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Abstract.
We present a work-in-progress hardware implementation for the MAYO post-quantum
digital signature scheme, which is submitted to the American National Institute of
Standards and Technology’s call for diversification of quantum-resistant public key
cryptographic standards. The scheme is based on the Unbalanced Oil and Vinegar
signature scheme, which operates on the fact that solving systems of multivariate
polynomial equations is NP-complete. MAYO utilizes a unique whipping technique
in combination with emulsifier maps to offer a significant reduction in key size
compared to other Unbalanced Oil and Vinegar signature schemes. In this paper, we
demonstrate how to design a hardware architecture for the MAYO post-quantum
signature scheme. We also provide a comprehensive analysis and propose multiple
optimization techniques to reduce resource utilization and accelerate computation on
hardware platforms.
Keywords: Hardware, MAYO, PQC, FPGA.

1 Introduction
The American National Institute of Standards and Technology (NIST) recently issued a
new call to diversify quantum-resistant digital signature schemes selected for standard-
ization [NIS]. In 2022, NIST selected one key-exchange mechanism (KEM), CRYSTALS-
KYBER (Kyber) [SAB+22], and three digital signature algorithms, Falcon [PFH+22],
SPHINCS+ [HBD+22], CRYSTALS-DILITHIUM (Dilithium) [BDK+22], for standard-
ization. Most of these utilize different types of lattice problems to ensure post-quantum
security, therefore, a diversification of the underlying computation assumptions is de-
sired by NIST. MAYO [Beu22, BCC+23] is a new post-quantum digital signature scheme
based on the Unbalanced Oil and Vinegar (UOV) construction [KPG99], a multivari-
ate quadratic signature scheme. MAYO is also submitted to NIST’s new diversification
call for quantum-resistant digital signatures and it is one of eleven signature schemes
using multivariate cryptography. MAYO reduces the key size significantly by using an
unusually small oil space, furthermore, it requires the usage of a special whipping up tech-
nique to avoid falling out of the oil and vinegar map. This technique makes MAYO more
compact than state-of-the-art lattice-based signature schemes such as Falcon and Dilithium.

Related Works. There are only a few available MAYO implementations in the literature.
The MAYO team provides a reference software implementation as well as an optimized
version. The optimized version boosts the performance by utilizing AES-NI and AVX2
instructions during computations [PQM]. Another work [GMSS23] focuses on porting
and optimizing the MAYO scheme for ARM microcontrollers, where they propose new

mailto:{florian.hirner,ahmet.mert,sujoy.sinharoy}@iaik.tugraz.at
mailto:michael.streibl@student.tugraz.at


2 A Hardware Implementation of MAYO Scheme

parameters to improve the signing and verification processes. Recently, an FPGA im-
plementation of MAYO scheme is proposed [SMA+23] that implements a part of the scheme.

Our Contributions. We present a comprehensive analysis of the MAYO scheme and
propose multiple optimization techniques to port it efficiently to hardware. A compari-
son with existing software and embedded implementations shows the potential benefits
that can be achieved by using a pure hardware solution. We designed and implemented
hardware for the MAYO scheme targeting NIST security level 1. The proposed hardware
can perform key generation, signature generation, and signature verification operations
in 0.60 ms, 1.45 ms, and 0.77 ms, respectively. To the best of our knowledge, this is the
first FPGA implementation of MAYO supporting all three operations, key generation,
signature generation, and verification, within one architecture for NIST security level
1. Moreover, we present the first in-detail analysis of all required computations, which
shows that data generation and matrix multiplication operations are the most suitable for
optimizations, and propose several optimizations for the MAYO implementations targeting
hardware platforms. We tested and verified our optimization techniques with the reference
implementation to guarantee the functionality of the scheme.

Outline. In Section 2, we provide the background, such as finite field arithmetic, multivari-
ate quadratic maps, and the Oil and Vinegar signature scheme [KPG99]. In Section 3, we
describe the MAYO signature scheme and give a detailed explanation of its specifications,
like their whipping technique, emulsifier maps, and more. Section 4 gives an in-depth
explanation of our hardware implementation and in Section 5, we present the results.
Moreover, in Section 6, we present several optimizations to further improve hardware
implementations and Section 7 concludes the paper.

2 Background
This section covers the background necessary to understand arithmetic used in MAYO
scheme.

2.1 Finite field arithmetic’s over GF(24)
The arithmetic in the MAYO digital signature algorithm is mainly based on vector and
matrix operation in the finite field GF(24). Elements in this field can be represented
as a polynomial of degree 3, e.g., a = a3x3 + a2x2 + a1x + a0, where a3, a2, a1, a0 are
elements of GF(2). For the rest of the paper, we use the following encoding, an element
a ∈ GF(24) is encoded as an unsigned 4-bit integer, whose 4 bits are the coefficients of
the polynomial, e.g., Encode(a = a3x3 + a2x2 + a1x + a0) = (a3a2a1a0)2. For example,
Encode(1x3 + 0x2 + 1x + 0) is equal to (1010)2, which is 10 in decimal.

