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Abstract

Vector Oblivious Linear Evaluation (VOLE) supports fast and scalable interactive Zero-
Knowledge (ZK) proofs. Despite recent improvements to VOLE-based ZK, compiling proof
statements to a control-flow oblivious form (e.g., a circuit) continues to lead to expensive proofs.
One useful setting where this inefficiency stands out is when the statement is a disjunction of
clauses L1 ∨ · · · ∨ LB . Typically, ZK requires paying the price to handle all B branches. Prior
works have shown how to avoid this price in communication, but not in computation.

Our main result, Batchman, is asymptotically and concretely efficient VOLE-based ZK for
batched disjunctions, i.e. statements containing R repetitions of the same disjunction. This
is crucial for, e.g., emulating CPU steps in ZK. Our prover and verifier complexity is only
O(RB + R|C| + B|C|), where |C| is the maximum circuit size of the B branches. Prior works’
computation scales in RB|C|.

For non-batched disjunctions, we also construct a VOLE-based ZK protocol, Robin, which
is (only) communication efficient. For small fields and for statistical security parameter λ, this
protocol’s communication improves over the previous state of the art (Mac′n′Cheese, Baum et
al., CRYPTO’21) by up to factor λ.

Our implementation outperforms prior state of the art. E.g., we achieve up to 6× improve-
ment over Mac′n′Cheese (Boolean, single disjunction), and for arithmetic batched disjunctions
our experiments show we improve over QuickSilver (Yang et al., CCS’21) by up to 70× and over
AntMan (Weng et al., CCS’22) by up to 36×.
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1 Introduction

Zero Knowledge (ZK) proofs [GMR85] allow a prover P to demonstrate to a verifier V the validity
of a given statement while revealing nothing beyond the validity of the statement. The past decade
has seen an explosion in the design, implementation and deployment of concretely efficient zero-
knowledge proofs systems.

Large overheads of P and V remain a bottleneck in scaling zero-knowledge to very large state-
ments. One major overhead comes from complex control flow, which, explicitly or implicitly, in-
cludes repeated evaluation of disjunctions. Examples include complex statements like ‘this program
has a bug’ [HK20b] or even (the more complex) ‘this program does not have a bug’ [LAH+22].

We focus on minimizing total end-to-end proof time, which includes communication and total
computation by both P and V.

VOLE-based ZK Under this total end-to-end proof time metric, designated-verifier interactive
ZKP is particularly appealing for its concrete efficiency. A recent line of work constructs such ZKP
systems from a cryptographic primitive called vector oblivious linear evaluation (VOLE) [WYKW21,
DIO21, BMRS21, YSWW21, WYX+21, BBMH+21, BBMHS22, DILO22, WYY+22]. State-of-the-
art VOLE-base ZK is efficient. For instance, [YSWW21] handles >7 million arithmetic gates per
second.

While VOLE-based ZK is fast, its costs (communication, P and V computation) still scale
linearly in the size of the proof statement.1 It is interesting to exploit statement structure (e.g.,
disjunctions) to achieve further improvement with the ultimate goal of costs that grow sublinearly
(with small constants) in the proof statement.

ZK proofs of disjunctions. Seeking improved performance and motivated by the structure of
real-world programs, prior works [Kol18, HK20b, BMRS21, GGHAK22, GHAKS23] specifically
optimized for proofs of disjunctive statements of the form C1(w) = 0 ∨ · · · ∨ CB(w) = 0 for B
different subcircuits referred to as branches. Their underlying techniques are often referred as
stacking, following the notation introduced by [HK20b]. For disjunctions, because P only needs to
demonstrate the truth of one branch, it is possible to design custom systems that achieve up to
factor B improvement.

Our first contribution, Robin, (Cf. Section 1.1) is a protocol that improves cost of disjunctive
statements in VOLE-based ZK.

ZK proofs of batched disjunctions. We also consider proof statements that consist of a batch
of the same disjunctive statement.2 I.e., suppose P holds R distinct witnesses w(1), . . . ,w(R), and
she wishes to prove C1(w(j)) = 0 ∨ · · · ∨ CB(w(j)) = 0 for each w(j).

The crucial application of such statements is the emulation of a CPU inside ZK. Indeed, each
step of a basic CPU executes one out of a possibly large set of instruction types, and this is repeated
many times until the program halts. ZK systems that emulate a CPU are interesting, because
they enable end users to express complex proof statements as programs written in commodity

1The recent proof system of [WYY+22] achieved sublinear communication cost, but at the cost of asymptotically
increased computation; see Section 1.2.

2Previous constructions, including our first contribution, have linear in B computation, and cannot simply be
batched to achieve sublinear computation in BR|C|.
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programming languages, see e.g. [HYDK21]. More generally, a program can be compiled into a
single large forloop over switch statement executing one of many (hundreds or thousands) of
straight-line program segments. This is called loop coalescing [GF95]; loop coalescing is known to
be useful for fast RAM-based ZKP [WSR+15].

Concretely efficient ZK systems (sublinear in computation and communication) for batched
disjunctions have not been considered.

Our second – and most exciting – contribution, Batchman, is an interactive VOLE-
based ZKP system that efficiently handles batched disjunctions. The surprising property of this
proof system is that, as compared to näıve handling, it achieves not only factor B communication
improvement, but also up to factor B computation improvement for both P and V. Thus, our
protocol is sublinear in the proof statement. While our total end-to-end runtime scales with the
number of branches B and repetitions R, it crucially does not scale in the product RB. This
enables CPU-emulation-based ZK operating over large and expressive instruction sets.

Batching zero-knowledge proofs has proven an important step towards in determining the fea-
sibility of full-fledged zero-knowledge. Understanding the complexity of disjunctive statements has
also been of theoretic interest and traces back to the work of Feige and Shamir [FS90] and Cramer,
Damg̊ard and Schoenmakers [CDS94] for the design of witness indistinguishable proofs and efficient
Σ-protocols respectively.

1.1 Our Contribution

As mentioned above, we construct two VOLE-based ZK protocols:

• Single Disjunctions. Robin (Refined Oblivious Branching for INteractive zk) is a VOLE-
based ZK for disjunctive statements expressed as an arithmetic circuit over an arbitrary field
F. For a disjunction with B branches, each consisting of a maximum of |C| (multiplication)
gates, P and V each compute O(B|C|) field operations and communicate O(B + |C|) field
elements. More precisely, P and V communicate only O(B⌈ λ

log |F|⌉+ |C|) field elements.

• Batched Disjunctions. Batchman extends Robin to batches of R proofs of the same disjunc-
tion. Here, P and V each compute O(RB + R|C| + B|C|) field operations and communicate
O(RB + R|C|) field elements (assuming log |F| = Ω(λ) where λ is the statistical security
parameter).

In our batched protocol, except for a one-time additive B|C| cost, P’s and V’s computation costs
are independent of the number of disjunctions. In comparison, “flattening” out the circuit would
result in computational complexity proportional to RB|C|.

Our protocols are concretely performant. For instance, Robin scales in branches up to 6×
better than Mac′n′Cheese [BMRS21] when |C| = 109, and demonstrates up to 16× improve-
ment over QuickSilver [YSWW21] when B = 100. Batchman demonstrates up to 36× improve-
ment over AntMan [WYY+22] when B = 64 and R = 1024, and up to 70× improvement over
QuickSilver [YSWW21] when B = R = 400. We provide a summary of our comparison to prior
work in Table 1; see detailed comparison to prior work in Sections 1.2 and 7.

A bird’s-eye view of our protocols We remark that achieving computational cost sublinear
in RB|C| is possible when we wish to evaluate the same disjunctive statement R > 1 times, if
we are allowed non-black-box access to some underlying cryptographic primitive. Suppose P and

2



Protocol Prover Comm. Verifier
Comp. Comp.

[DIO21, YSWW21] O(RB|C|) O(RB|C|) O(RB|C|)
[WYY+22] O(RB|C| logR) O(B|C|+R) O(RB|C| logR)

[BMRS21] O(RB|C|) O(R logB +R|C|) O(RB|C|)
our, Robin O(RB|C|) O(RB +R|C|) O(RB|C|)
our, Batchman O(RB +R|C|+B|C|) O(RB +R|C|) O(RB +R|C|+B|C|)

Table 1: Cost of recent VOLE-based ZK systems for batched disjunctions of arithmetic circuits.
B denotes number of branches, |C| denotes branch size, and R denotes batch size.

V in a pre-processing step compute the hash of the description of each of the B branches under
a collision-resistant hash function. Then, for each instance of the disjunction P includes in her
witness the circuit description of the active branch and proves via a universal circuit that the
circuit on some input witness returns 0 and that the hash of the circuit description belongs to the
set of precomputed hashes. The complexity is Õ(B|C|) for the first instance (to compute B hashes)
and Õ(B + |C|) thereafter.

Such an approach is impractical due to its use of universal circuits and its non-black-box use of
a hash function.

Seeking concretely efficient constructions, we restrict ourselves to black-box use of underlying
primitives only. Surprisingly, in the same batched setting, we design an efficient construction
that builds on the high level concept of “checking circuit hashes”, but our construction achieves
asymptotic complexity O(RB+R|C|+B|C|) while making only black-box use of VOLE (and while
using no other cryptographic primitives). In short, our approach shows that the “hash” of each
branch can be determined by a random challenge that is chosen by V after P has committed to her
witness. To compute and check these “hashes”, each party computes simple linear combinations of
field elements. See Section 3 for details.

1.2 Related Work

VOLE-based interactive zero-knowledge protocols Consider a fan-in-2 circuit C with |C|
multiplication/addition gates over some field. [DIO21] achieved 1 field element communication per
multiplication gate based on a technique called Line-Point Zero Knowledge (LPZK). [YSWW21]
further improved LPZK and implemented the technique. Our work handles multiplication gates
by directly applying the LPZK technique, as well as [YSWW21]’s improvement for proving inner
products. Our implementation (see Section 7) builds on [YSWW21]’s open source repo [WMK16].

[DILO22] improved LPZK communication to 0.5 field element per multiplication gate at the
cost of increased computation and requiring random oracle. Concrete performance of [DILO22] is
similar to [YSWW21]; we build on [YSWW21] for simplicity.

[WYY+22] for the first time achieved a VOLE-based ZK system with sublinear communication
and achieved communication cost O(|C|3/4). While the approach remains quite efficient, its perfor-
mance is not strictly better than prior work, because it achieves its improved communication at the
cost of computation. The technique performs polynomial interpolation, incurring factor O(log |C|)
overhead, and it also employs relatively expensive additively homomorphic encryption. [WYY+22]
consider batching, but not batched disjunctions; we compare with them in Section 7.
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ZK disjunctions A line of works [HK20b, BMRS21, GGHAK22, GHAKS23] augments ZK proofs
with efficient handling for disjunctions. Consider B circuits Ci∈[B] each with the same number of
inputs/multiplications, and suppose P holds a single witness for Ca∈[B] (the active branch). These
works achieve communication that scales with |C| rather than B|C|. Such works say that they
“stack” the branches, following terminology introduced by [HK20b].

Most related to our work, [BMRS21] was the first (and the only) work to stack in the VOLE-
based ZK setting. [BMRS21] implements multiplication gates with a custom protocol, and it
is incompatible with the LPZK technique. Their multiplication procedure communicates 2 extra
extension field elements per multiplication. Our protocols are compatible with LPZK. Our protocols
communicate extra 2 field elements (not extension field elements) per multiplication, and our work
is the first to consider batched disjunctions.

Even at a high level, our approach seems quite different from these prior approaches. In prior
works, P proves satisfiability of each branch (thus paying computation scaling with B), but even
honest P can “cheat” on each inactive branch. For example, [HK20b] allows P to learn crypto-
graphic seeds used to garble the inactive branch circuits. Our approach instead achieves branching
by leveraging (1) simple properties of VOLE correlations and (2) a random challenge from V to
“compress” the description of each branch.

RAM-based ZK (RAM-ZK) Prior works have considered ZK statements expressed as RAM
programs, e.g. [BCG+13, BFR+13, BSCTV14, WSR+15, HMR15, MRS17, BCG+18, BHR+20,
HK20a, HK21, BHR+21, FKL+21, DdSGOTV22, YHKD22]. These works present the exciting
possibility of structuring ZK proof statements as programs written in commodity languages.

