
Tight Security of TNT and Beyond

Attacks, Proofs and Possibilities for the Cascaded LRW Paradigm⋆

Ashwin Jha1, Mustafa Khairallah2, Mridul Nandi3, and Abishanka Saha3

1CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
ashwin.jha@cispa.de

2Seagate Research Group, Singapore, Singapore
mustafa.khairallah@seagate.com

3Indian Statistical Institute, Kolkata, India
mridul.nandi@gmail.com,sahaa.1993@gmail.com

Abstract. Liskov, Rivest and Wagner laid the theoretical foundations
for tweakable block ciphers (TBC). In a seminal paper, they proposed two
(up to) birthday-bound secure design strategies — LRW1 and LRW2—
to convert any block cipher into a TBC. Several of the follow-up works
consider cascading of LRW-type TBCs to construct beyond-the-birthday
bound (BBB) secure TBCs. Landecker et al. demonstrated that just two-
round cascading of LRW2 can already give a BBB security. Bao et al. un-
dertook a similar exercise in context of LRW1 with TNT— a three-round
cascading of LRW1— that has been shown to achieve BBB security as
well. In this paper, we present a CCA distinguisher on TNT that achieves
a non-negligible advantage with O(2n/2) queries, directly contradicting
the security claims made by the designers. We provide a rigorous and
complete advantage calculation coupled with experimental verifications
that further support our claim. Next, we provide new and simple proofs
of birthday-bound CCA security for both TNT and its single-key variant,
which confirm the tightness of our attack. Furthering on to a more pos-
itive note, we show that adding just one more block cipher call, referred
as 4-LRW1, does not just reestablish the BBB security, but also amplifies
it up to 23n/4 queries. As a side-effect of this endeavour, we propose a
new abstraction of the cascaded LRW-design philosophy, referred to as
the LRW+ paradigm, comprising two block cipher calls sandwiched be-
tween a pair of tweakable universal hashes. This helps us to provide a
modular proof approach covering all cascaded LRW constructions with
at least 2 rounds, including 4-LRW1, and its more established relative,
the well-known CLRW2, or more aptly, 2-LRW2.

Keywords: TNT, LRW1, 4-LRW1, CLRW2, birthday-bound attack

⋆ This article is an amalgamation and extension of prior work of the same authors.
Concretely, it combines and significantly extends the contents of IACR ePrint articles
2023/1212 (by Khairallah), and 2023/1233 (by Jha, Nandi, and Saha) that appeared
in August 2023 on closely related topics into a single edited document. This article
should be seen as a successor of both these IACR ePrint articles.

1 Introduction

Tweakable Block Cipher or TBC is a highly versatile symmetric-key primitives
that has found applications in almost all verticals of modern information se-
curity, including encryption schemes [7], message authentication codes [19], au-
thenticated encryption [23,35], and even leakage resillience [39]. The popularity
of TBCs is largely credited to the simplicity of TBC-based constructions, and
more importantly, comparatively simpler proofs of beyond-the-birthday bound
(BBB) security.

In a seminal paper [27] at CRYPTO 2002, Liskov, Rivest, and Wagner (LRW)
formalized the notion of tweakable block ciphers (TBCs), although the high level
idea already appeared in some AES candidates such as Hasty Pudding [38] and
Misty [10]. Over the years, the design landscape of TBCs has changed progres-
sively. The design of a TBC mainly falls into one of the two categories: adhoc
designs based ob well-established primitive design paradigms, or provably secure
designs based on block ciphers or cryptographic permutations. In recent years,
the popularity of adhoc designs has gained momentum with the advent of the
TWEAKEY framework [20], its chief example being Deoxys-TBC [21], Skinny [5]
and Qarma [1]. These designs are built from scratch, and their security mainly
depends on cryptanalysis. On the other hand, the security of provably secure
designs is directly linked to the security of the underlying primitives, such as
a block cipher, a permutation, or a pseudorandom function. Some prominent
examples include LRW’s original constructions [27] LRW1 and LRW2, XEX [37]
by Rogaway, and its extensions by Chakraborty and Sarkar [8], Minematsu [30],
and Granger et al. [14]. Note that, all these schemes are inherently birthday
bound secure due to detectable internal collisions.