2.1.1 GF(24) addition and subtraction

Addition and subtraction of two field elements a = a3x3 + a2x2 + a1x + a0 and b =
b3x3+b2x2+b1x+b0 can be represented as polynomial addition and subtraction, respectively.
Therefore, we implement GF(24) addition and subtraction as shown in Eq. (1), where ⊕
represents bit-wise XOR operation. Since the coefficients of the GF(24) elements are in
GF(2) and addition is equivalent to subtraction in this field, we are able to use a single
operation for both.

a ± b = (a3 ± b3)x3 + (a2 ± b2)x2 + (a1 ± b1)x + (a0 ± b0) = a ⊕ b (1)
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2.1.2 GF(24) multiplication

Multiplication of two field elements a = a3x3 +a2x2 +a1x+a0 and b = b3x3 +b2x2 +b1x+b0
can be represented as a polynomial multiplication. However, a standard multiplication can
result in a polynomial with a degree greater than 3, which is not an element of GF(24).
Therefore, a reduction operation is required to bring the resulting polynomial to GF(24).
The MAYO scheme uses x4 +x+1 as the reduction polynomial. The GF(24) multiplication
with x4 + x + 1 reduction polynomial is shown in Eq. (2), where ∧ represents bit-wise
AND operation.

c = a × b =(c3c2c1c0)2, where
c0 =(a0 ∧ b0) ⊕ (a1 ∧ b3) ⊕ (a2 ∧ b2) ⊕ (a3 ∧ b1)
c1 =(a0 ∧ b1) ⊕ (a1 ∧ b0) ⊕ (a1 ∧ b3) ⊕ (a2 ∧ b2)⊕

(a3 ∧ b1) ⊕ (a2 ∧ b3) ⊕ (a3 ∧ b2)
c2 =(a0 ∧ b2) ⊕ (a1 ∧ b1) ⊕ (a2 ∧ b0) ⊕ (a2 ∧ b3)⊕

(a3 ∧ b2) ⊕ (a3 ∧ b3)
c3 =(a0 ∧ b3) ⊕ (a1 ∧ b2) ⊕ (a2 ∧ b1) ⊕ (a3 ∧ b0) ⊕ (a3 ∧ b3)

(2)

This bitsliced approach, with the fast bitselection capability of hardware compared to
software, enables implementing GF(24) multiplication in an efficient but still simple form
in hardware.

2.2 Multivariate Quadratic Maps
The core of the Oil and Vinegar [KPG99] and the MAYO scheme are multivariate quadratic
maps. We follow the definition and notation presented in [Beu22]. Such a map P (x) =
(p1, . . . , pm) : Fn

q → Fm
q consists of m multivariate quadratic polynomials in n variables.

This map is evaluated by simply evaluating each polynomial pi. MAYO uses the upper
triangular matrix form of multivariate quadratic polynomials. Therefore, polynomial
evaluation is defined as

pi(x) = x⊤Pix = x⊤

(
P(1)

i P(2)
i

0 P(3)
i

)
x. (3)

Since there are m different multivariate quadratic polynomials, we end up with m different
Pi matrices, which need to be evaluated. Therefore, the result of the multivariate quadratic
map is defined as P (a) = b with

b = (p1(a), . . . , pm(a)). (4)

2.3 Oil and Vinegar
The foundation of the MAYO scheme is the so-called Oil and Vinegar scheme. The
description and notation of the Oil and Vinegar signature scheme is adapted from [Beu22].
The central object of this scheme is the multivariate quadratic map, which acts as a public
key in the scheme. To sign a message M , it first obtains its digest using a cryptographic
hash function H and a random salt. Then, the signature s is the preimage under the
multivariate quadratic map P of the specific digest value such that P (s) = H(M ||salt).
However, since sampling preimages for multivariate quadratic maps, known as MQ problem,
is considered hard, we need a trapdoor to obtain them efficiently.

The trapdoor information in the Oil and Vinegar scheme is the so-called Oil space, a linear
subspace O ⊂ Fn

q where P vanishes, meaning that
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P (o) = 0 for all o ∈ O. (5)

Knowledge of the oil space allows to efficiently sample preimages of P .

To understand how this information helps to generate the signature, the polar form of
quadratic polynomials is needed. Every homogeneous multivariate quadratic polynomial
has an associated symmetric and bilinear form p′(x, y) = p(x + y) − p(x) − p(y). Similarly,
the polar form of a multivariate quadratic polynomial map consisting of m polynomials is
defined as

P ′(x, y) = P (x + y) − P (x) − P (y). (6)

Given a target t ∈ Fm
q , one selects a vector v ∈ Fn

q and solves P (v + o) = t for o ∈ O.
From Eq. (6), it follows that

P (v + o) = P (v) + P (o) + P ′(v, o) = t. (7)

Since P (v) is fixed and due to Eq. (5), only the linear system P ′(v, o) = t − P (v) remains
to be solved for o and the signature is computed via s = v + o.

The security of the signature algorithm is based on the MQ problem, which is considered
NP-hard if n ∼ m, even for quantum computers [Beu22]. However, the Oil and Vinegar
scheme suffers from large public key sizes in the order of 50 KB, which renders the scheme
unsuitable as a practical signing algorithm.

3 MAYO Scheme
In this section, we give a short description of MAYO scheme. The description and notation
of MAYO scheme is adapted from [Beu22] according to the latest specifications described
in [BCC+23]. Readers may refer to [Beu22, BCC+23] for more details. To tackle the
problem of large key sizes Beullens et al. modifies the original Oil and Vinegar scheme
by introducing a whipping mechanism, which transforms the multivariate quadratic map
P : Fn

q → Fm
q into a larger map P ∗ : Fkn

q → Fm
q . This construction allows to choose a

smaller oil space and as a consequence reduces the key size significantly. Before we explain
the whipping construction in detail, we need to examine why the dimension of the oil
space is the determining factor in the size of the public key.