The RAM model of computation is relevant to the batched disjunctions setting. Indeed, because
of constant RAM access cost in ZK [FKL+21, DdSGOTV22], for batch size R ≥ B, RAM-ZK can
be used to achieve batched disjunctions. By simply structuring the proof statement as a RAM
program, loading the program (of size B|C|) into the RAM memory, and running the RAM-ZK,
the proof will naturally terminate in time O(B|C|+R|C|).

RAM-based ZK is not competitive with our batched protocol for two reasons. First, our ap-
proach demonstrates a theoretical advantage. Suppose the batch is relatively small, i.e. R = o(B).
In this case, the RAM approach is less appealing, since it is necessary to load the program into mem-
ory, immediately incurring O(B|C|) cost. At the same time, our communication cost is independent
of the quantity O(B|C|), and so it works well in this setting. More importantly, our approach elides
the expensive machinery required for RAM emulation and is concretely performant. Indeed, our
motivating application is the acceleration of such RAM-based proofs, so our low constant costs are
crucial.

2 Preliminaries

2.1 Notation

• λ is the statistical security parameter (e.g., 40).

• κ is the computational security parameter (e.g., 128).

• The prover is P. We refer to P by she, her, hers...

• The verifier is V. We refer to V by he, him, his...

4



Functionality FR,B
ZK

Upon receiving (prove, C1, . . . , CB ,w1, . . . ,wR, a1, . . . , aR) from prover P and (verify, C1, . . . , CB) from verifier V:

• If for all i ∈ [R] it holds that Cai(wi) = 0, then output (true) to V; else output (false) to V.

Figure 1: The batched disjunctive ZK functionality.

• x ≜ y denotes that x is defined as y.

• We denote that x is uniformly drawn from a set S by x ∈$ S.

• We denote {1, . . . , n} by [n].

• We denote column vectors by bold lower-case letters (e.g., a), where ai (or a[i]) denotes the
ith component of a (starting from 1) and a[i : j] the subvector [ai, . . . , aj ]

T . We use glue(·)
to stitch column vectors (e.g., glue(a, b) ≜ [aT |bT ]T ).

• We denote matrices by bold upper-case letters (e.g., A), where A(i) denotes the ith row
vector of A (starting from 1) and A[i] denotes the ith column vector of A (starting from 1).
A(i)[j] denotes jth value in ith row.

• We prove batches of disjunctions. We call each member of the batch a repetition. B denotes
the number of branches and R denotes the number of repetitions.

• We use i to index branches (e.g., i ∈ [B]), j to index repetitions (e.g., j ∈ [R]), and k to index
gates (e.g., k ∈ [|C|]).

• We denote a finite field of size p by Fp where p ≥ 2 is a prime or a power of a prime. Extension
fields are defined and denoted in the standard way.

2.2 Security Model

We formalize our protocols under the universally composable (UC) framework [Can01]. The func-
tionality FR,B

ZK (C.f., Figure 1) is used to realize a zero-knowledge proof (of knowledge) for R-

repetitions disjunction of B circuits. When R = B = 1, F1,1
ZK is the standard ZK functionality.

When R = 1, F1,B
ZK is the ZK functionality for a single disjunction. Looking ahead, our protocol

for single disjunction implements F1,B
ZK (for B ∈ Z+) and our protocol for batched disjunctions

implements FR,B
ZK (for R,B ∈ Z+). See Appendix A.1 for UC framework background.

2.3 VOLE and IT-MACs

Recent works [BCGI18, BCG+19a, SGRR19, BCG+19b, YWL+20, CRR21] have improved the
efficiency of subfield VOLE (Cf. Figure 2). The state-of-the-art VOLE implementation requires only
linear computation and sublinear communication in the number of generated VOLE correlations.

In VOLE-based ZK, VOLE correlations allow P to commit to wire values using information-
theoretic MACs (IT-MACs). Let x ∈ F be a field element known to P (e.g., part of her witness).
An IT-MAC commitment to x is a pair of values held respectively by P and V. Specifically, V holds

5



Functionality Fp,q
sVOLE

Consider a base field Fp and an extension field Fpq . Functionality interacts with P, V and the adversary A as

follows:

Initialize. Upon receiving (init) from P and V, if V is honest, sample ∆ ∈$ Fpq , else receive ∆ from A. Store

∆ and send it to V. Ignore subsequent (init).

Extend. Upon receiving (extend, n) from P and V, do the following:

• If V is honest, sample v ∈$ Fn
pq , else receive v ∈ Fn

pq from A.

• If P is honest, sample u ∈$ Fn
p and compute w ≜ v−u ·∆ ∈ Fn

pq , else receive u ∈ Fn
p and w ∈ Fn

pq from A and

compute v ≜ w + u ·∆ ∈ Fn
pq .

• Send (u,w) to P and v to V.

Figure 2: The subfield VOLE correlation functionality

a key k ∈$ F and P holds m = k− x ·∆, where ∆ ∈$ F is a key which is global to the entire proof,
known to V, and hidden from P. We denote a commitment to x under global key ∆ by writing
[x]∆, where ∆ will be omitted if it is clear from the context. I.e., [x]∆ is a pair of tuples (mx, x),
held by P, and (kx,∆), held by V. We use [x]∆ to denote IT-MACs of vector x. Note that P can
efficiently open a commitment [x]∆ by sending (mx, x).

An IT-MAC [x]∆ has the following notable features:

• Hiding: V’ s share the (kx,∆) is independent of the secret x, so the share trivially hides x.

• Binding: Malicious P cannot cheat and open a commitment [x]∆ to some x′ ̸= x. Indeed,
forging a suitable opening is as hard as guessing ∆. Note that (mx, x) conveys no information
about ∆.

• Linear homomorphism: [x+ y]∆ = [x]∆ + [y]∆. [cx]∆ = c[x]∆ and [x+ c]∆ = [x]∆ + c, for
some public c.

The VOLE functionality allows P and V to construct n IT-MAC commitments, each to a
uniformly random value [r]∆ where r ∈$ F. A random commitment [r]∆ can be easily translated
into a commitment [x]∆ where x is a value chosen by P: P simply sends to V the single field
element (x− r), and V correspondingly locally shifts his key by (x− r) ·∆. Thus, to commit to n
field elements, P and V first execute VOLE, and then P transmits n · ⌈log |F|⌉ bits.

Field Extension. When the ZK statement is defined over a small field Fp (e.g., Boolean), we
need to use IT-MACs defined over an extension field Fpq to ensure that ∆ cannot be easily guessed.
In this case, it suffices to consider random IT-MACs [r]∆ where r is drawn from the base field Fp

because r is only used to mask x ∈ Fp. There exists a VOLE variant that works over Fpq , but
generates IT-MACs of such r values from the subfield Fp. This variant is called subfield VOLE.
I.e., an IT-MAC [r]∆ generated by subfield VOLE will have mr, kr,∆ ∈ Fpq but r ∈ Fp.

It is sometimes necessary to mix VOLE and subfield VOLE correlations in a single proof. This
is easy: we can linearly combine q subfield VOLE correlations into 1 VOLE correlation over the
extension field Fpq . This incurs factor q blowup.
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2.4 LPZK [DIO21] and QuickSilver [YSWW21]

VOLE-based ZK works in the “commit-and-prove” paradigm: P commits to her extended witness
with IT-MACs, and later proves to V that committed values are consistent with the proof statement.

Consider a proof statement encoded as an arithmetic circuit C, and let P hold a witness w. To
prove C(w) = 0, P first computes her extended witness wext , which consists of w along with each
multiplication gate’s output value upon evaluating C(w). The parties then construct commitments
to wext , as described above. From here, P and V can use the linear homomorphism property of
IT-MACs to construct commitments to the output value of each addition gate.

Note that at this point, P is now committed to a particular value for every wire in the circuit.
Two tasks remain:

• P must prove to V that the committed value of the output wire is 0. This is achieved simply
by opening.

• For each multiplication gate, P must prove that the gate’s committed input values indeed
multiply to the gate’s committed output value.

Previous VOLE-based ZKs mainly differ in the way they handle multiplication gates. State-
of-the-art VOLE-based ZK [DIO21, YSWW21] handles multiplication gates via a technique called
line-point zero-knowledge (LPZK). At a high level, LPZK [DIO21] proves that n IT-MAC tu-
ples {[li]∆, [ri]∆, [oi]∆}i∈[n] satisfy the multiplication relation oi = li · ri by utilizing (1) another
random IT-MAC and (2) algebra over IT-MAC shares. The technique can be achieved at the
cost of (1) V sending a random challenge and (2) P sending 2 field elements. Each party com-
putes O(n) field operations. We denote the procedure to prove multiplications for IT-MACs as
LPZK({[li]∆, [ri]∆, [oi]∆}i∈[n]), which we use as a black-box. LPZK has (n+ 2)/pq soundness error
and information-theoretic security in the Fp,q

sVOLE-hybrid model [YSWW21]3.
QuickSilver [YSWW21] subsequently generalized LPZK to efficiently handle arbitrary polyno-

mials over committed values. Our protocols use this trick for proving the inner-product of IT-
MACs. Namely, given 2m IT-MACs ([x1]∆, . . . , [xm]∆) and ([y1]∆, . . . , [ym]∆), QuickSilver shows
how to efficiently prove that x1y1 + . . .+ xmym = 0. The proof requires O(1) communication and
O(m) computation. Further, incorporating a random challenge from V, k inner-product proofs can
be batched, preserving O(1) communication. We denote the procedure to prove k-batched inner-

products for IT-MACs as QS({[x(j)i ]∆, [y
(j)
i ]∆}i∈[m],j∈[k]). We will use it as a black-box subprotocol.

This sub-proof, as shown by [YSWW21], is zero-knowledge with (k + 2)/pq soundness error and
information-theoretic security in the Fp,q

sVOLE-hybrid model3.
We defer additional details on LPZK and QS to Appendix A.2.

3 Technical Overview

In this section, we present our techniques with sufficient detail to understand our contribution. Our
ZK protocol considers standard arithmetic circuits with fan-in-2 gates. For ease of presentation,
throughout this section, we consider circuits defined over a prime field Fp where p is large enough
to achieve the desired soundness (e.g., p = 261 − 1) without using VOLE with an extension field.

3[YSWW21] uses “extended subfield VOLE”, which handles higher degree polynomials. We only use degree-2
polynomials, so Fp,q

sVOLE is sufficient.
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Recall that our goal is to extend VOLE-based ZK such that it can efficiently handle proofs of
(batched) disjunctive statements.

Consider B circuits C1, . . . , CB (each called a branch) with the same number of input wires and
multiplication gates, which is padded if needed. To begin, suppose P wishes to prove a single
disjunction (we will discuss batching shortly). I.e., P wishes to prove C1(w) = 0∨ · · · ∨ CB(w) = 0.

Note that basic VOLE-based ZK (e.g., [YSWW21]) scales with the number of branches B, both
in communication and computation. The primary source of this cost is simply the commitment of
P’s extended witness, which is linear in the total number of multiplication gates.

In our approach, P commits to a much shorter string whose length scales only with the number
of multiplications (and inputs) in a single branch. This reduction in the size of the committed string
is the source of our improvement.

In slightly more detail, P commits to a modified version of the extended witness wext . In
addition to the inputs of the active circuit, wext includes input/output wire values of each multi-
plication gate of the active branch4. We use out(wext) (resp. left(wext), right(wext)) to denote the
vector of multiplication-gate outputs (resp. mult-gate left inputs, mult-gate right inputs) taken
from wext . From here, P proves that the committed multiplication inputs/outputs indeed respect
multiplication. Namely, P proves out(wext) = left(wext) ◦ right(wext) where ◦ denotes the element-
wise product. This check is performed using the techniques of prior work (Cf. LPZK). Note that
the number of checks does not scale with the number of branches.

So far, P has simply introduced and committed to a length-nin vector of inputs and a length-n×
vector of tuples, each of which respects multiplication. The remaining task is to force P to choose
this vector such that it satisfies the structure of some active branch Ca. That is, P must prove that
wext respects the topology of branch Ca, as well as the linear constraints implied by Ca’s addition
gates. As we will describe in detail later, we can enforce such constraints by introducing public
matrices M i of size O(|C|) × O(|C|), encoding the topology of Ci a-la adjacency matrix. For each
branch Ci with matrix M i, consider the following crucial equation:

M i ×wext = 0 (1)

Equation (1) has two notable properties:

• If P is honest and holds a witness that satisfies active branch a, Equation (1) will hold for
branch a.

• If P attempts to cheat and does not have a valid witness, w.h.p. Equation (1) will not hold
for any i.