Cascading LRW2: Landecker et al. were the first to notice [25] that a cascading
of two independent instances of LRW2 results in a BBB secure TBC construction.
They proved that 2-round cascaded LRW2 is secure up to approx. 22n/3 CCA
queries, where n denotes the block size in bits. The initial proof was flawed [36],
and superseded by a corrected proof by both Landecker et al. and Procter [36].
The construction was later found [28,22] to be tightly secure up to 23n/4 CCA
queries. For any arbitrary r ≥ 2-round independent cascading of LRW2, denoted
r-LRW2, Lampe and Seurin proved [24] CCA security up to approx. 2

rn
r+2 queries.

Cascading LRW1: The idea to cascade LRW1 came quite later in [2], where
Bao et al. showed that 3-round cascading of LRW1, referred as TNT, is CCA
secure up to 22n/3 queries. The design is highly appreciated in the community for
its simple design and high provable security guarantee. In fact, the CPA security
was later improved to 23n/4 queries, essentially matching the bound for 2-round
LRW1. Since this later result, it is widely believed that the CPA improvement
carries over to the CCA setting as well. For the more general case of arbitrary
r ≥ 3, denoted r-LRW1, Zhang et al. proved [40] CCA security up to approx.

2
r−1
r+1n queries.

2

1.1 Motivation

The primary motivation behind this work is a peculiar non-random behavior
exhibited by TNT in the CCA setting.

Suppose πππ1,πππ2,πππ3 are three independent random permutations of {0, 1}n.
The TNT construction (see Fig. 1) based on πππ1,πππ2,πππ3 is a TBC with n-bit
tweak and n-bit block input, defined by the mapping

(t,m)
TNT7−−−→ πππ3(t⊕ πππ2(t⊕ πππ1(m))).

As can be noticed by the definition of TNT, it has a peculiar property, that

πππ1 ⊕⊕⊕ πππ2 ⊕⊕⊕ πππ3m c
m̂ x x̂ ĉ

t

Fig. 1: The TNT construction [2].

we refer as the final-block cancellation property. Specifically, suppose we have a
triple (t,m, c) such that TNT(t,m) = c. Then, it is easy to see that any inverse
query of the form (t′, c) would result in a cancellation of the call to πππ3, and this
is independent of the tweak values t and t′ = t⊕ δ. Essentially, the construction
boils down to the one in Fig. 2. Let’s call it TNTδ for some fixed δ ̸= 0n. Now,

πππ1 ⊕⊕⊕ πππ2 ⊕⊕⊕ πππ−1
2 ⊕⊕⊕ πππ−1

1
m m′m̂ u û v̂ v

t δ t⊕ δ

Fig. 2: TNT with final-block cancellation.

suppose the adversary can find a pair of tweaks (t1, t2) such that for a fixed
message m, there is a collision at the output, i.e.,

(m′
1 = m′

2) ⇐⇒ (v1 = v2) ⇐⇒ (v̂1 ⊕ v̂2 = t1 ⊕ t2 = u1 ⊕ u2)

So, an output collision happens if and only if v̂1 ⊕ v̂2 = u1 ⊕ u2. Interestingly,
for TNTδ, we have the following property:

(û1 ⊕ û2 = δ) =⇒ (v̂1 ⊕ v̂2 = u1 ⊕ u2),

3

which implies that there are two sources of collisions in TNTδ. A collision hap-
pens whenever û1⊕ û2 = δ, or û1⊕ û2 ̸= δ and v̂1⊕ v̂2 = u1⊕u2. This indicates
that one can expect more collisions in TNTδ as compared to a random function.