3.1 Public Key Size
The public key in the Oil and Vinegar scheme is the multivariate quadratic map P consisting
of m multivariate quadratic polynomials in n variables. The memory requirement for
storing P is mn2 log q. Recall the upper triangular matrix form of a polynomial defined in
Eq. (3). Petzoldt et al. [PTBW11] showed that P(1)

i ∈ F(n−o)×(n−o)
q and P(2)

i ∈ F(n−o)×o
q

can be generated pseudo randomly and, as a result, only P(3)
i ∈ Fo×o

q needs to be stored
as public key. This method reduces the key size to mo2 log q. However, the original Oil
and Vinegar scheme requires o to be at least as large as m, otherwise the linear system
obtained from Eq. (7) is unsolvable with high probability. Hence, by reducing the oil space
dimension the public key size decreases accordingly and the proposed whipping achieves
exactly that.
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3.2 Whipping Technique
As mentioned in Section 3, MAYO transforms P up into a larger map P ∗. This whipping
transformation must have the property that if P vanishes on a subspace O ⊂ Fn

q then P ∗

needs to vanish on Ok ⊂ Fkn
q , where k is the whipping parameter which controls the size

of the oil space with o = ⌈m/k⌉. The concrete whipping operation is defined as

P ∗(x1, . . . , xk) =
k∑

i=1
EiiP (xi) +

k∑
i=1

k∑
j=i+1

EijP ′(xi, xj). (8)

The matrices Eij ∈ Fm×m
q are the so-called emulsifier maps and fundamental for the

security of the whipping technique. Due to the property that P ∗ vanishes on Ok, the
signature can be sampled similar to Eq. (7) by solving the linear system

P ∗(v1 + o1, . . . , vk + ok) = t, (9)

which has m equations in ko variables.

3.3 Scheme Description
In this section, we briefly describe the key generation, signature generation and signature
verification algorithms of MAYO.

3.3.1 Key Generation

To generate a key-pair, a randomly-generated seed is expanded and its output is used as
matrix O ∈ F(n−o)×o

q . O is the secret key and the according oil space O is the rowspace
of (O⊤Io), where Io denotes the identity matrix of size o. As described in Eq. (5), the
multivariate quadratic map P must vanish on O. Thus, a polynomial pi(x) of P has to
fulfill

(O⊤Io)
(

P(1)
i P(2)

i

0 P(3)
i

)
(O⊤Io)⊤ = O⊤P(1)

i O + O⊤P(2)
i + P(3)

i = 0. (10)

Therefore, it is possible to generate P(1)
i and P(2)

i pseudo-randomly from a seed and set
P(3)

i to Upper(O⊤P(1)
i O + O⊤P(2)

i ), where Upper is defined as Upper(Mii) = Mii and
Upper(Mij) = Mij + Mji for i < j.

Generating large parts of the matrices pseudo-randomly enables the significant key size
reduction, since only P(3)

i , the private and the public seed needs to be stored. Additionally,
the whipping transformation described in Section 3.2 reduced the size of P(3)

i from m × m
to o × o.

3.3.2 Signature Generation

To compute a signature of a message M , a random salt is generated and the digest
t = H(M ||salt) is computed. Afterwards, one chooses vectors (v1, . . . vk) randomly and
solves the linear system for (o1, . . . ok) as shown in Eq. (9). As described by Beullens et
al. [BCC+23], the last o entries of vi can be set to 0 without affecting the distribution of
the signing output. Thus, one generates ṽi ∈ F(n−o)

q randomly and sets vi to (ṽi, 0). As a
result of this choice, only P(1)

i is needed for the signature computation.
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Similar to Eq. (7), the oil space trapdoor information enables the partition of Eq. (9) into
a constant and a linear part, which leads to

P ∗(v1 + o1, . . . , vk + ok)

=
k∑

i=1
EiiP (vi + oi) +

k∑
i=1

k∑
j=i+1

EijP ′(vi + oi, vj + oj)

=
k∑

i=1
Eii(P (vi) + P ′(vi, oi)) +

k∑
i=1

k∑
j=i+1

Eij(P ′(vi, vj) + P ′(vi, oj) + P ′(vj , oi))

=
k∑

i=1
EiiP (vi) +

k∑
i=1

k∑
j=i+1

EijP ′(vi, vj) (constant)

+
k∑

i=1
EiiP

′(vi, oi)) +
k∑

i=1

k∑
j=i+1

Eij(P ′(vi, oj) + P ′(vj , oi)) (linear)

= t.

(11)

The constant part can be calculated using

pi(vk) = ṽk
⊤P(1)

i ṽk,

p′
i(vk, vl) = ṽk

⊤P(1)
i ṽl + ṽl

⊤P(1)
i ṽk.

(12)

For the computation of the linear part, the evaluation of the linear transformation P ′(vk, ·)
has to be carried out. To achieve that, the matrix representation of the linear transformation
can be used, which is defined as

Li = (P(1)
i + P(1)

i

⊤
)O + P(2)

i . (13)

Then, each component p′
i(vk, ·) of P ′ is defined as ṽk

⊤Li. Applying Eq. (12) and Eq. (13)
to Eq. (11) results in the augmented matrix which needs to be solved for oi to compute
the signature. The linear system can be solved using one of the many available algorithms,
e.g., Gaussian elimination.

3.3.3 Signature Verification

Given a message M and a signature (salt||s1, . . . sk), only the digest t̃ = H(M ||salt) is
obtained and the whipped up map P ∗(s1, . . . sk) = t is evaluated. If t = t̃, the signature
is accepted, otherwise rejected.