We defer further details on the structure of these matrices until Section 3.3. It is worth noting
that although the size of these matrices is O(|C|2), we will demonstrate that all relevant operations
we used on these matrices can be computed in time O(|C|).

Terminology Our approach centers on the manipulation of matrices M i which encode the topol-
ogy of circuits Ci. We find it helpful to introduce terminology for these matrices.

• We refer to each matrix M as a topology matrix. M is a matrix of dimension O(|C|)×O(|C|).
4This means that our extended witness is up to 3× longer than the one considered by prior work if B = 1. While

we pay a small constant factor overhead on the active branch, we asymptotically decrease the size of P’s commitment
by up to factor B.
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• We will allow V to select random challenge vectors s, and we will consider products sT ×M .
We refer to the resulting length O(|C|) vector as a compressed topology vector.

• Additionally, we will right multiply compressed topologies by vectors. The result of such a
multiplication is a scalar that we refer to as a compressed topology token.

3.1 Robin: Single Disjunction Protocol

In the single instance setting, we wish to improve communication. Recall that we consider
statements of the form (C1(w) = 0 ∨ · · · ∨ CB(w) = 0). Our goal is to achieve communication that
scales with B + |C|, not B|C|, while preserving the low computation cost of the basic VOLE-based
ZK.

Our key insight is that V can challenge P with a random vector s after P commits to wext . Both
parties can then use the IT-MAC commitment [wext ]∆ to homomorphically (i.e., without further
communication) derive B IT-MAC commitments of the following compressed topology tokens:[

sT ×M1 ×wext

]
∆
, . . . ,

[
sT ×MB ×wext

]
∆

Crucially, we prove that from the properties of Equation (1), these B IT-MAC commitments
have the following induced properties:

• If P is honest and commits a witness that satisfies active branch a, [sT ×Ma ×wext ]∆ will
always be [0]∆.

• If cheating P does not have a valid witness, then with overwhelming probability, none of these
values will be [0]∆.

To complete the proof, P simply needs to demonstrate that one of these committed tokens is a
0. We achieve this in a direct way: we run a (much smaller) VOLE-based ZK proof demonstrating
that the product of the B elements is 0.

All in all, P demonstrates: There exists an extended witnesses wext s.t. for a random challenge
s, the following holds:

(left(wext) ◦ right(wext) = out(wext)) multiplication check

∧

((
B∏
i

sT ×M i ×wext

)
= 0

)
topology check

Note that the order of quantifiers in the above statement is crucial, implying the order in which
the proof proceeds. In short, the full proof proceeds as follows:

1. P commits to the extended witness wext .

2. P and V check that multiplication wires are properly committed by using the existing LPZK
technique.

3. V sends to P the random challenge vector s.

4. P and V locally compute [sT ×M i ×wext ]∆ for each i ∈ [B].

5. P and V use VOLE-based ZK to prove that the product of these B commitments is 0.

9



3.2 Batchman: Batched Disjunctions Protocol

In the batched setting, we wish to improve not only communication, but also computation.
Recall, we consider the statement (C1(wj) = 0 ∨ · · · ∨ CB(wj) = 0) on R different witnesses.5 Our
goal is to achieve computation that scales with B +R, not BR.

As a first attempt, one could try simply applying our single instance approach R times; this
fails, because computing each commitment [sT ×M i×wext ]∆ requires O(|C|) field operations, and
so ultimately this attempt uses O(RB|C|) field operations.

As a second attempt, one could use RAM-based ZKs. While this works for large R, it does not
match our asymptotics for small R and is concretely expensive; see Section 1.2.

Our batched approach relies on three key insights:

1. P knows the active branch Ca/matrix Ma for each repetition.

2. It is safe to re-use the challenge vector s across all R instances.

3. The compressed topology vector sT ×Ma is small, having length only O(|C|) field elements.

Thus, for each repetition j ∈ [R], we can require that P commits to her extended witness w
(j)
ext

and to her desired branch a(j). In particular, if P is honest, she will commit to the compressed
topology vector of the active branch as [cv(j) ≜ sT × Ma(j) ]∆. From here, the parties use a
regular VOLE-based ZK proof (Cf. QS) to show that P’s committed witness respects the committed
compressed topology vector. Namely, they check:(

cv(j)
)T

×w
(j)
ext = 0, for all j ∈ [R]

Crucially, the computation cost of this inner product check does not scale with the number of
branches B, because P directly chooses and commits to only the active branch.

Suppose that a cheating P does not have a witness for some repetition j. Based on our reasoning
in Section 3.1, passing the above check is negligibly likely, if cv(j) is equal to the compressed topology
vector of some branch. Of course, it might be the case that cheating P committed to some vector
cv(j) which is not equal to any branch’s compressed topology sT ×M i∈[B].

To repair this, we add a step to validate that P indeed committed to the compressed topology
of some branch. In particular, we allow V to issue a second challenge vector t, and then the parties
once and for all precompute the following compressed topology tokens:

ct i ≜ sT ×M i × t, for each i ∈ [B]

Computing these values takes time proportional to B, but not proportional to R as each value is
computed exactly once; once computed, P and V re-use these values in each of the R batched proof
instances.

The above validation will catch a cheating P with overwhelming probability (in the size of the
field F). More precisely, we observe (and prove) that if cv /∈ {sT ×M i}i∈[B], with overwhelming

5Of course, it is not useful to prove the same statement more than once without imposing additional constraints;
it is easy to incorporate extra mechanisms that force P to R times prove the statement wrt related witnesses. See
discussion in Appendix E.
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probability, (cvT × t) /∈ {ct i}i∈[B]. Furthermore, for each j ∈ [R], parties already hold [cv(j)]∆, so

they can locally compute [(cv(j))T × t]∆ and perform a regular VOLE-based ZK proof to show:(
(cv(j))T × t

)
∈ {ct i}i∈[B]

Each token ct i is a single field element, so this check is efficient.

All in all, P demonstrates: There exist R extended witnesses w
(1)
ext , . . . ,w

(R)
ext s.t. for a random

challenge s there exist R vectors cv(1), . . . , cv(R) s.t. for a random challenge t, the following holds:
for each j ∈ [R], (

left(w
(j)
ext) ◦ right(w

(j)
ext) = out(w

(j)
ext)
)

mult. check

∧
(
(cv(j))T ×w

(j)
ext = 0

)
topo. check

∧
((

(cv(j))T × t
)
∈ {sT ×M i × t}i∈[B]

)
topo. valid

The order of quantifiers in the above statement is crucial, implying the order in which the proof
proceeds. In short, the full batched proof proceeds as follows:

• P commits to each extended witness w
(j)
ext .

• P and V check multiplication wires are properly committed by using the existing LPZK
technique.

• V sends to P the random challenge vector s.

• P commits to each compressed topology cv(j).

• P and V check each inner-product (cv(j))T ×w
(j)
ext is equal to zero by using the existing QS

technique.

• V sends to P the random challenge vector t.

• P and V locally compute sT ×M i × t for each i ∈ [B].

• P and V use VOLE-based ZK to prove that each committed vector (cv(j))T × t is a valid
compressed topology token.

3.3 Topology Matrices

We now discuss how we construct and use branch-specific public topology matrices M . Recall,
these matrices allow V to verify that P’s extended witness indeed satisfies the structure of some
branch of C1, . . . , CB. This verification is achieved by Equation (1).

Recall, our extended witness wext includes (1) P’s witness w and, for each multiplication gate
in the active branch, (2) its output wire and (3) its two input wires.

Consider a branch C, and suppose that we remove each multiplication gate from C. Whenever
we remove a multiplication gate, we replace its input and output wires with inputs to C. What
remains is a skeleton of the circuit containing only addition gates that expresses a linear relationship
on the extended witness (and C’s output). It is convenient to encode this linear relationship as a
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××
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in1

o2

in2 in3

o1
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ℓ1 r1 ℓ2 r2


1 0 0 −1 0 0 0 0 0 0
0 1 1 0 −1 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0
0 1 1 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 1 0

×



in1

in2

in3

ℓ1
ℓ2
r1
r2
o1
o2
1


=
[
in1 − ℓ1 in2 + in3 − ℓ2 in2 − r1 in2 + in3 − r2 o1 + o2

]T
Figure 3: A simple arithmetic circuit computing (in1 ·in2)+(in2+in3)

2 (left) and its corresponding
topology matrix (right). Note, the shaded portion of the matrix is dense.

matrix M ∈ F(2C×+1)×(Cin+3C×+1), and we refer to this matrix as a topology matrix. Figure 3 shows
an example.

Note that wext is a valid extended witness for C if and only if:

1. Multiplication gates in the wext are formed correctly.

2. M × glue(wext , 1) = 0, where glue appends 1 to vector wext .

The above requirements imply that, for an invalid extended witness wext , if Item 1 is satisfied,
Item 2 will not be satisfied. This is precisely our Equation (1) and associated properties with one
caveat: we did not append 1 to wext . This can be trivially fixed, because P and V can locally
generate shares of [1]∆.

Efficient operations on topology matrices Recall that we left multiply topology matrices M
by vectors sT : we compute sT ×M .

Computed näıvely, the above multiplication is expensive. Indeed, M can be dense, due to
unlimited fan-out from addition gates. Therefore, storing M and näıvely computing the product
will incur O(|C|2) overhead, far exceeding our asymptotic budget.

Perhaps surprisingly, given the gate-by-gate representation of C, this multiplication can be
computed in time O(|C|) with our technique “evaluating C backwards” – see Section 4. We name
the corresponding algorithm MULLEFT. MULLEFT never explicitly computes M . Thus, the topology
matrix M is merely an analysis tool, and our protocols work entirely with efficient gate-by-gate
circuit representations. In other words, it suffices to think of circuits as topology matrices, while
in reality all algorithms operate on compact gate-by-gate representations.

4 Formalizing Topology Matrices

In this section, we formalize topology matrices, a tool used to prove the correctness and security
of our approach; see Section 3. We also give an algorithm that allows efficient vector-matrix
multiplication on topology matrices.
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in1

in2
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+1

+2

×1 +3

scale

+4 unit

+5 out

5
ℓ1

r1

o1

Figure 4: A circuit’s induced DAG. In the topology matrix of this circuit, the last row defines
out ≜ 6in2 + 7in3 + 6o1. In this DAG, there are 6 paths from in2 to out , 7 paths from in3 to out ,
and 6 paths from o1 to out . E.g., from o1, there are 5 paths (dashed) passing through the scale
gate and 1 path (dotted) passing through the addition gate +4, so there are 6 paths in total. The
topology matrix reflects these numbers of paths.

Linear Constraint on a Wire Consider a wire wk in a circuit C. The wire wk can be defined
as a linear combination of input wires of C and output wires of all multiplication gates. We call
this linear combination the linear constraint on wk.

Following this, a circuit’s linear constraints can be captured by its associated topology matrix
(see Figure 3 for an example):

Definition 1 (Topology Matrix). Let C denote a circuit over some field F such that C has nin

input wires and n× multiplication gates. The topology matrix associated with C is a (2n× + 1)×
(nin + 3n× + 1) matrix over F defined as follows.

Let aux ≜ (in1, . . . , innin , ℓ1, . . . , ℓn× , r1, . . . , rn× , o1, . . . , on× , 1)
T denote a vector of circuit

metadata. Here, ink represents the kth input, ℓk (resp. rk, ok) represents the left (resp. right,
output) wire of the kth multiplication gate, and 1 is the multiplicative identity of F. The rows of
the topology matrix M are:

1. Left wires: For the first n× rows, for each k ∈ [n×], M(k) × aux is the linear constraint
on wire ℓk. E.g., in1 − ℓ1 = 0. We require M(k)[nin + k] = −1.

2. Right wires: For the second n× rows, for each k ∈ [n×], M(n× + k) × aux is the linear
constraint on wire rk. E.g., in2 − r1 = 0. We require M(n× + k)[nin + n× + k] = −1.

3. Circuit output: For the last row M(2n× + 1), M(2n× + 1)× aux is the linear constraint
on the output of the circuit. E.g., o1 + o2 is the circuit output.

Left Multiplication for Topology Matrices Recall, our P and V left multiply topology ma-
trices M i by random vectors sT . Using näıve vector-matrix multiplication, computing sT × M
requires O(|C|2) field operations, exceeding our asymptotic budget. Instead, we propose an efficient
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Algorithm 1: MULLEFT takes as input (1) an arithmetic circuit C over a field F written in
gate-by-gate representation (Cf. Definition 3 in Appendix B) and (2) a vector s over some
extension field of F with length 2n× + 1. It outputs sT × M where M is the topology
matrix associated with C. Array indices start at 1.