1.2 Contributions

Our contributions are threefold:

1. Birthday-bound CCA Attack on TNT: In section 3, we start by giving a
heuristic distinguisher using the previously mentioned non-random behavior
of TNT. We provide a heuristic analysis of this distinguisher using random
permutation statistics and an analysis of the behaviour of difference equa-
tions and difference distribution tables (DDTs) of random permutations.
Our analysis strongly indicates a global non-random phenomena that can be
detected in roughly O(2n/2 CCA queries. We verify these abnormal statis-
tics experimentally on small instances of TNT. Based on the heuristics and
experimental verification, we identify and exploit the final-block cancellation
property of TNT, to furnish a formal CCA distinguisher between TNT and
uniform tweakable random permutation. We provide rigorous analysis of the
query complexity and advantage of our distinguisher, which clearly shows
that the distinguisher achieves a non-negligible advantage using O(2n/2)
CCA queries.
Since the attack clearly contradicts the security claims of the designers of
TNT, we study their security proof in Appendix A and identify a bug, where
a random variable is erroneously assumed to have a uniform distribution,
leading to an over estimation of the security.

2. Birthday-bound CCA Security of TNT: In section 4, we provide a
simple proof of birthday-bound CCA security for TNT. Note that, the CCA
security bound also follows from the results in [40]. Nevertheless, given the
flaws in TNT’s original analysis, we believe that multiple security proofs
using different techniques will lead to a greater confidence in the revised
security claim. In addition to the original TNT, we also analyze the single-
keyed variant of TNT, and show that it retains the same level of CCA security
as well.

3. A Generalization of Cascaded LRW Paradigm: In a more abstract
direction, in section 5, we present a generalized view of the cascaded LRW
design strategy for any arbitrary number of rounds r ≥ 2, called the LRW+
construction. It consists of two block cipher calls sandwiched between a pair
of tweakable universal hashes. We show that as long as the tweakable hashes
are sufficiently1 universal, the LRW+ construction is CCA secure up to 23n/4

queries. Note that, LRW+ encompasses both 2-LRW2 and 4-LRW1. Thus,
as a direct side-effect of our analysis, in section 6, we show that 2-LRW2
and 4-LRW1 are CCA secure up to 23n/4 queries. In case of 2-LRW2, our
bound matches the tight analysis in [22], and in case of 4-LRW1, we provide

1 Having approx. 2−n-AU bound.

4

a significant improvement over an independent and concurrent result [13],
which only guarantees security up to 22n/3 queries.
Note that, the result on LRW+ directly shows that r-LRW1 is at least 3n/4-
bit secure for any r ≥ 4, improving on the results for r ≤ 8. Similarly, for
r-LRW2 it shows at least 3n/4-bit security for any r ≥ 2, improving on the
results for r ≤ 6. See Table 1 for a summary of the state-of-the-art on the
security of cascaded LRW constructions.

Table 1: Summary of security bounds for LRW based construction. We have assumed
all hash functions to be 2−n-(XOR) universal. The bottom four rows present our results.
LRW+ generalizes both 2-LRW2 and 4-LRW1. So the bound on LRW+ implies similar
bounds for 2-LRW2 and 4-LRW1.

Construction BC calls Hash calls Security bound Tightness

LRW1 [27] 1 0 2n/2 (CPA) [27]

LRW2 [27] 1 1 2n/2 [27]

3-LRW1 (TNT [15]) 3 0 22n/3 [15] (flawed)

4-LRW1 4 0 22n/3 [13] –

2-LRW2 (CLRW2 [25]) 2 2 23n/4 [22] [28]

r-LRW1
[40] r odd

0 2
r−1
r+1

n [40]
–

r even 2
r−2
r

n –

r-LRW2
[24] r odd

r 2
r−1
r+1

n [24]
–

r even 2
r

r+2
n

–

3-LRW1 (TNT) 3 0 2n/2

1k-TNT 3 0 2n/2

LRW+ 2 2∗ 23n/4 –

4-LRW1 4 0 23n/4 –

A Note on the Impact of Our Birthday-bound Attack: As mentioned
before, the authors of [2] claimed the CCA security of TNT to be 2n/3 bits. In
Asiacrypt 2020, the authors of [16] conjectured that the CCA security of TNT
is probably 3n/4 bits. In [41], the authors have stated:

A natural open problem is the exact security of r-LRW1. Unlike , exact
security of r-LRW1 for r = 3 already appears challenging, and might require

new proof approaches.