3.4 Emulsifier maps
One vital component of the MAYO signature scheme is the so-called emulsifier maps
E ∈ Fm×m

q . Their usage is the main difference to the original Oil and Vinegar algorithm
and the reason for the compact public key size. E corresponds to a multiplication by z
in a finite field Fq[z]/f(z) and they are used in computations of the form Elu, where u
denotes a vector of length m and l takes values from 0 to k(k+1)

2 − 1. However, instead
of computing the matrix multiplications explicitly, it is more efficient, especially regard-
ing memory access limits in hardware, to interpret u as single polynomial and perform
the reduction mod f(z) once, which resembles a multiplication in the finite field GF((24)m).
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Similar to the finite field described in Section 2.1, elements of GF((24)m) can be represented
as a polynomial, however, this time of degree m − 1 and with coefficients in GF(24).
Therefore, a ∈ GF((24)m) is of the form

a = am−1zm−1 + am−2zm−2 + · · · + a1z + a0. (14)

The emulsifier map E now represents a multiplication by z. Analog to the field multi-
plication in Section 2.1.2, we need to reduce the resulting polynomial, to receive a valid
GF((24)m) element again. In this case, the reduction polynomial is z64 + 8z3 + 2z2 + 8.
To apply E to a vector a, we interpret a as polynomial of the form seen in Eq. (14), and
perform the following computations:

b = Ea, with
b0 = 8am−1

b2 = 2am−1 + a1

b3 = 8am−1 + a2

bi = ai−1 for i /∈ {0, 2, 3}.

(15)

It is important to note that the additions and multiplications in Eq. (15) are GF(24)
operations. This approach blends well with our packed format described in Section 4.2, as
we are able to load m values and, therefore, a whole GF((24)m) element in one cycle in
hardware. To evaluate Elu, we perform this computation l times.

4 The Proposed Hardware
The MAYO scheme has different operations (key generation, signing, and verification)
and they share similar arithmetic computations. Since we target a hardware architecture
supporting all operations, we choose an instruction-set based architecture that allows a
flexible mode of operation for different parameter sets. The overall architecture consists of
an instruction ROM, an instruction decoder, a memory grid, a data bus, a Keccak core,
an AES core, a PRNG, and computation units for finite field arithmetic. The overall
design of the MAYO core is shown in Fig. 1. Our design employs specific ALU blocks
that are capable of performing all the aforementioned operations by dividing them into
vector-vector addition, multiplication and accumulation operations. All of them can be
computed via our ALU blocks by sending an instruction that keeps information such
as memory location and operation type. The core can be programmed using dedicated
instruction ROM, which stores instruction that are decoded to control the data bus and
modules. This makes our core flexible in terms of changes in the schemes as well as in
different sizes in regards to different security levels.

4.1 Instruction Set
Each instruction consists of multiple arguments, an opcode and three arguments (OP-
CODE, A, B, C). The opcode represents the mode of operation that the hardware
should perform, like reading input, sending output, aes128_ctr, keccak256, addition,
multiplication, and many more. The three arguments after the opcode (A, B, C) are
used as pointers to the respective data in the memory wrapper, e.g., an addition of
data stored at memory locations A and B, and storing the result to memory loca-
tion C. Each instruction keeps the information < opcode >< A >< B >< C > (or
< opcode >< source0 >< source1 >< destination >), which will be decoded by an
instruction decoder.
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Figure 1: High-level architecture of the proposed hardware for MAYO

4.2 Layout of Memory Grid
One key factor of an efficient hardware implementation is a well-designed memory layout.
Since MAYO mainly consists of matrix and vector operations, we have to be able to
load the relevant elements fast. The operations of MAYO include the evaluation of a
multivariate quadratic map, which consists of multiple polynomial evaluations as described
in Section 2.2. Therefore, our memory layout focuses on accelerating these evaluations.
Advantageously, the input to all m elements of polynomials is the same in each occurrence,
which allows us to parallelize these operations. Thus, we introduce two major formats for
storing vectors and matrices.

1. Unpacked: The elements of a vector or matrix are stored in row-major order in
BRAMs. One entry in the BRAM corresponds to one vector or matrix element.

2. Packed: The elements of a vector or matrix are again stored in row-major order in
BRAMs. However, one BRAM entry stores not a single vector or matrix element
anymore, but m elements. More specifically, we take all m 4-bit long field elements
and concatenate it to one larger value of length 4 × m-bit. This value is then stored
into one entry of the BRAM.

The m multivariate quadratic polynomials operate on the same input values. Therefore,
we simply pack all the m different matrix elements with the same index into one BRAM
entry as they share the same input value. Thus, the packed format allows us to efficiently
load and evaluate the m different polynomials in parallel. Consequently, all vectors and
matrices which are related to the multivariate quadratic map are stored in the packed
format, while the remaining ones are stored as unpacked. Due to the fact that m is at
least of size 64, we need a minimum of 4 BRAMs in width to store such a packed entry,
considering a Xilinx BRAM36K unit, which can store 512 elements each 72-bit.
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The memory layout is designed as a grid-like structure to support all security levels (1,
2, 3, 5) of MAYO. In the case of security level 1, the width is defined by the number of
samples and their corresponding size in the GF(24) field, which is 64 and 4 respectively,
leading to a total of 256 bits. The height, however, depends on the total size of the data
required during the evaluation of the functions (key generation, sign, and verity). These
functions use quadratic polynomials, denoted as P(1)

i , P(2)
i , P(3)

i , described in Section 3
that depend on the parameters n and o, as well as other data, like O, Li and many more.
We calculated the maximum size of memory that is needed to hold the required data
during computations which led to a memory height of 16 BRAMS. All in all, the total
requirement for BRAMS in our memory layout is 16 · 4 = 64 BRAMS. The overall layout of
the memory grid is represented in Fig. 2, whereas the last row has an extra BRAM due to
the transpose that is required for solving the system of equations during the computation
of the signature. Another important challenge is transposing matrices during or after
computations if they are in a packed or unpacked format.