Data: circuit C, vector s
Result: sT ×M

1 w = 0(|C.wid|) defined over the extension field;
2 acc = 0 defined over the extension field;
3 w[|C.wid|] = s[2n× + 1];
4 for each multiplication gate (ℓk, rk, ok) do
5 w[ℓk] = w[ℓk] + s[k]; w[rk] = w[rk] + s[k + n×];
6 for each linear gate G in reverse topological order do
7 if G is an addition gate (ℓ′k, r

′
k, o

′
k) then

8 w[ℓ′k] = w[ℓ′k] + w[o′k]; w[r′k] = w[r′k] + w[o′k];
9 if G is a scale gate (ck, xk, yk) then

10 w[xk] = w[xk] + ck · w[yk];
11 if G is an offset gate (c′k, x

′
k, y

′
k) then

12 w[x′k] = w[x′k] + w[y′k]; acc = acc+ c′k · w[y′k];
13 res = {};
14 for each input wire ink in order do res.append(w[ink]) ;
15 for each k ∈ [2n×] do res.append(−s[k]) ;
16 for each multiplication gate (ℓk, rk, ok) in order do
17 res.append(w[ok]);
18 res.append(acc);
19 return res
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algorithm called MULLEFT to support the above operation. Given the gate-by-gate circuit represen-
tation6 of C, our algorithm essentially gate-by-gate evaluates C “backwards” in O(|C|) operations
without ever writing down the matrix M .

It is not obvious that this multiplication can be achieved in O(|C|) operations, as the matrix M
can be dense due to high fan-out addition gates (see Figure 3 as an example). While the matrix
M is not sparse, it is highly structured: indeed, the circuit C is itself a succinct representation of
M , and our algorithm exploits this.

Our O(|C|) Solution Algorithm 1 presents MULLEFT. To understand our algorithm, we analyze
the semantics of topology matrices. Let C denote a circuit, and consider C’s underlying directed
acyclic graph G; i.e, the vertices in G represent gates and edges in G represent wires (see Figure 4
as an example). Now, remove each vertex corresponding to a multiplication gate in C. Additionally,
add one special vertex to G called the unit vertex, which will denote a wire holding value 1.

Let M denote the topology matrix associated with C, and consider the first row of M . As
specified by Definition 1, this row defines the linear constraint on ℓ1, the left input wire of C’s first
multiplication gate. The first element of M(1) can be understood as the number of paths in G
that start at vertex in1 and terminate at vertex ℓ1. (Arithmetic circuits admit scalar gates which
scale the input by a public constant; for a gate with scalar s, we say that there are s paths from
that gate’s input to its output. We also consider offset gates which add a public constant to a wire;
for a gate with offset s, we say that there are s paths from the unit vertex to the gate output.)
See Figure 4 for an example.

More generally, M(i)[j] can be understood as the number of paths from auxiliary wire (see
Definition 1) aux j to multiplication gate input i. There are two special cases: (1) we define the
number of paths from a wire to itself to be −1; (2) the last row determines the number of paths to
the circuit output wire (not multiplication).

Now, consider the first column of M (denoted as M [1]). Based on the above analysis, this
column can be understood as the number of paths from in1 to ℓ1, . . . , ℓn× , r1, . . . , rn× , out . The
crucial point is this: in the graph G, the number of paths from wire a to wire b is trivially equal to
the number of backwards paths from b to a. Thus, if we wish to compute the inner product of some
vector s with M [1], we can (1) put those values of s onto the wires ℓ1, . . . , ℓn× , r1, . . . , rn× , out ,
(2) evaluate the circuit (with multiplication gates removed) backwards, and (3) output the value
on wire in1.

Note that backwards evaluation of linear gates has a clear interpretation. In particular, for an
addition gate we add together its output wire values, then place the sum onto the two input wires.

Therefore, to compute the full vector-matrix product sT×M , we simply evaluate the arithmetic
gates backwards, and then output wire values in the order prescribed by aux. This is precisely
the approach of Algorithm 1. Because we evaluate each linear gate exactly once, the complexity
of Algorithm 1 is trivially O(|C|).

6Appendix B defines a standard arithmetic circuit gate-by-gate representation.
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5 Robin: Single Disjunction Protocol

5.1 Soundness Lemmas

As discussed in Section 3, our protocols heavily rely on the fact that V can issue random vectors
to compress commitments, leading to small proofs. Formally, these random challenges preserve
soundness based on the following lemmas and associated corollaries, which are the kernel of our
protocols and proofs.

Lemma 1. Consider a field F and let k,m ∈ Z+. Consider k arbitrary non-zero vectors x(1), . . . ,x(k) ∈
Fm. The following holds:

Pr[∃i ∈ [k], (x(i))T × s = 0 | s ∈$ Fm] ≤ k/|F|

See Appendix C.1 for a proof.

Corollary 1. If s is drawn from the extension field Fq where q ∈ Z+, the upper bound of Lemma 1
is k/|F|q.

Corollary 2. Consider a field F and let k,m ∈ Z+. Consider k arbitrary non-zero vectors
x(1), . . . ,x(k) ∈ Fm and a vector y ∈ Fm such that y /∈ {x(1), . . . ,x(k)}. The following holds:

Pr[(yT × s) ∈ {(x(1))T × s, . . . , (x(k))T × s} | s ∈$ Fm] ≤ k/|F|

Lemma 2. Consider a field F and let k,m ∈ Z+. Consider k arbitrary non-zero vectors x(1), . . . ,x(k) ∈
Fm. The following holds:

Pr[∃i ∈ [k], (x(i))T × s = 0 | χ ∈$ F] ≤ k(m− 1)/|F|

where s ≜ (1, χ, . . . , χm−1).

See Appendix C.2 for proof.

5.2 Formal Protocol and Analysis

We refer the reader to Section 3.1 for the intuition behind our ZK protocol for disjunctive circuit
satisfiability in the single instance setting. Figure 5 formalizes our protocol; its main security
property is as follows:

Theorem 1 (Single Disjunction Security). Πp,q
Single (Figure 5) UC-realizes F1,B

ZK (Figure 1) in the

Fp,q
sVOLE-hybrid model with soundness error n×+2B+4

pq and information-theoretic security.

We provide a detailed proof of Theorem 1 in Appendix C.3; for now, we sketch the main
argument.

Proof Sketch. By constructing a simulator S, and by extracting the witness from malicious P.
For malicious verifier A, S interacts with the ideal functionality F1,B

ZK by running A as a sub-
routine. S implements the ideal functionality Fp,q

sVOLE on behalf of A. Therefore, S knows ∆, and
it can use ∆ to prove any statement to A by opening commitments to whatever value it likes. S
uses this capability to send to A messages identically distributed to honest P’s real-world messages,
which allows it to complete the ideal world execution.
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Protocol Πp,q
Single

Inputs. The prover P and the verifier V hold B circuits C1, . . . , CB over any field Fp, where each circuit has nin

inputs and n× multiplication gates. Prover P also holds a witness w and an integer a ∈ [B] such that Ca(w) = 0

and |w| = nin .

Generate extended witness on Ca.

0. P evaluates Ca(w) and generates ℓ, r,o ∈ Fn×
p where ℓ (resp. r,o) denotes the values on left (resp. right,

output) wires of each multiplication gate, in topological order.

Initialize/Preprocessing.

1. P and V send (init) to Fp,q
sVOLE, which returns a uniform ∆ ∈$ Fpq to V.

2. P and V send (extend, nin + 3n×) to Fp,q
sVOLE, which returns IT-MACs {[µk]}k∈[nin ], {[ωk]}k∈[n×], {[ξk]}k∈[n×]

and {[ρk]}k∈[n×] to the parties.

3. P and V send (extend, q(B− 1)) to Fp,q
sVOLE, which returns q(B− 1) IT-MACs of random values over Fp. P and

V then combine these IT-MACs into (B − 1) IT-MACs of random values over Fpq denoted as {[τi]}i∈[B−1].

Commit to extended witness on Ca.

4. For k ∈ [nin ], P sends δk := wk − µk ∈ Fp to V, and then both compute [wk] := [µk] + δk.

5. For k ∈ [n×], P sends δk := ℓk − ωk ∈ Fp to V, and then both compute [ℓk] := [ωk] + δk.

6. For k ∈ [n×], P sends δk := rk − ξk ∈ Fp to V, and then both compute [rk] := [ξk] + δk.

7. For k ∈ [n×], P sends δk := ok − ρk ∈ Fp to V, and then both compute [ok] := [ρk] + δk.

Check multiplication gates. P convinces V that the n× committed multiplication gates are well-formed.

8. P and V run a VOLE-based zero-knowledge proof for (batched) multiplications LPZK({[ℓk], [rk], [ok]}k∈[n×]);

if ZKP fails, V outputs (false) and halts.

Check witness satisfies some topology. Denote M1, . . . ,MB ∈ F(2n×+1)×(nin+3n×+1)
p the topology matrices

of C1, . . . , CB . Let wext ≜ glue(w, ℓ, r,o, 1) ∈ Fnin+3n×+1
p and associated IT-MAC [wext ] ≜ glue([w], [ℓ], [r], [o], [1]).

P convinces V that Ma ×wext = 0 without leaking a. I.e., there exists a satisfied circuit.

9. V samples a random vector s ∈$ F2n×+1
pq and sends it to P.

10. For each i ∈ [B], P and V compute cvi := sT ×M i ∈ (Fnin+3n×+1
pq )T , then compute [vi] = cvT

i × [wext ].

11. P and V run a VOLE-based zero-knowledge proof to show Πi∈[B]vi = 0 by using IT-MAC [v]. Note that this

is a B-product circuit defined over Fpq , so it can be performed with {[τi]}i∈[B−1] and LPZK. If ZKP succeeds, V
outputs (true); otherwise, V outputs (false).

Figure 5: Robin: ZKP protocol for disjunctive circuit satisfiability over any field Fp in the Fp,q
sVOLE-

hybrid model.
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For malicious prover A, the witness can be trivially extracted from messages sent to Fp,q
sVOLE. S

runs a proof interaction with A by acting as honest V, and it sends the extracted witness to F1,B
ZK if

the interaction leads to a successful proof. The only difference between the two worlds occurs when
A successfully proves a false statement; this can occur when A manages to pass checks built into
the protocol. In such cases, real-world V will accept the proof, whereas ideal-world V will reject,
because S does not hold a valid witness. This discrepancy occurs with low probability because the
protocol is sound.

Indeed, A must pass all checks, and the probability that checks erroneously pass is bounded
by the (statistical) soundness of LPZKs in Steps 8, 11 (n×+B+4

pq in total) and by the probability of
the following bad event: Let wbad denote a vector that is not an extended witness for any branch.
Honest V samples a vector s such that s × M i × wbad = 0 for some i ∈ [B] in Step 10. Each
M i × wbad is a non-zero vector, so this only happens with (statistical) probability at most B

pq

(Cf. Corollary 1).

Protocol Cost In total, Πp,q
Single consumes the following resources:

• Communication. The parties transmit nin + (2q + 3)n× + q(B + 7) = O(q|C| + qB) field
elements. We next explain how to adjust Πp,q

Single such that the number of transmitted field
elements is only O(|C|+ qB), suitable for small fields.

• VOLE Correlations. The parties use nin + 3n× + q(B + 1) = O(|C|+ qB) subfield VOLE
correlations.

• Rounds. The protocol runs in 5 rounds.

• Computation. Each party uses O(|C|) field operations.

Appendix D provides detailed explanation of this cost accounting.

Generating random challenges Πp,q
Single Step 9 requires V send a random challenge s of size

O(q|C|) field elements. There are several methods to compress s such that it does not asymptotically
dominate; these are standard, see e.g. discussion in [YSWW21]. These methods trade off in
soundness, communication, and computation:

Powers of χ. V can send 1 random field element χ ∈ Fpq and define s as (1, χ, χ2, . . . , χ2n×).
This variant uses O(|C|+ qB) communication and O(|C|) computation. While this saves communi-
cation, it increases soundness error to 2Bn×+B+n×+4

pq , because it increases the chance (Cf. Lemma 2)
that cheating P can randomly achieve an IT-MAC encoding of 0 on some branch.

Random Oracle. V can send a λ-bit seed, and the parties can use a random oracle (RO) to
generate s. This variant has O(|C|+qB) communication, but the parties use computation to expand
the RO. The soundness error (with extra random oracle assumption) is now t

2λ
+ n×+2B+4

pq , where
t denotes an upper bound of the number of RO queries made by the adversary. We implement
this variant.