We believe this work answers a critical research question of both practical and
theoretical implications. On one hand, it studies the exact security of an efficient

5

construction that has several practical applications. On the other hand, it offers
another cautionary tale on how to use statistical proof techniques such as the
χ2 method.2

Additionally, the attack applies to practical instances of TNT: TNT-AES
in [2] and TNT-SM4-128 in [17]. The authors of [17] also introduced TNT-SM4-
32, where the tweak size is limited to 32-bits. Our distinguisher requires O(2n/2)
tweaks, where n = 128 in case of TNT-SM4. Hence, the distinguisher directly
applies to TNT-SM4-128, which has a tweak size of 128 bits. It does not directly
apply to TNT-SM4-32, since the tweak space is too small. However, since our
distinguisher breaks the the BBB security proof in [2], the exact security of
TNT-SM4-32 and whether it is has BBB security is an open question.

We note that in Eurocrypt 2023, a full-round distinguisher on TNT-AES
using truncated boomerang attacks was presented in [4]. However, the attack is
particular to TNT-AES and requires almost 2n queries. Our attack, applied to any
128-bit instantiation of TNT, including TNT-AES, requires ≤ 269 queries to have
an almost 100% success rate, making it the best known distinguisher for any 128-
bit TNT variant, without relying on the properties of the underlying block cipher.
We sum up all known distinguishers on TNT-AES in Table 2, which indicates
that our distinguisher is not only theoretical, but outperforms all cryptanalytic
efforts on TNT, so far.

Table 2: Known distinguishers against TNT-AES. CCA stands for adaptive Chosen
Ciphertext Adversary. NCPA stands for Non-adaptive Chosen Plaintext Adversary.
Rounds is the number of AES rounds in π1, π2 and π3, respectively. ⋆ means any
number of rounds. Generic attacks do not reply on any AES properties and apply to
TNT instantiated with any 128-bit block cipher. 269 is the complexity for which our
attack is expected to have 100% success rate, while 268 is expected to have 99% success
rate.

Ref. Type Data Time Adversary Rounds

[2] Boomerang 2126 2126 CCA ⋆− 5− ⋆

[16] Impossible Differential 2113.6 2113.6 NCPA 5− ⋆− ⋆

[16] Generic 299.5 299.5 NCPA ⋆− ⋆− ⋆

[4] Truncated Boomerang 276 276 CCA ⋆− 5− ⋆

[4] Truncated Boomerang 287 287 CCA 5− 5− ⋆

[4] Truncated Boomerang 2127.8 2127.8 CCA ⋆− 6− ⋆

This paper Generic ≤ 269 ≤ 269 CCA ⋆− ⋆− ⋆

2 Refer to [6] for another example of erroneously estimated distributions.

6

2 Preliminaries

Notational Setup: For n ∈ N, [n] denotes the set {1, 2, . . . , n}, {0, 1}n de-
notes the set of bit strings of length n, and Perm(n) denotes the set of all permu-

tations over {0, 1}n. For n, τ ∈ N, P̃erm(τ, n) denotes the set of all families of per-
mutations πt := π(t, ·) ∈ Perm(n), indexed by t ∈ {0, 1}τ . For n, r ∈ N, such that
n ≥ r, we define the falling factorial (n)r := n!/(n−r)! = n(n−1) · · · (n−r+1).
We define (n)0 := 1.

