sizes

In this section, we explain how to compute the sizes given in Table 1 for the
parameters given in Section 5.2. We provide abstract formulas that are true for
any security level λ.

On compression. To reduce the size of the public key and proof of our VRF
family, we can use standard compression techniques for elliptic curves and their
points (described for instance in [12, section 7.1]).

– Curves can be represented by their j-invariants which are always defined
over Fp2 for supersingular curves.

– Any point of smooth order T can be represented by two scalars mod T (as
coefficients of this point in a prescribed basis). The image of a full basis of
order T under an isogeny can be represented as 3 scalars mod T (the fourth
one can be recovered with the Weil pairing).
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– A point of arbitrary order N defined over Fpk can always be represented as
one element over Fpk and a bit.

Moreover, the points P,Q of order 2f provided in cNydim(E) for y = 2, 4 can

be any basis of E[2f ]. Thus they can be computed in a deterministic manner
from the curve E and we can omit them from cNydim(E).

Computation of key and proof sizes. Using the compressed representations that
we described above for all the points and curves involved in our construction, we
can deduce the size of keys and proofs of our DeuringVRFy,z family for all values
of y, z from the security parameter λ. To comply with the security requirements,
we take log(p) ≈ 2λ and f ≈ λ. We remind the reader that the integer k is
such that Fpk is the smallest field extension on which the points of order N are
defined. The public key sizes will depend on this parameter. This parameter k
is the only place where the value of z will impact the sizes which depend mostly
on the value of y.

When y = 2, the public key is made of 2 curves, 2 points of order N and a
basis of order 2f . This can be represented in 8λ + 4kλ + 3λ bits. The proof is
made of two curves, and two images of a basis of order 2f , so this is 8λ+ 6λ.

When y = 4, the public key is simply made of one curve and two points of
order N . This is 4λ + 4kλ bits. The proof is made of one curve and the image
of one basis of order 2f so this is 4λ+ 3λ.

In both cases, since we need the function fin to be injective to avoid collisions,
the input space cannot be bigger than N . Thus, we can take the input space has
size n1(λ) = 2λ (of course this is an upper-bound, smaller values of n1(λ) can
be considered). A value of n2(λ) = 2λ seems also to be reasonable.

These results are summarized in Table 3.

y Input (bits) Output (bits) Public Key (bits) Proof (bits)

2 2λ 2λ (4k + 11)λ 14λ

4 2λ 2λ (4k + 4)λ 7λ
Table 3. Size of the inputs, outputs, keys and proofs of the DeuringVRFy,z schemes.

6 Prospects, open questions and future work

We have introduced a new family DeuringVRFy,z of VRF protocols based on
isogenies between supersingular curves by making use of two important sub-
fields of isogeny-based cryptography: the Deuring correspondence and isogenies
between abelian varieties of high dimension. The security of our new problem
stands upon a new security assumption in the random oracle model. Despite
its novelty, this new assumption is related to various well-studied problem, and
its hardness appears quite plausible. Interestingly, progress in the resolution of
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this progress could have very positive impacts on the efficiency of other areas of
isogeny-based cryptography.

Our new scheme relies on various algorithmic block related to the Deuring
correspondence that might be of independent interest. In particular, we have
proposed an alternate method to perform the translation of ideal to their cor-
responding isogenies with the help of isogenies in dimension 2, that we believe
could very well improve upon the state of the art algorithms.

Each variant of our new construction is more compact (by a good margin)
than every other post-quantum VRF protocol and this is the main advantage of
our new protocol.

The major remaining open question about our new protocol is its efficiency.
While several related work have demonstrated that our construction will not
be completely impractical, it is not easy to guess how fast it can concretely
be. A part of the isogeny-community is currently dedicating significant efforts
to implementing efficiently isogenies between abelian varieties of dimension 2
and 4 and we plan to be able to provide an efficient implementation of our
protocol in the near future. Other isogeny-based protocols such as the SQIsign
signature scheme could benefit from this implementation if our new IdealTo-
Isogeny2 algorithm turns out to be as fast as we hope.
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A Ideal to isogeny in dimension 1