6 Batchman: Batched Disjunctions

We refer the reader to Section 3.2 for the intuition of our ZK protocol for batched disjunctive circuit
satisfiability. Figure 6 formalizes our protocol; its main security property is as follows:
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Theorem 2 (Batched Disjunctions Security). Πp,q
Batch (Figure 6) UC-realizes FR,B

ZK (Figure 1) in

the Fp,q
sVOLE-hybrid model with soundness error Rn×+R+3B+6

pq and information-theoretic security.

We provide a proof of Theorem 2 in Appendix C.4. In short, the proof is very similar to that of
Theorem 1, except that we must additionally account for (1) the soundness of QS in Step 13 and
(2) an additional bad event made possible by the check on P’s committed topology vectors in Step
15.

Protocol Cost In total, Πp,q
Batchconsumes the following resources:

• Communication. The parties transmit (Rq + R)nin + (3Rq + 3R)n× + qR(B + 1) + 2q =
O(qRB + qR|C|) field elements.

• VOLE Correlations. The parties use (Rq + R)nin + (3Rq + 3R)n× + qR(B + 1) + 2q =
O(qRB + qR|C|) subfield VOLE correlations.

• Rounds. The protocol runs in 7 rounds.

• Computation. Each party computes O(RB +R|C|+B|C|). field operations.

Appendix D provides detailed explanation of this cost accounting.

Field size Unlike our single disjunction protocol, our batched protocol improves on prior work
w.r.t. communication only for large fields. This is because in Step 12, P commits to R com-
pressed topology vectors, and these are defined over the extension field. If one wishes to work
with a small field (e.g., Boolean), repeating our single disjunction protocol is more effective w.r.t.
communication.

Generating random challenges As in our single disjunction protocol, we can reduce com-
munication needed for V’s random challenge vectors s and t by applying standard methods. In
particular, these challenges can be generated using a two-row Vandermonde matrix of two random
field elements, or using a random oracle. We implement the RO variant.

Constraining Batch Witnesses Batched disjunctions allow P to prove the same disjunction
with respect to R witnesses. This is only interesting if we impose additional constraints on P’s
witnesses; otherwise, P with only one witness can trivially re-use her witness R times to satisfy
the full statement. In Appendix E we discuss simple methods for extending our protocol with
additional constraints that force P to prove her R witnesses are related.

7 Implementation and Benchmarking

We implemented our ZK protocols for both Boolean circuits (field F2) and for circuits of the
Mersenne prime field F261−1.

Our implementation extends the publicly available implementation of QuickSilver [YSWW21]
(their code is part of the EMP Toolkit [WMK16]). We use their VOLE and LPZK implementations.
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Protocol Πp,q
Batch

Inputs. P and V agree on B circuits C1, . . . , CB over any field Fp, where each circuit has nin inputs and n× multiplication
gates. P holds R witnesses w(1), . . . ,w(R) and R integers a(1), . . . , a(R) ∈ [B] such that for all j ∈ [R], Ca(j) (w(j)) = 0 and

|w(j)| = nin .

Generate extended witnesses for Ca(1) , . . . , Ca(R) .

0. For each j ∈ [R], P evaluates Ca(j) (w(j)) in cleartext to generate vectors ℓ(j), r(j),o(j) ∈ Fn×
p , where ℓ(j) (resp. r(j),o(j))

denotes the values on the left (resp. right, output) wires of multiplication gates (listed in topological order).

Initialize/Preprocessing.
1. P and V send (init) to Fp,q

sVOLE, which returns a uniform ∆ ∈$ Fpq to V.
2. P and V send (extend, R(nin + 3n×)) to Fp,q

sVOLE, which returns IT-MACs {[µ(j)
k ]}k∈[nin ], {[ω

(j)
k ]}k∈[n×], {[ξ

(j)
k ]}k∈[n×]

and {[ρ(j)k ]}k∈[n×] for each j ∈ [R].

3. P and V send (extend, qR(nin + 3n× + 1)) to Fp,q
sVOLE, which returns qR(nin + 3n× + 1) IT-MACs of random Fp values.

P and V combine these IT-MACs into R(nin +3n× +1) IT-MACs of random Fpq values, denoted {[η(j)k ]}k∈[nin+3n×+1] for

each j ∈ [R].
4. P and V send (extend, qR(B− 1)) to Fp,q

sVOLE, which returns qR(B− 1) IT-MACs of random Fp values. P and V combine

these IT-MACs into R(B − 1) IT-MACs of random Fpq values, denoted {[τ (j)i ]}i∈[B−1] for each j ∈ [R].

Commit to extended witnesses on Ca(1) , . . . , Ca(R) . For each j ∈ [R], proceed as follows:

5. For k ∈ [nin ], P sends δk := w
(j)
k − µ

(j)
k ∈ Fp to V, and then both compute [w

(j)
k ] := [µ

(j)
k ] + δk.

6. For k ∈ [n×], P sends δk := ℓ
(j)
k − ω

(j)
k ∈ Fp to V, and then both compute [ℓ

(j)
k ] := [ω

(j)
k ] + δk.

7. For k ∈ [n×], P sends δk := r
(j)
k − ξ

(j)
k ∈ Fp to V, and then both compute [r

(j)
k ] := [ξ

(j)
k ] + δk.

8. For k ∈ [n×], P sends δk := o
(j)
k − ρ

(j)
k ∈ Fp to V, and then both compute [o

(j)
k ] := [ρ

(j)
k ] + δk.

Check multiplication gates. P convinces V that the Rn× committed multiplication gates are well-formed.

9. P and V run a VOLE-based zero-knowledge proof for (batched) multiplications LPZK({[ℓ(j)k ], [r
(j)
k ], [o

(j)
k ]}k∈[n×],j∈[R]).

If ZKP fails, V outputs (false) and halts.

Generate compressed topology vectors. Let M1, . . . ,MB ∈ F(2n×+1)×(nin+3n×+1)
p denote the topology matrices of

C1, . . . , CB .

10. V samples a random vector s ∈$ F2n×+1
pq and sends it to P.

11. For each i ∈ [B], P and V compute cvi := (sT ×M i)
T ∈ Fnin+3n×+1

pq .

Commit compressed topology vectors. For each j ∈ [R]:

12. For each k ∈ [nin+3n×+1], P sends δk := (cva(j) )k−η
(j)
k ∈ Fpq to V, and then both compute [c̃v

(j)
k ] := [η

(j)
k ]+δk.

Check satisfiability of committed compressed topology vectors. For each j ∈ [R], Let w
(j)
ext ≜

glue(w(j), ℓ(j), r(j),o(j), 1) ∈ Fnin+3n×+1
p and associated IT-MAC [w

(j)
ext ] ≜ glue([w(j)], [ℓ(j)], [r(j)], [o(j)], [1]). P con-

vinces V that (c̃v(j))T ×w
(j)
ext = 0 for each j ∈ [R]. I.e., the committed circuits are satisfied.

13. P and V run a VOLE-based zero-knowledge proof for (batched) inner-products QS({[c̃v(j)], [w
(j)
ext ]})j∈[R]. If ZKP fails,

V outputs (false) and halts.

Validate committed compressed topology vectors. P convinces V that c̃v(j) ∈ {cv1, . . . , cvB} for each j ∈ [R]. I.e.,
the committed circuits are well-formed.
14. V samples a random vector t ∈$ Fnin+3n×+1

pq and sends it to P. For each i ∈ [B], P and V compute cti := cvT
i ×t ∈ Fpq .

For each j ∈ [R], P and V compute IT-MAC [c̃t(j)] := [c̃v(j)]T × t.

15. For each j ∈ [R], P and V run a VOLE-based zero-knowledge proof to show Πi∈[B]{c̃t(j) − cti} = 0 by using IT-MAC

[c̃t(j)] and public {cti}i∈[B]. Note that this is a B-product circuit defined over Fpq so can be performed with {[τ (j)i ]}i∈[B−1]

and LPZK. If all R ZKPs succeed, V outputs (true); otherwise, V outputs (false).

Figure 6: Batchman: ZKP protocol for batched disjunctive circuit satisfiability over any field Fp in
the Fp,q

sVOLE-hybrid model.
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Our implementations achieve computational security parameter κ = 128 (for VOLE) and sta-
tistical security parameter λ ≥ 100 for Boolean and λ ≥ 40 for arithmetic circuits, matching
QuickSilver.

Unless otherwise specified, our experiments were run on two Amazon EC2 m5.2xlarge machines7

(respectively implementing P and V). Our implementations run single threaded.

Benchmark Unless otherwise specified, our experiments use a benchmark where each of the B
branches features a matrix multiplication (implementing the näıve algorithm) where P wishes to
prove that she knows two square ℓ × ℓ matrices whose product is equal to a public ℓ × ℓ matrix.
Each such circuit has O(ℓ3) gates. We acknowledge that this benchmark is contrived; its purpose
is to evaluate performance only.

7.1 Robin: Single Disjunction Protocol

7.1.1 Comparison with Mac′n′Cheese [BMRS21]

We compare Robin with the prior state-of-the-art VOLE-based ZK protocol supporting disjunctions:
Mac′n′Cheese [BMRS21]. The Mac′n′Cheese implementation is not publicly available, so we use the
numbers available in their paper.

[BMRS21] reported execution time when handling B branches, each consisting of ≈ 1 billion
AND gates. Each branch computes 45000 iterations of the SHA-2 circuit.8 For these large Boolean
branches, [BMRS21] uses an elegant trick based on [BBCG+19] to reduce the communication cost
of each AND gate to only 1 bit (rather than paying two extension fields communication per AND
gate); this trick increases round complexity by factor O(log |C|).

We ran Robin on the same branches and the same network configuration. Due to size, we ran
our experiment on two Amazon EC2 m5.8xlarge machines9. Figure 7 tabulates the results.

[BMRS21]’s implementation does not include a VOLE backend, and it only achieves 40 bit
statistical security. Our implementation includes a real VOLE backend with 100 bit statistical
security. Because of these differences, it is difficult to present a completely fair comparison. Despite
generating real VOLE correlations, Robin still improves performance. Figure 7 shows that we pay
≈ 25 seconds per extra branch, whereas [BMRS21] uses ≈ 150 seconds.

Figure 7 also tabulates the results for branches with matrix multiplication. This additional
column demonstrates that our performance does not depend on branch structure.

7.1.2 Comparison with QuickSilver [YSWW21]

[YSWW21] is a state-of-the-art VOLE-based ZK protocol for Boolean/arithmetic circuits. It uses
O(B|C|) computation and communication with low constants, and it serves as the baseline for our
approach. We compare our single disjunction protocol Robin with [YSWW21] on circuits defined
over F261−1. Asymptotically, Robin improves communication from O(B|C|) to O(B + |C|).

We compare using branches that each have 8 million multiplication gates, and we vary B
between 5 and 100. Figure 8 plots our speedup. [YSWW21] requires 73.7 MB communication per
branch; Robin requires ≈ 200 MB communication for all branches.

7Intel Xeon Platinum 8175 CPU @ 3.10GHz, 8 vCPUs, 32GiB Memory, 10Gbps Network
8More precisely, they also consider a branch that computes 150000 iterations of AES, but this branch is smaller

than the SHA-2 circuit.
9Intel Xeon Platinum 8175 CPU @ 3.10GHz, 32 vCPUs, 128GiB Memory, 10Gbps Network

21



# Branch
Mac′n′Cheese [BMRS21] Robin

50 threads, λ ≥ 40, without VOLE 1 thread, λ ≥ 100, with VOLE

Rep. SHA2 Rep. SHA2 Mat. Mul.

2 307 468 466
4 568 520 517
8 1254 615 617
16 - 812 816
32 - 1209 1213
64 - 2004 2005

Figure 7: Comparison with Mac′n′Cheese [BMRS21]. We tabulate end-to-end runtime in seconds.
Our reported numbers for [BMRS21] are directly from their paper. Rep. SHA2 denotes a circuit
computing 45000 iterations of SHA-2. Mat. Mul denotes a circuit that multiplies two 1000 ×
1000 Boolean matrices. Both circuits have ≈ 1 billion AND gates. [BMRS21] uses 124 MB of
communication while ours uses 628 MB. As B increases, communication remains almost constant.
The network has 30 Mbps bandwidth and 100 ms latency.