For q ∈ N, xq denotes the q-tuple (x1, x2, . . . , xq), and in this context, M(xq)
and S(xq) respectively denote the multiset and set corresponding to {xi : i ∈ [q]}.
For a set I ⊆ [q] and a q-tuple xq, xI denotes the tuple (xi)i∈I . For a pair of
tuples xq and yq, (xq, yq) denotes the 2-ary q-tuple ((x1, y1), . . . , (xq, yq)). An
n-ary q-tuple is defined analogously. For q ∈ N, for any set X , (X)q denotes the
set of all q-tuples with distinct elements from X . For q ∈ N, a 2-ary tuple (xq, yq)
is called permutation compatible, denoted xq ↭ yq, if xi = xj ⇐⇒ yi = yj .
Extending notations, a 3-ary tuple (tq, xq, yq) is called tweakable permutation
compatible, denoted by (tq, xq) ↭ (tq, yq), if (ti, xi) = (tj , xj) ⇐⇒ (ti, yi) =
(tj , yj). For any tuple xq ∈ X q, and for any function f : X → Y, f(xq) denotes
the tuple (f(x1), . . . , f(xq)). We use short hand notation ∃∗ to represent the
phrase “there exists distinct”.

Unless stated otherwise, upper and lower case letters denote variables and
values, respectively, and Serif font letters are used to denote random variables.
For a finite set X , X←$ X denotes the uniform and random sampling of X from
X . We write Xq wor←− X to denote WOR (without replacement sampling) of a q-
tuple Xq from the set X , where |X | ≥ q is obvious. More precisely, Xq ←$ (X)q.

2.1 Some Useful Inequalities

Definition 1 ([22]). For r ≥ s, let a = (ai)i∈[r] and b = (bj)j∈[s] be two
sequences over N. We say that a compresses to b, if there exists a partition P
of [r] such that P contains exactly s cells, say P1, . . . ,Ps, and ∀i ∈ [s], bi =∑

j∈Pi
aj.

Proposition 1 ([22]). For r ≥ s, let a = (ai)i∈[r] and b = (bj)j∈[s] be sequences
over N, such that a compresses to b. Then for any n ∈ N, such that 2n ≥

∑r
i=1 ai,

we have
∏r

i=1(2
n)ai

≥
∏s

j=1(2
n)bj .

Proposition 2 ([22]). For r ≥ 2, let c = (ci)i∈[r] and d = (di)i∈[r] be two
sequences over N. Let a1, a2, b1, b2 ∈ N, such that ci ≤ aj, ci + di ≤ aj + bj for
all i ∈ [r] and j ∈ [2], and

∑r
i=1 di = b1 + b2. Then, for any n ∈ N, such that

aj + bj ≤ 2n for j ∈ [2], we have
∏r

i=1(2
n − ci)di

≥ (2n − a1)b1(2
n − a2)b2 .

2.2 (Tweakable) Block Ciphers and Random Permutations

A block cipher with key size κ and block size n is a family of permutations E ∈
P̃erm(κ, n). For k ∈ {0, 1}κ, we denote Ek(·) := E(k, ·), and E−1

k (·) := E−1(k, ·).

7

A tweakable block cipher with key size κ, tweak size τ and block size n is a family

of permutations Ẽ ∈ P̃erm(κτ, n). For k ∈ {0, 1}κ and t ∈ {0, 1}τ , we denote

Ẽk(t, ·) := Ẽ(k, t, ·), and Ẽ−1
k (t, ·) := Ẽ−1(k, t, ·). Throughout this paper, we fix

κ, τ, n ∈ N as the key size, tweak size and block size, respectively, of the given
(tweakable) block cipher.

We say that πππ is an (ideal) random permutation on block space {0, 1}n to
indicate that πππ ←$ Perm(n). Similarly, we say that π̃ππ is an (ideal) tweakable
random permutation on tweak space {0, 1}τ and block space {0, 1}n to indicate

that π̃ππ ←$ P̃erm(τ, n).

2.3 (T)SPRP Security Definitions

In this paper, we assume that the distinguisher is non-trivial, i.e. it never makes
a duplicate query, and it never makes a query for which the response is already
known due to some previous query. Let A(q, t) be the class of all non-trivial
distinguishers limited to q oracle queries, and t computations. In our analy-
ses, especially security proofs, it will be convenient to work in the information-
theoretic setting. Accordingly, we always skip the boilerplate hybrid steps, and
often assume that the adversary is computationally unbounded, i.e., t =∞, and
deterministic.

A computational equivalent of all our security proofs can be easily obtained
by a simple hybrid argument.