Figure 2: Memory grid layout of MAYO core

4.2.1 Packed/Unpacked Matrix Transpose

There are two different types of transpose that our core needs due to the packed and
unpacked data format. Transposing data in packed format is trivial since it only requires
switching the data at certain indexes inside a BRAM. Meaning that we need to load an
element a from index ia and another element b from index ib and store a on index ib and b
on index ia. This indicates that a transpose operation on packed data is relatively simple.
However, a transpose operation on an unpacked data format is much more complex since
the data of a matrix is stored differently. Compared to the packed format that stores each
element in a separate BRAM slot, the unpacked format stores all elements of a row in
one slot. This means that we can load and store a whole row of a matrix in one cycle,
however, this benefit comes with a downside. The transposing operation is much more
complex in this situation since we need to split a row into its elements and store them
at different addresses. This spreading of data to different memory slots leads to a longer
latency during the store operation. Moreover, the logic for the store operation needs to
compensate for that each element of the matrix is a small chunk of 4-bit data. This 4-bit
chunk needs to be written into a specific part of a memory element inside a BRAM. In
case of security level 1, each memory element has a size of 292-bit which means that 4 bits
at a certain location needs to be updated as the remaining 282 bits stay the same.
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4.3 Arithmetic Units
The MAYO scheme operates on the finite field GF(24) and requires therefore units to per-
form addition, multiplication, and accumulation operations in this field as well as a specific
unit to perform GF((24)m) reduction. As shown in Section 2.1, the addition, subtraction
and multiplication operations on the finite field of GF(24) can be done via a combination
of bitwise AND and XOR operations. Note that addition and subtraction in GF(24) gives
the same result leading to the fact that only one of them needs to be implemented. A
throughout study of all functionalities of the MAYO scheme shows that we can reduce all
of the necessary operations to just two base operations, addition and multiplication, and all
other can be build through a combination of these two. As an example, the MAYO schemes
requires a accumulation operation during vector or matrix multiplications, and this can be
done by combining a multiplication, addition and a accumulator register as shown in Fig. 3.

Finite Field Addition/Subtraction. A addition and a subtraction on the finite field
in GF(24) is equivalent, which enables performing both operations with one unit. The
addition operation consists only of bit wise AND and XOR operations, as shown in Sec-
tion 2.1.1, which are relatively cheap to perform in hardware. Further, we use a total of m
addition units to for a m-ADD computation unit, where m is defined depending on the
chosen security level. The grouping of multiple addition units to a m computation block is
shown in Fig. 3.

Finite Field Multiplication. A multiplication on the finite field in GF(24) is different
than an integer multiplication. The multiplication operation consists of several bitwise
AND and XOR operations, as shown in Section 2.1.2. Compared to addition, multiplication
requires more bitwise evaluations and therefore consumes more resources in terms of LUTs.
However, it is still relatively cheap to perform in hardware. Due to the packed data format,
our core has to support m multiplication simultaneously to accelerate the computations.
In total, m multiplication units form the m-MUL computation unit (shown in Fig. 3),
where m is defined depending on the chosen security level.

Finite Field Accumulation. In the case of a vector or matrix multiplication, an accu-
mulation operation needs to be performed when multiplying a row with a column. This
accumulation operation requires both multiplication and addition, the multiplication is
placed before the addition block. The output of the multiplication is fed into the addition
block that accumulates the output until a reset signal is set. The reset signal requires
some extra logic to clear or keep the accumulated data inside the unit. Let’s consider

Figure 3: Overview of arithmetical units of MAYO core
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a multiplication of two vectors a =< a0, a1 > and b =< b0, b1 >, where both consist of
two coefficients. The result c is the accumulated product of all coefficients, which can
be written as c =

∑n
i=0 aibi or c = a0b0 + a1b1. As in addition and multiplication the

accumulation is grouped into an m-MAC computation units, where m is defined depending
on the chosen security level. MAC unit has one cycle of latency.

Matrix Multiplications by z in a Finite Field. During the computation and verifi-
cation of the signature, a multiplication of Ely is required, where E ∈ Fm×m

q is a matrix
that represents a multiplication by z in the finite field Fq[z]/f(x). Our core performs this
operation by an iterative reduction of the polynomial by f(x). This reduction operation,
however, depends on the security level and its corresponding irreducible polynomial, since
each level requires a polynomial of different form due to the parameter m. In the case of
security level 1, where m is 64, the irreducible polynomial f64(z) = z64 + x3z3 + xz2 + x3

is used during the computation of Ely. This reduction by (mod xf(x)) is implemented
by using just three multiplication and three addition units. First, the m element is used
as a scaling factor and multiplied by the polynomial z = 8z3 + 2z2 + 8z. The result of
the three multiplications with the scaling factor is then added to the original data, which
needs to be shifted by one element to the right. In contrast to addition, multiplication,
and accumulation, the reduction operation uses three addition and multiplication units
instead of a full grouping of m units for its computation. The resulting unit is called the
m-RED unit and shown in Fig. 3.

4.4 Remaining Building Blocks
In previous sections, we discussed how we implemented the arithmetic and memory units
required by the MAYO scheme as shown in Fig. 1. The scheme also needs some extra
building blocks to perform operations, like bit-sliced encoding/decoding, sampling of
random data, hashing with SHAKE256, and pseudo data generation using AES128 in
counter mode (CTR).