When network bandwidth is low (e.g., 100 Mbps), communication remains the bottleneck, and
for B > 40 Robin achieves over 10× improvement. Even when network bandwidth is high (e.g., 500
Mbps), Robin improves performance by ≈ 4×, because Robin computes fewer VOLE correlations.

7.1.3 More evaluation

Appendix F includes further evaluation.

7.2 Batchman: Batched Disjunctions Protocol

Our batched protocol Batchman is best for circuits over large fields. Therefore, our evaluation
considers circuits over F261−1.

7.2.1 Comparison with AntMan [WYY+22]

AntMan [WYY+22] presents a protocol optimized for circuits with batched SIMD circuits, but
AntMan does not consider batched disjunctions. To implement batched disjunctions in AntMan,
one can consider a size B|C| instruction which is executed R times. Recall that AntMan incurs
O(RB|C| logR) computation and O(B|C|+R) communication. Our batched protocol improves in
terms of computation, incurring O(RB +R|C|+B|C|) computation and O(RB +R|C|) communi-
cation.

The AntMan implementation is not publicly available, so we use numbers from the paper.
To compare, we ran experiments on the same setup: two Amazon EC2 m5.8xlarge9 machines.
[WYY+22] reported the execution of a batch of 1024 circuits where each circuit has 221 multipli-
cation gates. Accordingly, we tested Batchman to ensure all branches in each repetition have 221

total multiplication gates. ([WYY+22] circuits are defined over F259−228+1.) Figure 9 tabulates the
results; higher numbers are better.

Batchman is sensitive to network bandwidth due to its O(R|C|) asymptotic scaling, but it is
computation efficient. As B increases, our improvement also increases. In the extreme case where
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Figure 8: The speedup of our single disjunction protocol Robin over QuickSilver [YSWW21]. We
report end-to-end proof runtime. Circuits are over F261−1; each branch has 8M mult. gates.

Protocol
Network Bandwidth

50 Mbps 100 Mbps 500 Mbps 1 Gbps

AntMan-1 2.00 2.05 2.08 2.09
AntMan-2 3.78 3.91 3.99 4.26
AntMan-4 6.88 6.69 6.99 7.01

Batchman-(23, 218) 0.96 1.83 6.60 9.60
Batchman-(26, 215) 7.55 14.43 51.28 75.40
Batchman-(29, 212) 56.20 104.91 335.02 461.82

Figure 9: Comparison with AntMan [WYY+22]. We tabulate millions of multiplication gates
executed per second (mgps). AntMan-t refers to AntMan with t threads (numbers from [WYY+22]).
Batchman uses only 1 thread. Batchman-(B,C) refers to our batched protocol Batchman with B
branches where each branch has C multiplication gates. Both protocols execute batches where each
repetition has 221 multiplication gates.

there are 512 branches and with 1 Gbps bandwidth, Batchman is 221× faster than (single thread)
AntMan [WYY+22].

Of course, AntMan solves a more general problem than Batchman. However, for our special-case
problem of batched disjunctions, we demonstrate significant improvement.

7.2.2 Comparison with QuickSilver [YSWW21] and Robin

We compare Batchman to the baseline QuickSilver [YSWW21] protocol and to repeated runs of
Robin. We experiment with benchmarks satisfying R = B, and we consider branches with 1.25×105

multiplication gates. Figure 10 plots speedup as compared to QuickSilver.
Compared to QuickSilver, Robin only improves communication, limiting its speedup. On the

other hand, Batchman improves both communication and computation, and our speedup is almost
independent of network bandwidth. Our experiment shows that Batchman enjoys an extra 2− 9×
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improvement as compared to Robin.
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Figure 10: The speedup of Batchman and Robin over QuickSilver [YSWW21]. We plot factor
improvement in terms of end-to-end runtime. Circuits are defined over F261−1 and each branch has
1.25× 105 multiplication gates.

7.2.3 Fine-grained analysis

Figure 11 breaks down the runtime cost of Batchman. Most of the execution time is spent commit-
ting to the witness and to the compressed topology vectors. Figure 11 confirms MULLEFT’s high
concrete efficiency.

Bandwidth B R
multi. check topo. check topo. valid

MULLEFT commit topo. inner-prod.

100 Mbps
50 50 14.6 0.1 13.5 0.2 0.2
100 100 28.1 0.2 26.9 0.3 0.4
400 400 109.7 0.8 107.6 0.9 2.3

500 Mbps
50 50 4.8 0.1 3.6 0.1 0.2
100 100 8.4 0.2 7.3 0.2 0.4
400 400 30.4 0.8 28.7 0.7 2.2

1 Gbps
50 50 3.4 0.1 2.4 0.1 0.2
100 100 6.2 0.2 4.9 0.2 0.4
400 400 20.3 0.8 18.6 0.7 2.2

Figure 11: Fine-grained analysis of our batched disjunctions protocol Batchman. Measurements
are in seconds.
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Protocol
Network Bandwidth

100 Mbps 500 Mbps 1 Gbps

QuickSilver [YSWW21] 181 Hz 625 Hz 902 Hz
Batchman 1525 Hz 5375 Hz 7891 Hz

Figure 12: CPU speed in a proof-of-concept setting. We consider a CPU with B = 50 instructions;
each instruction is an arithmetic circuit with 125 multiplication gates.

7.2.4 CPU emulation benchmark

Our final benchmark shows that Batchman is suitable to the use-case of CPU-emulation-based ZK.
We consider a proof-of-concept CPU (without RAM) with B = 50 instructions where each instruc-
tion has 125 multiplication gates. We vary R between 50K and 500K (guided by ZEE [HYDK21])
and calculate average CPU speed. While ZEE achieves a comparable Hz rate, it has a smaller
branching factor B = 20, and, crucially, our CPU step is vastly more powerful in that it executes
125 multiplications per instruction, vs a single one in ZEE.

As shown in Figure 12, Batchman achieves 9× improvement as compared to QuickSilver [YSWW21].
We note that this is purely a proof of concept. To implement true CPU emulation based on
Batchman, one needs to carefully design the instruction set, and ZK RAM (e.g, [FKL+21, DdSGOTV22])
needs to be incorporated.
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SUPPLEMENTARY MATERIAL

A Additional Preliminaries

A.1 Universal Composability

The Universal Composability (UC) framework [Can01] models the execution of protocols as inter-
actions of probabilistic polynomial-time (PPT) Interactive Turing Machines (ITMs). We use UC
to formalize our protocols and to prove security in the presence of a malicious, static adversary.

In UC, the execution of a protocol Π with hybrid functionality G can be viewed as the inter-
action between ITMs (as parties), where each ITM can interact with each other and the hybrid
functionality G. An ideal execution in the UC framework can be viewed as the interaction between
dummy ITMs (as parties) that simply forward messages between the ideal functionality and an
ITM referred to as the environment E . The environment E provides inputs to the parties and can
corrupt a subset of the parties by replacing their ITMs with arbitrary ITMs A. The correctness
and security of the protocol Π are ensured by the standard ideal-real paradigm where the crucial
argument is that E cannot distinguish between the two worlds. Namely, the protocol Π is “as secure
as” the ideal.

Formally, let Π be a protocol in the G-hybrid model. The output of an environment E inter-
acting with Π in the presence of an adversary A on input 1λ and auxiliary input z is denoted as
EXECG

Π,A,E(1
λ, z). Consider another (trivial) protocol with ideal functionality F , dummy parties,

and a simulator S. The output of an environment E interacting with this trivial protocol in the
presence of a simulator S on input 1λ and auxiliary input z is denoted as IDEALF ,S,E(1

λ, z).

Definition 2. We say that a protocol Π in the G-hybrid model UC-emulates an ideal functionality
F when, for any PPT adversary A, there exists a simulator S such that for any environment E:

{EXECG
Π,A,E(1

λ, z)} λ∈N,
z∈{0,1}∗

c
≈ {IDEALF ,S,E(1

λ, z)} λ∈N,
z∈{0,1}∗

where “
c
≈” denotes computational indistinguishability of distribution ensembles, see [Gol09].

The definition requires computational indistinguishability; our protocols achieve stronger sta-
tistical indistinguishability.

A.2 LPZK [DIO21] and its Inner-product Generalization [YSWW21]

We provide more details of the sub-protocols LPZK and QS used in our approach.

Line-point zero-knowledge The goal of LPZK is to allow P to convince V (in ZK) that a
collection of IT-MAC tuples each satisfy the multiplication relation. Consider three IT-MACs
[x]∆, [y]∆, [z]∆ over a field F where P holds x, y, z,mx,my,mz and V holds mx,my,mz,∆. By
definition, mx = kx − x∆, my = ky − y∆ and mz = kz − z∆. The key insight unlerlying LPZK is
the following equation:

kxky − kz∆

=(mx + x∆)(my + y∆)− (mz + z∆)∆

=(xy − z)∆2 + (mxy +myx−mz)∆ +mxmy
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Note, P knows (mxy +myx−mz) and mxmy, and V knows kxky − kz∆. If we for now ignore
Zero Knowledge, we can observe that if P sends these two coefficients to V, this is convincing
evidence that the coefficient of ∆2 (i.e., xy− z) is 0. This proves that the committed values indeed
satisfy z = xy, because if cheating P commits to z ̸= xy, since P does not know ∆, she will succeed
with probability at most 2/|F|.

The two transmitted coefficients are over exstension fields, not subfields. To achieve amortized
1 transmitted subfield element per multiplication, we must compress the coefficients of T multi-
plication tuples into 1. Specifically, suppose P holds T coefficient pairs (A1,0, A1,1), . . . (AT,0, AT,1)
and V holds T field elements C1, . . . , CT which are computed locally from T IT-MAC tuples which
supposedly satisfy the multiplication relation. For each i ∈ [T ], Ai,1∆ + Ai,0 = Ci. To check the
batch of multiplications are well formed, V sends a random challenge χ, and P sends two coefficients
A0 ≜

∑T
i=1Ai,0χ

i−1 and A1 ≜
∑T

i=1Ai,1χ
i−1 to V. V checks A1∆ + A0 =

∑T
i=1Ciχ

i−1, which is
convincing evidence that all T multiplications are well formed.

It is easy to reintroduce Zero Knowledge: P simply masks her coefficients by sending A1 +R1

and A0+R0 where V knows R1∆+R0 and where R1 and R0 are selected randomly, which is just a
single additional VOLE correlation. This protocol achieves soundness (T +2)/|F| and information-
theoretic security. See [YSWW21] for details.

Line-point zero-knowledge for inner-products Recall that the goal of QS is to allow P to
convince V (in ZK) that two vectors of IT-MACs are formed such that the inner-product of the
committed vectors is 0. Consider two length-n IT-MAC vectors [x]∆ and [y]∆ over field F. For
each [xi∈[n]]∆ (resp. [yi∈[n]]∆), P holds xi,mxi (resp. yi,myi), and V holds kxi (resp. kyi) and ∆
where mxi = kxi − xi∆ (resp. myi = kyi − yi∆). The key insight of QS is the following equation:

n∑
i=1

kxikyi =
n∑

i=1

(mxi + xi∆) (myi + yi∆)

=
n∑

i=1

mximyi +
n∑

i=1

(mxiyi +myixi)∆ +
n∑

i=1

xiyi∆
2

Similar to LPZK, P knows
∑n

i=1 (mxiyi +myixi) and
∑n

i=1mximyi while V knows
∑n

i=1 kxikyi .
Thus, if we for now ignore Zero Knowledge, P can send these two coefficients to convince V that
the coefficient of ∆2 (i.e.,

∑n
i=1 xiyi) is 0, which is exactly the inner-product of these two vectors.

Cheating P holding
∑n

i=1 xiyi ̸= 0 will pass this check with probability at most 2/|F|.
Just as in LPZK, we can ccompress T inner-product proofs into only two coefficients, im-

proving communication. Furthermore, Zero Knowledge can be added by using one extra random
VOLE correlation. This protocol achieves soundness (T+2)/|F| with information-theoretic security.
This technique can be further generalized to allow proofs with respect to arbitrary polynomials.
See [YSWW21] for details.

B Circuit Gate-by-gate Representation

We include a standard definition of the gate-by-gate representation of arithmetic circuits. Our
definition includes offset gates, each of which adds a public constant to its input.

Definition 3 (Circuit Gate-by-Gate Representation). A circuit C over some field F = (+, ·) is a
tuple consisting of:
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• nin , n×, n+, nscale , noffset , which respectively denote the number of input gates, multiplication
gates, addition gates, scale gates, and offset gates.

• wid ≜ [m] denotes the collection of wire identifiers; the last identifier m is identifies the output
wire.