(Tweakable) Strong Pseudorandom Permutation (SPRP): The SPRP
advantage of distinguisher A against E instantiated with a key K←$ {0, 1}κ is
defined as

Advsprp
E (A) = AdvE±;πππ±(A) :=

∣∣∣Pr (A E±
K = 1

)
− Pr

(
A πππ±

= 1
)∣∣∣ . (1)

The SPRP security of E is defined as Advsprp
E (q, t) := max

A ∈A(q,t)
Advsprp

E (A).

Similarly, the TSPRP advantage of distinguisher A against Ẽ instantiated with
a key K←$ {0, 1}κ is defined as

Advtsprp

Ẽ
(A) = AdvẼ±;π̃ππ±(A) :=

∣∣∣Pr (A Ẽ±
K = 1

)
− Pr

(
A π̃ππ±

= 1
)∣∣∣ . (2)

The TSPRP security of Ẽ is defined as Advtsprp

Ẽ
(q, t) := max

A ∈A(q,t)
Advtsprp

Ẽ
(A).

2.4 The Expectation Method

Let A be a computationally unbounded and deterministic distinguisher that
tries to distinguish between two oracles O0 and O1 via black box interaction
with one of them. We denote the query-response tuple of A ’s interaction with
its oracle by a transcript ω. This may also include any additional information
the oracle chooses to reveal to the distinguisher at the end of the query-response
phase of the game. We denote by Θ1 (res. Θ0) the random transcript variable

8

when A interacts with O1 (res. O0). The probability of realizing a given tran-
script ω in the security game with an oracle O is known as the interpolation
probability of ω with respect to O. Since A is deterministic, this probability
depends only on the oracle O and the transcript ω. A transcript ω is said to be
attainable if Pr (Θ0 = ω) > 0. The expectation method [18] (stated below) is a
generalization of Patarin’s H-coefficients technique [33], which is quite useful in
obtaining improved bounds in many cases [18,22].

Lemma 1 (Expectation Method [18]). Let Ω be the set of all transcripts.
For some ϵbad ≥ 0 and a non-negative function ϵratio : Ω → [0,∞), suppose there
is a set Ωbad ⊆ Ω satisfying the following:

• Pr (Θ0 ∈ Ωbad) ≤ ϵbad;

• For any ω /∈ Ωbad, ω is attainable and
Pr (Θ1 = ω)

Pr (Θ0 = ω)
≥ 1− ϵratio(ω).

Then for any distinguisher A trying to distinguish between O1 and O0, we have
the following bound on its distinguishing advantage:

AdvO1;O0(A) ≤ ϵbad + Ex (ϵratio(Θ0)) .

When ϵratio is a constant function, we get the following corollary of the expecta-
tion method, otherwise known as the H-coefficients technique.

Corollary 1 (H-coefficients Technique [33]). Let Ω be the set of all tran-
scripts. For some ϵbad ≥ 0 and ϵratio ≥ 0, suppose there is a set Ωbad ⊆ Ω
satisfying the following:

• Pr (Θ0 ∈ Ωbad) ≤ ϵbad;

• For any ω /∈ Ωbad, ω is attainable and
Pr (Θ1 = ω)

Pr (Θ0 = ω)
≥ 1− ϵratio.

Then for any distinguisher A trying to distinguish between O1 and O0, we have
the following bound on its distinguishing advantage:

AdvO1;O0
(A) ≤ ϵbad + ϵratio.

2.5 Some Results on Universal Hash Functions

An (s, n)-hash function family H, is a family of functions {h : {0, 1}s → {0, 1}n},
keyed implicitly by the choice of h. A pair of distinct elements (t, t′) from {0, 1}s
is said to be colliding for a function h ∈ H, if h(t) = h(t′). An (s, n)-hash
function family H is called an ϵ-amost universal hash family (AUHF) if for all
t ̸= t′ ∈ {0, 1}s,

Pr (H←$H : H(t) = H(t′)) ≤ ϵ. (3)

Throughout this section, we fix tq = (t1, . . . , tq) ∈ (T)q. For a randomly chosen
hash function H←$H, the probability of having at least one colliding pair in tq

is at most
(
q
2

)
· ϵ. This is straightforward from the union bound.