Bitsliced Encoding and Decoding. The MAYO scheme employs a bitslicing technique
to accelerate computations by utilizing AVX2 instructions which are supported by modern
processors. The bitlicing is done by taking s = m × log2(q) bits and shaping them into
a matrix with dimensions a × b, where a = 64 and b = s/a. After shaping the data
into a matrix with dimensions a × b, the bitsliced values can be read row-wise in four-bit
chunks. Our implementation also uses this bitslicing technique to make logic placement eas-
ier since it allows us to perform all arithmetic operations by chaining bitwise AND and XOR.

Hashing via SHAKE256. The MAYO scheme requires SHAKE256 to hash the given
message as well as its secret and public seed. In our implementation, we adapted the Kec-
cak core presented in [AMI+22], which is capable of performing SHAKE128 and SHAKE256.

Pseudo-data generation via AES128. Another time intensive task is pseudo-random
data generation. The MAYO scheme uses AES128 in counter mode to generate pseudo-
random data from the public seed. This generated data is used for the two matrices P(1)

i

and P(2)
i , which have a combined size of around 120 KB for security level 1. This size

indicates that a fast generator is needed to avoid stalls during execution. Due to this, the
software version employs AES128 in counter mode since it enables parallel computation of
multiple data points via the AES-NI instructions. In our implementation, we employ two
AES128 in counter mode to be able to generate one data point per cycle.
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Table 1: Resource Utilization of the Proposed Architecture for MAYO1

Unit LUTs FFs DSPs BRAMs
MAYO Core 22,527 6,930 - 81
⌊ Memory Wrapper 5,891 - - 75
⌊ ALU Block 3,840 3,196 - 6
⌊ Keccak Core 9,488 3,162 - -
⌊ AES128 Core (CTR[0]) 1,508 282 - -
⌊ AES128 Core (CTR[1]) 1,227 284 - -

Table 2: Performance of the Proposed Architecture for MAYO1

Operation Latency Latency
(in cc) (in ms)

Key Generation 60,154 0.6
Sign + ExpandSK 145,785 1.45
Verify + ExpandPK 77,755 0.77

5 Results
In this section, we present the area and performance results of our hardware architecture of
the MAYO scheme with NIST security level 1, called MAYO1. The proposed architecture
performs all computations solely on hardware without requiring any software interaction.
We coded the architectural units of our MAYO core using Verilog/SystemVerilog and
verified functionality of the operations using behavioral simulations. We obtained area
and performance results using Xilinx Vivado 2019.1 for PYNQ-Z2 Zynq-7020 with default
synthesis and place & route settings at a frequency of 100 MHz.

Resource Utilization. In Table 1, we show the area utilization of our core for MAYO1
and each of its sub-units. There are five sub-units, the memory wrapper, ALU blocks,
Keccak core, and two AES128 cores, which are described in detail in Section 4. The
core requires a total of 72 BRAMs, whereas the memory wrapper occupies the most
with a total of 65 BRAMs and the ALU block with 7 BRAMs. The memory wrapper
uses a grid of 16 · 4 + 1 = 65 BRAMs to store the data and all other temporary values,
however, most of the memory is occupied by Pi, P(1)

i , P(2)
i , Li, and the pre-computed

data required for u, which is either P(1)
i · vi or Pi · si. The remaining 7 BRAMs are

used inside our ALU block to perform transposition of packed and unpacked matrix A,
which is required to solve the system of linear equations in the SampleSolution() function
in Algorithm 2 in [BCC+23]. In terms of LUT usage, the Keccak core and the memory
wrapper require the most, due to their high complexity. Note that the Keccak core
employed (adapted from [AMI+22]) is able to perform SHAKE128, SHAKE256, SHA256,
and SHA512, however, we only use SHAKE256 in our current design. The AES128-CTR
cores and the ALU block do not require much LUTs compared to the other logic, which
indicates that it would be possible to instantiate multiple of them to reduce the latency of
intensive tasks, such as matrix multiplication and data generation. It is also noteworthy
to mention that the high LUT usage of the memory wrapper is due to the complex data bus.

Performance Evaluation. In this section, we present the latency of each operation of
the MAYO scheme for MAYO1. In Table 2, we present the latency in clock cycles and
ms for the key generation, signature generation, and signature verification. The overall
latency is 60K, 146K, and 78K cycles for the aforementioned operations, respectively.
Moreover, Table 3, 4, and 5 show a in-detail listing of every operations performed in each
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Table 3: Breakdown of key generation latency for MAYO1, which implements Algorithm 5
(MAYO.CompactKeyGen( )) of [BCC+23]

Operation Latency Perc.
(in cc) (%)

Key Generation 60,154 (100%)
⌊ Generate seedsk, seedpk and O 499 (1%)
⌊ Generate P

(1)
i via AES128-CTR 22,244 (37%)

⌊ Generate P
(2)
i via AES128-CTR 6,033 (10%)

⌊ Compute Ai = P
(1)
i ∗ O 26,913 (45%)

⌊ Compute Bi = Ai + P
(1)
2 466 (1%)

⌊ Compute Ci = BT
i ∗ O 3,713 (6%)

⌊ Upper P
(3)
2 = Upper(Bi) 65 (0%)

⌊ Output csk and cpk 65 (0%)

Table 4: Breakdown of signing latency for MAYO1, which implements Algorithm 6
(MAYO.ExpandSK( )) and Algorithm 7 (MAYO.ExpandPK( )) of [BCC+23]

Operation Latency Perc.
(in cc) (%)

Signature Computation 145,785 (100%)
⌊ Generate seedpk and O 499 (1%)
⌊ Generate P

(1)
i via AES128-CTR 22,244 (15%)