• IN ≜ {ink}k∈[nin ] denotes the input wires.

• MUL ≜ {(ℓk, rk, ok)}k∈[n×] denotes the multiplication gates where ℓk, rk, ok ∈ [m].

• ADD ≜ {(ℓ′k, r′k, o′k)}k∈[n+] denotes the addition gates where ℓ′k, r
′
k, o

′
k ∈ [m].

• SCALE ≜ {(ck, xk, yk)}k∈[nscale ] denotes the scale gates where ck ∈ F and xk, yk ∈ [m].

• OFFSET ≜ {(c′k, x′k, y′k)}k∈[noffset ] denotes the offset gates where c′k ∈ F and x′k, y
′
k ∈ [m].

Theorem 3 (Circuit Satisfiability). A circuit C over some field F = (+, ·) represented gate-by-gate
(Cf. Definition 3) is satisfiable if and only if there exists a vector w ∈ Fm such that (1) wm = 0;
(2) ∀k ∈ [n×],wlk ·wrk = wok ; (3) ∀k ∈ [n+],wl′k

+wr′k
= wo′k

; (4) ∀k ∈ [nscale ],wyk = ck ·wxk

and (5) ∀k ∈ [noffset ],wy′k
= wx′

k
+ c′k.

Recall the definition of topology matrices in Section 4. The satisfiability of a circuit can be
alternatively stated using its topology matrix:

Theorem 4 (Circuit Satisfiability from Topology Matrix Multiplication). Let C denote a circuit
over some field F, and let M denote C’s associated topology matrix. C is satisfiable if and only if
there exists a vector w ∈ Fnin+3n×+1 such that:

1. wnin+3n×+1 = 1,

2. w[nin + 1 : nin + n×] ◦w[nin + n× + 1 : nin + 2n×] = w[nin + 2n× + 1 : nin + 3n×] where ◦
denotes the element-wise product,

3. M ×w = 0.

Proof. Immediate from Definition 1.

C Deferred Proofs

C.1 Proof of Lemma 1

Lemma 1. Consider a field F and let k,m ∈ Z+. Consider k arbitrary non-zero vectors x(1), . . . ,x(k)

∈ Fm. The following holds:

Pr[∃i ∈ [k], (x(i))T × s = 0 | s ∈$ Fm] ≤ k/|F|

Proof. For each non-zero vector x(i∈[k]), there is |F|m−1 different s such that (x(i))T ×s = 0. Thus,
there will be at most k|F|m−1 choices of s to make the above event happen, which implies the upper
bound as k|F|m−1|/|F|m = k/|F|.
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C.2 Proof of Lemma 2

Lemma 2. Consider a field F and let k,m ∈ Z+. Consider k arbitrary non-zero vectors x(1), . . . ,x(k) ∈
Fm. The following holds:

Pr[∃i ∈ [k], (x(i))T × s = 0 | χ ∈$ F] ≤ k(m− 1)/|F|

where s ≜ (1, χ, . . . , χm−1).

Proof. (x(i))T × s can be viewed as evaluating non-zero polynomial f (i)(X) ≜
∑m−1

j=0 x
(i)
j+1X

j at
X = χ. Thus, the above event happens if and only if χ is a root of some polynomial. Since each
polynomial will have at most m− 1 roots, k polynomials in total will have at most k(m− 1) roots,
resulting in the above bound.

C.3 Proof of Theorem 1

Theorem 1. Πp,q
Single (Figure 5) UC-realizes F

1,B
ZK (Figure 1) in the Fp,q

sVOLE-hybrid model with sound-

ness error n×+2B+4
pq and information-theoretic security.

Proof. By constructing a simulator S. S interacts with F1,B
ZK and runs the adversary A as a

subroutine while emulating Fp,q
sVOLE for A.

Malicious P. Since S emulates Fp,q
sVOLE for A, the values committed by IT-MAC in Steps

4, 5, 6, 7 can be trivially extracted by S, and these committed values include A’s witness w̃ for the
active circuit. Note, S still must extract ã, which denotes the active circuit identifier, but this can
be trivially extracted by trying computing Ci(w̃) for each i, and finding a value i where the result
is 0 (recall, a zero output indicates a successful proof).

S simply acts as honest V and emulates Fp,q
sVOLE. It uses the A’s VOLE inputs to extract w̃

and ã (ã can be ⊥). If honest V would output (false), S sends ⊥ to F1,B
ZK ; otherwise, S sends

(C1, . . . , CB, w̃, ã) to F1,B
ZK .

We argue S is a valid simulator. Note that V in Πp,q
Single only sends uniformly random values to

P, so A’s real-world view is identical to its ideal-world view. Whenever real-world honest V would
output (false), ideal-world V also outputs (false) since S will send ⊥ to F1,B

ZK .
There is one event we must specially account for. Suppose that A that does not hold valid

w̃, but it nevertheless manages to make real world V output (true). In this case and in the ideal
world, S emulates accepting honest V, but it does not hold a valid witness, since A does not hold
a valid witness. Thus, S will send an invalid input to F1,B

ZK , which will make ideal-world V output
(false). While this event is possible, it is unlikely. Indeed, the probability of this event is precisely
the protocol soundness error.

We calculate a bound on soundness error. To make real-world V output (true), a malicious P
must pass two checks:

1. The multiplication check performed by LPZK in Step 8.

2. The circuit check performed by issuing a random challenge and regular VOLE-based ZK in
Steps 9, 10, 11.

If A’s witness does not satisfy the multiplication relation, A can pass Item 1 with probability
at most n×+2

pq (i.e., the information-theoretic soundness of LPZK, see [YSWW21]). Now, consider
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A whose invalid extended witness w̃ext satisfies the multiplication check, but does not satisfy any
branch. Recall, M i denotes the topology matrix of Ci. We have ∀i ∈ [B],M i × glue(w̃ext , 1) ̸= 0.
There are the following two possible events that will lead to A passing Item 2:

• The random challenge s from V in Step 9 creates a faulty 0. Namely, ∃i ∈ [B], sT ×M i ×
glue(w̃ext , 1) = 0. Note that for each i ∈ [B], M i × glue(w̃ext , 1) ̸= 0. By Corollary 1, this
event only occurs with probability at most B

pq .

• The random challenge s from V in Step 9 does not create a 0. Namely, ∀i ∈ [B], sT ×M i ×
glue(w̃ext , 1) ̸= 0. In this situation, A must forge the final product circuit evaluation on B−1
multiplication gates, which is another LPZK (and an extra opening of 0). The probability is
at most B+2

pq (information-theoretic).

Thus, the two distributions seen by the environment E differ with probability at most C×+2B+4
pq ,

and any unbounded environment E cannot distinguish the real-world execution and ideal-world
execution, except with probability at most C×+2B+4

pq .

Malicious V. If S receives (false) from F1,B
ZK , it simply aborts. If S receives (true) from

F1,B
ZK , it emulates Fp,q

sVOLE, selects a uniformly random extended witness w̃ext , and acts as honest P,
except that it maliciously passes the check in Step 8, 11. S is able to pass these checks because it
emulates Fp,q

sVOLE, and thus it knows ∆ as well as shares of A’s IT-MACs (i.e., S knows what values
A expects). The messages received by A are all uniformly distributed, and hence the distributions
seen by the environment E in the two worlds are identical.

C.4 Proof of Theorem 2

Theorem 2. Πp,q
Batch (Figure 6) UC-realizes F

R,B
ZK (Figure 1) in the Fp,q

sVOLE-hybrid model with sound-

ness error Rn×+R+3B+6
pq and information-theoretic security.

Proof. By constructing a simulator S. S interacts with FR,B
ZK and run the adversary A as a sub-

routine while emulating Fp,q
sVOLE for A.

Malicious P. Since S emulates Fp,q
sVOLE for A, S can trivially extract A’s witness w̃(1), . . . , w̃(R)

from A’s IT-MAC commitments. Note that S still must extract ã(1), . . . , ã(R), which denote the
active circuit identifiers, and these can be trivially extracted by trying each witness against each
branch Ci, and seeing which branch outputs zero. If no branch outputs zero, then w̃(j) is an invalid
witness.

S acts as honest V and emulates Fp,q
sVOLE to extract w̃(1), . . . , w̃(R) and ã(1), . . . , ã(R) (ã(j∈[R]) can

be ⊥). If honest woulld V output (false), S sends ⊥ to FR,B
ZK ; otherwise, S sends (C1, . . . , CB, w̃(1),

. . . , w̃(R), ã(1), . . . , ã(R)) to FR,B
ZK .

We argue S is a valid simulator. Note that V in Πp,q
BatchedStack only sends uniformly random

values to P, so A’s real-world view is identical to its ideal-world view. Whenever real-world honest
V would output (false), ideal-world V also outputs (false) since S will send ⊥ to FR,B

ZK .
There is one event we must specially account for. Suppose that A does not hold a valid witness,

but it nevertheless manages to make real-world V output (true). In this case and in the ideal world,
S emulates accepting V but it does not hold a valid witness, since A does not hold a valid witness.
Thus, S will send an invalid input to FR,B

ZK , which will make ideal-world V output (false). While
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this event is possible, it is unlikely. Indeed, the probability of this event is precisely the protocol
soundness error.

We calculate a bound on soundness error. To make real-world V output (true), a malicious P
must pass three checks in sequence:

1. The multiplication check performed by LPZK in Step 8.

2. The inner-product check performed by QS in Step 13.

3. The compressed topology token membership check performed by a random challenge and
regular VOLE-based ZK in Steps 14, 15, 16.

If A’s witness does not satisfy the multiplication relation, A can pass Item 1 with probability
at most Rn×+2

pq (i.e., the information-theoretic soundness of LPZK, see [YSWW21]).

Now, suppose A uses R invalid extended witnesses w̃ext
(1), . . . , w̃ext

(R) such that multiplications
are well-formed (i.e., Item 1 passes).

If A commits to at least one invalid compressed topology vector, then A can pass Item 2 with
probability at most R+2

pq (i.e., the information-theoretic soundness of QS, see [YSWW21]). This

occurs when A uses R compressed topology vectors c̃v(1), . . . , c̃v(R) such that there exists j ∈ [R]

where (c̃v(j))T × w̃ext
(j) ̸= 0.

Now, suppose A commits to R valid compressed topology vectors that pass Item 2. We are
left with Item 3, which checks that each of A’s commited topogy vectors indeed corresponds to

the topology of some branch, i.e. ˜cv(j∈[R]) ∈ {cv1, . . . , cvB}. For each i, cvi ≜ sT × M i where

s is uniformly sample by V and M i is the topology matrix of Ci. Note that each ˜cv(j∈[R]) will be
checked individually, so we can focus on the case where A only has one faulty w̃ext

(j∈[R]).
W.l.o.g., we assume the faulty one is w̃ext

(1) and associated compressed topology vector A
committed is c̃v(1). Recall that w̃ext

(1) has already passed Item 1 check. This implies that
∀i ∈ [B],M i × glue(w̃ext

(1), 1) ̸= 0. Recall V samples a uniformly random vector s to gener-
ate the compressed topology vectors cvi∈[B] (Step 11). If there exists some i ∈ [B] such that

sT ×M i × glue(w̃ext
(1), 1) = 0, then A can trivially pass Item 3 by setting c̃v(1) as cvi. However,

by Corollary 1, this only happens with probability at most B
pq .

Now consider that ∀i ∈ [B], (cvi)
T × glue(w̃ext

(1), 1) ̸= 0. Since (c̃v(1))T × glue(w̃ext
(1), 1) = 0

(Item 2 passed), this implies c̃v(1) /∈ {cv1, . . . , cvB}. We bound the probability that Item 3 does
not catch this. Recall that Item 3 will first further compress cvi to some single element ct i ≜ cvT

i ×t
for each i ∈ [B], where t is uniformly sampled by V (Step 14). Then, P and V execute VOLE based-

ZK on the IT-MAC [(c̃v(1))T × t] to ensure (c̃v(1))T × t ∈ {ct1, . . . , ctB}. A can trivially pass this

check if (c̃v(1) × t) ∈ {ct i}i∈[B]. However, by Corollary 2, this only happens with probability at

most B
pq . In the case that this does not happen, A must break soundness of the last VOLE-based

ZK with B − 1 multiplication gates, which is achieved by LPZK (and an extra opening on 0). The
probability of this event is at most B+2

pq .