We describe here the algorithm IdealToIsogeny1ℓe (IdealToIsogenyEichlerℓe in [15,
Algorithm 4]). We refer the reader to the explanations in [15] to obtain more
details on the design, correctness and termination of this algorithm.
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Algorithm 14 IdealToIsogeny1ℓe(O, I, J, φJ , P )
Input: I a left O-ideal of norm ℓf , an (O0,O)-ideal J of norm ℓ• and φJ : E0 → E

the corresponding isogeny, a generator P of E[ℓf ] ∩ ker(φ̂J).
Output: φI of degree ℓf

1: Set K = J +Oℓf .
2: Compute θ = SpecialEichlerNormT (O,K +Oℓ) of norm dividing T 2.
3: Select α ∈ I s.t I = O⟨α, ℓf ⟩.
4: Compute C,D s.t. α · (C +Dθ) ∈ K and gcd(C,D, ℓ) = 1 using linear algebra.
5: Take any n1|T and n2|T s.t n1n2 = n(θ). Compute H1 = O⟨θ, n1⟩ and H2 =
O⟨θ, n2⟩.

6: Compute Li = [J ]∗Hi, and φi = [φJ ]∗IdealToIsogenyni
(Li) for i ∈ {1, 2}.

7: Compute Q = φ̂2 ◦ φ1(P ).
8: Compute φI of kernel ⟨[C]P + [D]Q⟩.
9: return φI .

B Adapting Kani’s Lemma in the bad cases.

As we explained in Remark 3, the description we gave of IdealToIsogeny2ℓe in
Algorithm 7 is only correct when the output θ, β of RandomGoodEndomorphism
satisfies ker θ∩kerβ = {0}. Unfortunately, there is no way to guarantee this will
always be true, thus we need a way to handle this situation.

Note that if kerβ ∩ ker θ̂ = {0}, we can simply replace θ by its conjugate θ̂
and run IdealToIsogeny2ℓe from there.

The really problematic situation happens when ker θ ∩ ker θ̂ ∩ kerβ is non-
trivial (note that since θ and β are in the same quadratic order replacing β by

β̂ would not change anything).

In that case, it is easy to see that both θ and β must be lollipop endomor-
phisms of the form ρ ◦ θ0 ◦ ρ̂ and ρ ◦β0 ◦ ρ̂ for some isogeny ρ : E0 → E of degree
2m for an integer m ≤ h/2. If we assume that we have taken the biggest such ρ,
then we must have ker θ0 ∩ kerβ0 = {0} or ker θ0 ∩ kerβ0 = {0} (otherwise we
would be able to replace ρ with an isogeny of bigger degree).

In that case, we explain how to make the computation by using points of
order h/2 +m. If this is smaller than f (the exponent of the available power of
2 torsion), then we will be able to use this method efficiently.

The idea is that we can decompose the isogeny F asR◦F0◦R̂ where F0 : E2
0 →

E2
0 is the isogeny embedding θ0, β0 and R is the diagonal isogeny associated to

ρ.

We can compute ρ̂ and R̂ using IdealToIsogeny12m (since m < f). If we can
compute the kernel of F0, then we are done.

By the formulas of Lemma 1, we have that kerF0 = {θ0(x),−β̂0(x), x ∈
E0[2

h−2m]}. Since, we only know how to evaluate θ, β we need to rewrite this
formula as

kerF0 = {(ρ̂ ◦ θ(y),−ρ̂ ◦ β̂(y)), y ∈ 1

2h−m
ker ρ}
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The points of 1
2h−m ker ρ̂ are contained in E[2h]. If h ≤ f , then we can

directly compute the kernel of F0 which is enough to compute F0 and F , and
this is enough for the application to IdealToIsogeny2ℓe .

Unfortunately, our minimal requirement in terms of available torsion is 2f

with 2f > h. Thus, in the cases where h is actually smaller than f , the approach
we just described will not work. We can reduce the torsion requirement to 2h/2+m

by dividing F0 in two isogenies F0,2 ◦F0,1. With that, we can handle all the cases
where m < f −h/2. The remaining cases appear to be out of reach of our ideas.

Since the probability of having such β and θ deacreases as m increases (we
believe that even having m > 1 should be very rare already), it seems reasonable
to expect that the approach we described above should be enough to handle all
cases in practice.
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