⌊ Generate P
(2)
i via AES128-CTR 6,033 (4%)

⌊ ExpandSK() → compute Li 29,119 (20%)
⌊ Loop: Find Preimage for t

⌊ Derive vi and r 533 (1%)
⌊ Build linear System Ax = y

⌊ Compute y 33,337 (25%)
⌊ Compute A 20,990 (15%)

⌊ SampleSolution(A, y, r) 22,827 (15%)
⌊ Compute signature 4,977 (3%)
⌊ Output signature 611 (1%)

function and their corresponding latency as well as their overall consumed runtime in
percent. It can be seen that the operations with the highest latency are data generation
via AES128-CTR and matrix multiplication to compute values like P3

i in KeyGeneration(),
Li in ExpandSK(), vT

i · P1
i · vi in Sign(), and sT

i · Pi · si in Verify(). Another high latency
operation is searching for a preimage by building and solving a system of linear equations
during the signature computation. This clearly shows that first a special analysis needs to
be performed to find ways to accelerate the data generation of P(1)

i , P(2)
i . The second most

important task is to search for techniques to accelerate large matrix multiplications, like
the ones necessary to compute P3

i , Li, and more, since these multiplications are currently
performed element by element. This is clearly not the ideal way as it would be possible to
perform several operations in parallel.

Comparison with Related Works. MAYO team provides results for four different
implementations of their scheme, (i) a generic C-implementation, (ii) an implementation
with AES-NI, (iii) an implementation with AES-NI and AVX2, and (iv) an ARM im-
plementation. Besides these, there is another ARM implementation [GMSS23] and one
partial FPGA implementation [SMA+23] in the literature. We give a detailed comparison
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Table 5: Breakdown of verify latency for MAYO1, which implements Algorithm 7
(MAYO.ExpandPK( )) and Algorithm 8 (MAYO.Sign( )) of [BCC+23]

Operation Latency Perc.
(in cc) (%)

Signature Verification 77,755 (100%)
⌊ Generate seedsk, seedpk and O 494 (1%)
⌊ Generate P

(1)
i via AES128-CTR 22,244 (29%)

⌊ Generate P
(2)
i via AES128-CTR 6,033 (7%)

⌊ Decode signature si 622 (1%)
⌊ Hash Message M 127 (0%)
⌊ Compute P ∗(s)

⌊ Pre-Compute Pi ∗ si 39,214 (50%)
⌊ Compute u = sT

i ∗ Pi ∗ si 5,307 (7%)
⌊ Compute y =

∑
Elu 3,713 (5%)

⌊ Verify signature if y = t 1 (0%)

of these works with our implementation in Table 6. In comparison to the MAYO generic
C-implementation, our work outperforms it by 2.09×, 1.92×, and 1.61×, respectively,
for key generation, sign and verification operations. However, when it comes to their
optimized version that utilizes AES-NI and AVX2, our implementation is 5.54×, 2.68×,
and 7.77× and 12.00×, 2.3×, and 9.63× slower, respectively. However, when comparing
these numbers one must take into account the difference in operating frequency of the
target platforms, 2 GHz for Intel Xeon CPU and 100 MHz for Zynq-7020 FPGA. A more
realistic comparison of our work with their ARM Cortex-M4 implementation, which runs
at 120 MHz, shows a speed up of 72.84×, 52.77×, and 52.87×. Another implementation
targeting ARMv7-M running at 480 MHz is presented in [GMSS23]; however, it does not
support key generation. For the signature and verification functions, our work shows
61.75× and 15.43× speedups compared to their implementation with the configuration
(o = 7, k = 10). Compared to their second configuration (o = 7, k = 14), our performance
gain is even higher with 123.10× and 29.16×.

All the mentioned works show results for software implementation either on Intel processors
or embedded platforms like ARM. To the best our knowledge, there is only one partial
MAYO implementation for FPGAs, called HaMAYO [SMA+23], that gives results for the
key generation and signing functions of MAYO1. Compared to [SMA+23], our implement
not only implements all functionalities, it also shows speedups 16.6× and 24.07 for key
generation and signing, respectively. The overall good performance of our implementation
can also be attributed to the parallel computation of all m = 64 data during all operations.
Our solution consistently computes 64 values at once boosting overall performance compared
to other works.

6 Proposed Optimizations

In Section 4, we present a proof-of-concept hardware implementation that provides useful
insights on how to map the MAYO scheme to a hardware platform efficiently. In this
section, we introduce several optimizations to improve the performance and area of the
hardware implementation presented in Section 4. Note that we are already working on an
implementation with the following optimization techniques.
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Table 6: Results of Related Works for MAYO1

Works Platform Freq. KeyGen Signa Verifyb

(for MAYO1) (MHz) (cc/ms) (cc/ms) (cc/ms)
[BCC+23] Intel Xeon 2,000 2,507K/1.25 5,569K/2.78 2,472K/1.23(generic)
[BCC+23] Intel Xeon 2,000 222K/0.11 1,087K/0.54 205K/0.10(AES-NI)
[BCC+23] Intel Xeon 2,000 110K/0.05 460K/0.23 175K/0.08(AES-NI, AVX2)
[BCC+23] ARM C-M4 120 5,245K/43.70 9,183K/76.52 4,886K/40.71
[GMSS23] ARMv7-M 480 - 42,981K/89.54 5,703K/11.88(o=7, k=10)
[GMSS23] ARMv7-M 480 - 85,682K/178.50 10,776K/22.45(o=7, k=14)
[SMA+23] Zynq-7020 100 996K/9.96 3,491K/34.91 -

Ours Zynq-7020 100 60K/0.60 145K/1.45 77K/0.77

a: Including ExpandSK. b: including ExpandPK.