Thus, the two distributions seen by the environment E differ with probability at most RC×+R+3B+6
pq ,

and any unbounded environment E cannot distinguish the real-world execution and ideal-world ex-
ecution, except with probability at most RC×+R+3B+6

pq .
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Malicious V. If S receives (false) from FR,B
ZK , it simply aborts. If S receives (true) from

FR,B
ZK , it emulates Fp,q

sVOLE, selects R uniformly random extended witnesses w̃ext
(1), . . . , w̃ext

(R), and
acts as an honest P, except that it maliciously passes the checks in Step 9, 13, 15. S is able to
pass these because it emulates Fp,q

sVOLE, and thus it knows ∆ as well as shares of A’s IT-MACs (i.e.,
S knows what values A expects). The messages received by A are all uniformly distributed, and
hence the distributions seen by the environment E in the two worlds are identical.

D Detailed Cost Accounting

D.1 Single Disjunction Protocol Costs

Communication. We analyze the communication complexity of Πp,q
Single (Figure 5) in the Fp,q

sVOLE-
hybrid model. In our analysis, we count the number of transmitted Fp elements:

• In Steps 4, 5, 6, 7, P commits to her extended witness by transmitting (nin + 3n×) elements.

• In Step 8, the call to LPZK requires V to transmit a random challenge. This challenge contains
q elements, and P replies to by transmitting 2q elements.

• In Step 9, V transmits the compressing vector s, which consists of q(2n× + 1) elements.

• In Step 11, P and V run a small VOLE-based proof to handle the small product circuit. This
requires the following communication: q(B − 1) elements from P to commit to intermediate
wire values, q elements from P to open the circuit output, q elements from V for a random
LPZK challenge, and 2q elements from P for the LPZK response.

Tallying these costs, the total communication is nin+(2q+3)n×+q(B+7) = O(q|C|+qB) elements.
We will soon show a simple variant that achieves O(|C| + qB) communication by sacrificing some
soundness. This variant is far more friendly to circuits over small fields (e.g., Boolean).
Number of required subfield VOLE correlations. Πp,q

Single requires a total of nin+3n×+q(B+
1) = O(|C|+qB) subfield VOLE correlations, almost all of which are used in the initialization phase;
2q subfield VOLEs are required for the two LPZK instances.
Computation. The computation for each party is dominated by Step 10, where they each compute
sT ×M i and corresponding IT-MACs for each i ∈ [B]. By leveraging MULLEFT (Cf. Section 4), the
computation cost is O(B|C|) field operations. Other Steps require either O(B) or O(|C|) operations.
5-round online phase. The VOLE correlations needed for LPZKs at Step 8, 11 can be parallelized
with initialization. Viewing initialization as preprocessing, our protocol can be viewed as a 5-round
online phase:

1. P commits to her extended witness.

2. V sends the random challenge for the first LPZK and s.

3. P sends the proof of the first LPZK and commits the intermediate values of the final product
circuit.

4. V sends the random challenge for the second LPZK.

5. P sends the proof of the second LPZK and opens the final output (to prove it is 0).
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D.2 Batched Disjunction Protocol Costs

We tally the costs of Πp,q
Batch:

Communication. We analyze the communication complexity of Πp,q
Batch in the Fp,q

sVOLE-hybrid
model. Our analysis counts the number of transmitted Fp elements:

• In Steps 5, 6, 7, 8, P commits to her extended witness by transmitting R(nin +3n×) elements.

• In Step 9, the call to LPZK requires V to transmit a random challenge. This challenge contains
q elements, and P replies by transmitting 2q elements.

• In Step 10, V transmits the compressing vector s, which consists of q(2n× + 1) elements.

• In Step 12, P commits to her compressed topology vectors by transmitting Rq(nin +3n×+1)
elements.

• In Step 13, the call to QS requires V to transmit a random challenge. This challenge contains
q elements, and P replies by transmitting 2q elements.

• In Step 14, V transmits the second compressing vector t, which consists of q(nin + 3n× + 1)
elements.

• In Step 15, for each of the R repetitions, P and V run a small VOLE-based proof to handle
each small product circuit. This requires the following communication: Rq(B − 1) elements
from P to commit to intermediate wire values, Rq elements to open each circuit output, Rq
elements from V for random LPZK challenges, and 2Rq elements from P for LPZK replies.

Tallying these costs, the total communication is (Rq+R+q)nin+(3Rq+3R+5q)n×+Rq(B+4)+8q =
O(qRB + qR|C|) elements.
Number of subfield VOLE correlations. Πp,q

Batch requires a total of (Rq + R)nin + (3Rq +
3R)n× + qR(B + 1) + 2q = O(qRB + qR|C|) subfield VOLE correlations. Almost all of these are
use to initialize; (R + 1)q correlations are needed for the (R + 1) calls to LPZK instances, and q
correlations are used for the call to QS.
7-round online phase. Generating VOLE correlations needed for LPZKs and QS at Step 9, 13, 15
can be parallelized with initialization. When initialization is viewed as preprocessing, our protocol
has a 7 round online phase:

1. P commits to her R extended witnesses.

2. V sends s and the challenge for the first call to LPZK.

3. P replies to the first LPZK challenge and commits to her R compressed topology vectors.

4. V sends r and the challenge for the call to QS.

5. P replies to the QS challenge and commits to intermediate values of the R product circuits.

6. V sends a random challenge for each of the R calls to LPZK.

7. P replies to each of the R LPZK challenges and opens the R final outputs (to prove each
product circuit outputs 0).
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Computation. We analyze the computation cost of Πp,q
Batch in the Fp,q

sVOLE-hybrid model. Our
analysis counts field operations:

• In Step 0, P uses O(R|C|) Fp operations to generate her R extended witnesses.

• In Steps 3, 4, P and V use O(R|C|+RB) operations to combine subfield VOLE correlations
into VOLE correlations.

• In Steps 5, 6, 7, 8, P and V use O(R|C|) operations to generate commitments to the R extended
witnesses.

• In Step 9, P and V use O(R|C|) operations to execute LPZK.

• In Step 11, P and V use O(B|C|) operations to compute B compressed topology vectors by
using MULLEFT.

• In Step 12, P and V use O(R|C|) operations to generate commitments to R compressed
topology vectors.

• In Step 13, P and V use O(R|C|) operations to execute QS.

• In Step 14, P and V use O(B|C|) operations to compute B compressed topology tokens.

• In Step 15, P and V use O(RB) to execute R calls to LPZK, each on a circuit of size B.

The overall computation for each party is O(RB +R|C|+B|C|).

E Constraining Batch Witnesses

The batched disjunction setting allows P to prove the same disjunctive circuit with respect to R
witnesses. This setting is only interesting if we impose additional constraints on P’s witnesses;
otherwise, P with only witness can trivially re-use her witness R times to satisfy the full statement.
We present how to incorporate two typical types of additional constraints.

Per-repetition public parameters One potential constraint is to associate with each repetition
some public parameters. These public parameters are partial inputs to the branch circuit known to
both P and V, and P’s witness must satisfy the circuit, even in the context of these extra inputs.
Incorporating public parameters in our protocol is straightforward: P can simply open portions of
the committed extended witness to prove to V that she indeed used the correct parameters. An
even simpler (and less expensive) method would require P and V to generate IT-MACs of these
public inputs directly. Note, because we must hide which branch is taken in each repetition, the
parameters must be shared across branches.

Connecting repetitions A more powerful constraint requires P to prove some consistency be-
tween the repetition witnesses. For instance, some wires of the first repetition should be used as
particular input wires to the second repetition. We cannot ask P to open two different commit-
ments to demonstrate equality, because these values are private. However, we can require P to
provide extra proof demonstrating that the committed values are indeed the same. Such proves
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# Branch
QuickSilver [YSWW21] Robin

100 Mbps 500 Mbps 1 Gbps 2 Gbps Comm. 100 Mbps 500 Mbps 1 Gbps 2 Gbps Comm.

1 7.0 2.7 2.3 2.0 73.7MB 18.1 5.6 3.9 3.6 197MB
5 30.8 10.2 7.3 6.4 336MB 18.8 6.2 4.7 4.4 199MB
10 60.3 18.1 13.0 11.7 659MB 19.8 7.2 5.9 5.6 199MB
20 117.5 34.7 24.2 21.3 1.27GB 21.9 9.2 7.5 7.2 197MB
30 175.2 51.0 35.9 30.8 1.91GB 23.7 11.2 9.5 9.2 198MB
40 234.2 67.7 46.3 42.0 2.56GB 25.6 13.3 11.4 11.1 199MB
50 294.1 85.4 59.3 53.0 3.17GB 27.5 15.2 13.3 13.1 199MB
60 353.0 101.6 72.1 63.7 3.82GB 29.5 16.8 15.2 15.0 200MB
70 408.4 116.9 82.3 74.9 4.43GB 31.5 18.8 17.2 17.0 199MB
80 469.4 133.5 93.6 84.6 5.07GB 33.5 20.7 19.2 19.0 199MB
90 525.0 150.1 103.5 91.4 5.72GB 35.3 22.6 21.0 20.7 198MB
100 582.0 166.7 114.5 103.4 6.33GB 37.1 24.5 23.0 22.8 199MB

Figure 13: Robin vs. QuickSilver [YSWW21]. We tabulate end-to-end runtime in seconds. Figure 8
plots these results.

# Branch, Batch
QuickSilver [YSWW21] Repeating Robin Batchman

100 Mbps 500 Mbps 1 Gbps Comm. 100 Mbps 500 Mbps 1 Gbps Comm. 100 Mbps 500 Mbps 1 Gbps Comm.

50, 50 231.6 67.4 46.5 2.53GB 22.0 12.2 10.9 160MB 28.6 8.9 6.2 311MB
100, 100 926.1 267.2 186.8 10.1GB 56.1 37.04 34.52 312MB 55.9 16.5 11.9 621MB
200, 200 3694.3 1065.8 735.9 40.1GB 166.1 127.9 123.0 620MB 111.4 31.3 21.5 1.20GB
300, 300 4296.2 2396.9 1670.2 90.1GB 330.3 273.1 265.8 922MB 165.9 48.1 31.9 1.81GB
400, 400 14747.3 4296.2 2983.6 160GB 550.3 474.0 464.6 1.21GB 221.2 62.9 42.6 2.41GB

Figure 14: Batchman vs. repeating Robin vs. QuickSilver [YSWW21]. We tabulate end-to-end
runtime in seconds. Figure 10 plots results.

can be efficiently achieved by the IT-MAC linear homomorphism: the parties simply subtract two
supposedly-equal values, and then P proves that the result is a IT-MAC of zero. Thus, P can
finish the extra proof by sending one field element per constraint. By leveraging random oracle in
a standard way, many such zero checks can be compressed into one element, yielding overall O(1)
overhead. See [BMRS21] for details of this RO trick.

F Additional Evaluation

Robin vs. QuickSilver [YSWW21] Recall that we test our single disjunction protocol Robin and
QuickSilver on branches that each have 8 million multiplication gates. Figure 13 tabulates the
results of these experiments, which were used to generate Figure 8.

Robin vs. QuickSilver [YSWW21] in the online phase Many previous VOLE-based ZK pro-
tocols only consider the online phase. Namely, they assume that VOLE correlations are “free”,
or can be viewed as preprocessing. So far, our experiments consider the full end-to-end runtime,
including generating VOLE correlations. We also tested Robin’s online phase and compared it with
QuickSilver’s; Figure 15 shows the results.

Batchman vs. repeating Robin vs. QuickSilver [YSWW21] Recall that we compared Batchman,
(repeated uses of) Robin, and QuickSilver on branches that each have 1.25×105 multiplication gates.
Figure 14 tabulates the results of these experiments, which were used to generate Figure 10.
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Fine-grained analysis of Robin Figure 16 breaks down the runtime cost of our single disjunction
protocol Robin.
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Figure 15: The speedup of our single disjunction protocol Robin over QuickSilver [YSWW21] in the
online phase. We measure end-to-end runtime. The circuits are defined over F261−1, and each
branch has 1.25× 105 multiplication gates.

# Branch Check 100 Mbps 500 Mbps 1 Gbps 2 Gbps

20
multi. check 18.0 5.4 3.7 3.7
topo. check 3.9 3.8 3.8 3.5

40
multi. check 18.0 5.5 4.1 3.4
topo. check 7.6 7.9 7.3 7.7

80
multi. check 17.9 5.3 3.7 3.6
topo. check 15.6 15.4 15.5 15.3

Figure 16: Fine-grained analysis of our single disjunction protocol Robin. Measurements are in
seconds.
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