9

Lemma 2 (Alternating Collisions Lemma [22]). Suppose H1,H2 are two
uniformly and independently drawn functions from an ϵ-AUHF H and tq ∈
({0, 1}s)q. Then,

Pr (∃∗i, j, k, l ∈ [q],H1(ti) = H1(tj) ∧ H1(tk) = H1(tl) ∧ H2(tj) = H2(tk)) ≤ q2ϵ1.5.

Lemma 3 (Alternating Events Lemma [22]). Let Xq = (X1, . . . ,Xq) be a
q-tuple of random variables. Suppose for all i < j ∈ [q], Ei,j are events associated
with Xi and Xj, possibly dependent. Each event holds with probability at most
ϵ. Moreover, for any distinct i, j, k, l ∈ [q], Fi,j,k,l are events associated with Xi,
Xj, Xk and Xl, which holds with probability at most ϵ′. Moreover, the collection
of events (Fi,j,k,l)i,j,k,l is independent with the collection of event (Ei,j)i,j. Then,

Pr (∃∗i, j, k, l ∈ [q], Ei,j ∧ Ek,l ∧ Fi,j,k,l) ≤ q2 · ϵ ·
√
ϵ′

Let Xq = H(tq). We define an equivalence relation ∼ on [q] as: α ∼ β if and only
if Xα = Xβ (i.e. ∼ is simply the multicollision relation). Let P1,P2, . . . ,Pr denote
those equivalence classes of [q] corresponding to ∼, such that νi = |Pi| ≥ 2 for
all i ∈ [r].

Lemma 4 ([22]). Let C denote the number of colliding pairs in Xq. Then, we
have

Ex

(
r∑

i=1

νi
2

)
≤ 2q2ϵ.

Corollary 2 ([31,22]). Let νmax = max{νi : i ∈ [r]}. Then, for some a ≥ 2,
we have

Pr (νmax ≥ a) ≤ 2q2ϵ

a2
.

2.6 Patarin’s Mirror Theory

We will use the Mennink and Neves interpretation [29] of mirror theory. For
ease of understanding and notational coherency, we sometimes use different
parametrization and naming conventions. Let q ≥ 1 and let L be the system
of linear equations

{e1 : Y1 ⊕ V1 = δ1, e2 : Y2 ⊕ V2 = δ2, . . . , eq : Yq ⊕ Vq = δq}

where Y q and V q are unknowns, and δq ∈ ({0, 1}n)q are constants. In addition
there are (in)equality restrictions on Y q and V q, which uniquely determine SY q

and SV q. We assume that S(Y q) and S(V q), are indexed in an arbitrary order by
the index sets [qY] and [qV], where qY = |S(Y q)| and qV = |S(V q)|. This assump-
tion is without any loss of generality as this does not affect the system L. Given
such an ordering, we can view S(Y q) and S(V q) as ordered sets {Y ′

1 , . . . , Y
′
qY }

and {V ′
1 , . . . , V

′
qV }, respectively. We define two surjective index mappings:

φY :

{
[q]→ [qY]

i 7→ j if and only if Yi = Y ′
j .

φV :

{
[q]→ [qV]

i 7→ k if and only if Vi = V ′
k.

10

It is easy to verify that L is uniquely determined by (φY , φV , δ
q), and vice-

versa. Consider a labeled bipartite graph G(L) = ([qY], [qV], E) associated with
L, where E = {(φY (i), φV (i), δi) : i ∈ [q]}, δi being the label of edge. Clearly,
each equation in L corresponds to a unique labeled edge (assuming no duplicate
equations). We give three definitions with respect to the system L using G(L).
Definition 2 (cycle-freeness). L is said to be cycle-free if and only if G(L) is
acyclic.