6.1 On-the-fly Coefficient Generation
The P matrices are the fundamental building block of the MAYO scheme. In total, MAYO
uses three different P matrices, P(1), P(2), and P(3). In Table 7, the sizes of the matrices
with different security levels are shown.

Table 7: P matrix sizes for different NIST security levels (1, 2, 3, 5)

Matrix MAYO1 MAYO2 MAYO3 MAYO5

P(1) 58 × 58 60 × 60 89 × 89 121 × 121
P(2) 58 × 8 60 × 18 89 × 10 121 × 12
P(3) 8 × 8 18 × 18 10 × 10 12 × 12
P 66 × 66 78 × 78 99 × 99 133 × 133

Since we have m P matrices, there are 66 × 66 × 64 = 278784 matrix elements for the
smallest parameter set, MAYO1. Following that every matrix element is in GF(24) and
we need 4 bit to represent each element, we would have to store 136KB in memory for
P matrices. This would lead to extensive BRAM usage. The coefficients of the P(1) and
P(2) matrices are generated using AES128 with counter mode. Thus, it is possible to not
store the matrix elements of those P(1) and P(2) in memory but generate them on-the-fly
instead. To be precise, every time some P(1) or P(2) matrix is needed in an operation, it
is possible to use AES128 again to generate the matrix element instead of retrieving their
elements from on-chip storage. Thus, it is only required to store the P(3) matrices, which
reduces the memory demand from 136KB to 2KB for MAYO1.

6.2 Parallel Matrix Column Multiplication
Generating the coefficients on-the-fly enables reducing memory usage significantly, however,
it raises the question of how to carry out the matrix operations efficiently. Essentially,
matrix multiplication can be broken down into several vector-vector multiplications, where
each row vector of the first matrix operand is multiplied with each column vector of
the second matrix operand as shown in Eq. (16). These multiplications are common



16 A Hardware Implementation of MAYO Scheme

multiply-and-accumulate (MAC) operations. Therefore, the computations of the result
matrix entries are independent of each other and we can parallelize them.

(
. . . a1 . . .
. . . a2 . . .

)
×


...

...
b1 b2
...

...

 (16)

The P matrices are generated in row-major order and due to our on-the-fly approach, we
are not able to operate on more than one row simultaneously. However, the small size
of the other matrices allows us to store them in registers and, thus, we can access all
columns concurrently. Therefore, we can parallelize the multiplication of a single row with
all columns by instancing multiple MAC units to carry out the computations.

6.3 Switching Coefficient Generation from AES128-CTR to SHAKE128
In the latest specifications of MAYO [BCC+23], both AES128 and SHAKE256 are used to
generate data. The rationale behind this decision is to use AES128 for the major part of
data generation so the fast AES-NI extension of modern CPUs can be utilized to improve
the performance of signature generation. However, this approach poses two problems in a
hardware implementation:

1. Area usage: To implement the MAYO scheme with original specifications on an
FPGA, we need to incorporate two cores, one for AES and one for SHAKE. Thus, a
large part of the area demand of our current version is caused by these two cores.
Since both cores share the same use case, generating random data, this approach
creates some redundancy on the hardware level.

2. Performance: While the use of AES allows a significant speed-up on software
level, its opposite is achieved on hardware. Our SHAKE core outperforms AES
significantly. SHAKE128 generates 1344 bit every 26 cycles, which is more than 4×
faster compared to AES128 with an output of 128 bit every 12 cycles.

Therefore, using solely SHAKE instead of using both SHAKE and AES128 for generating
random data can increase the performance of the algorithm on hardware and, furthermore,
reduce the area demand of the implementation. Additionally, the optimizations described
in Section 6.1 and Section 6.2 are also compatible with SHAKE.

6.4 Block Matrix Multiplication during Signature Verification
In the signature verification, we need to compute

s⊤
i

(
P(1)

i P(2)
i

0 P(3)
i

)
si. (17)

Due to the optimization described in Section 6.1, it is not possible to perform the matrix
multiplication using the standard approach as the elements of P(2)

i are generated after
P(1)

i . Therefore, block matrix multiplication could be applied to Eq. (17), calculating the
results of P(1)

i , P(2)
i , and P(3)

i individually and combining them accordingly using vector
addition. Thus, only the intermediate results need to be stored, which are much smaller
than the P matrices.
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6.5 Parallelizing Normal and Transpose Computation of Li

As a consequence of optimization presented in Section 6.3, the matrix elements are generated
in row-major order. Therefore, we have to modify Eq. (13), the computation of Li in the
secret key expansion. Calculating the linear part using Li = (P(1)

i O + P(1)
i

⊤
O) + P(2)

i

enables us to apply the optimizations described before. We generate the P(1)
i elements

on-the-fly and compute P(1)
i O and P(1)

i

⊤
O in parallel. For the calculation of P(1)

i

⊤
O, we

have to modify our MAC units. Instead of storing the intermediate values directly inside
the unit, we need to store them in a BRAM and retrieve them for accumulation to deal
with the transposition.

7 Conclusion
In this paper, we propose and implement a hardware architecture for the MAYO post-
quantum signature scheme with NIST security level 1. The proposed architecture can
perform key generation, signature generation, and signature verification operations in
0.6ms, 1.45ms, and 0.77ms, respectively. We also propose several optimization techniques
to improve resource utilization and performance of MAYO implementations on hard-
ware platforms. We are already working on a hardware architecture with the proposed
optimizations and plan to present it as future work.
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