Definition 3 (ξmax-component). Two distinct equations (or unknowns) in L
are said to be in the same component if and only if the corresponding edges (res.
vertices) in G(L) are in the same component. The size of any component C in L,
denoted ξ(C), is the number of vertices in the corresponding component of G(L),
and the maximum component size is denoted by ξmax(L) (or simply ξmax).

Definition 4 (non-degeneracy). L is said to be non-degenerate if and only if
there does not exist a path of even length at least 2 in G(L) such that the labels
along the edges on this path sum up to zero.

Isolated and Star Components: In an edge-labeled bipartite graph G =
(Y,V, E), an edge (y, v, δ) is called isolated edge if both y and v have degree 1.
A component S of G is called star, if ξ(S) ≥ 3 and there exists a unique vertex
v in S with degree ξ(S)− 1. We call v the center of S. Further, we call S a Y-⋆
(res. V-⋆) component if its center lies in Y (res. V).

Mirror Theory for Tweakable Permutation Setting. Consider a system
of equation L

{e1 : Y1 ⊕ V1 = δ1, e2 : Y2 ⊕ V2 = δ2, . . . , eq : Yq ⊕ Vq = δq},

such that each component in G(L) is either an isolated edge or a star. Let c1,
c2, and c3 denote the number of components of isolated, Y-⋆, and V-⋆ types,
respectively. Let q1, q2, and q3 denote the number of equations of isolated, Y-⋆,
and V-⋆ types, respectively. Therefore, c1 = q1. Note that the equations in L can
be arranged in any arbitrary order without affecting the number of solutions. For
the sake of simplicity, we fix the ordering in such a way that all isolated edges
occur first, followed by the star components. Let (δ′1, δ

′
2, · · · , δ′s) be an arbitrary

ordering of S(δq), and for all i ∈ [s], let νi denote the multiplicity of δ′i in the
multiset M(δq), i.e., s ≤ q and

∑s
i=1 νi = q.

In [22], Jha and Nandi proved the following result.

Theorem 1 ([22]). Let L be the system of linear equations as described above
with q < 2n−2 and ξmaxq ≤ 2n−1. Then, the number of tuples (y1, . . . , yqY , v1, . . . , vqV)
that satisfy L, denoted hq, such that yi ̸= yj and vi ̸= vj, for all i ̸= j, satisfies:

hq ≥

(
1− 13q4

23n
− 2q2

22n
−

(
c2+c3∑
i=1

η2c1+i

)
4q2

22n

)
× (2n)q1+c2+q3(2

n)q1+q2+c3∏
i∈[s](2

n)νi

,

where ηj = ξj − 1 and ξj denotes the size (number of vertices) of the j-th com-
ponent, for all j ∈ [c1 + c2 + c3].

11

2.7 Poisson Distribution

The Poisson distribution is a discrete distribution with parameter λ and its
Probability Mass Function (PMF) is defined as:

Poisson(i;λ) = Pr[X = i] =
λie−λ

i!

where the mean and variance are both equal to λ.

2.8 Difference Distribution Tables

Let π : {0, 1}n → {0, 1}n be a permutation. The equation

π(x⊕ δ)⊕ π(x) = ∆

is known as the difference equation (δ,∆) over π, where δ,∆ ∈ {0, 1}n and
⊕ is addition in the Galois Field GF(2n). Since π is a permutation, then any
difference equation must have an even number of solutions; either no solutions at
all (0), or an even non-zero number of solutions. Note that if M is a solution for
the difference equation (δ,∆), then M ⊕ δ must also be a solution. A Difference
Distribution Table (DDT) is a 2n×2n table constructed by counting the number
of solutions of each possible difference equation. It looks like Table 3. Each row
or column adds up to 2n and all the entries are even. The entry (0, 0) is always
2n and the rest of the entries of the first row and first column are all zero. If all
the entries are either 0 or 2n, then the permutation is linear. If all the entries
are either 0 or 2, except one, then the permutation is known as an Almost
Perfect Non-linear (APN) permutation. A random permutation is likely to fall
somewhere in between.

Table 3: An example of a DDT.

δ
∆

0 1 2 . . . 2n − 1

0 2n 0 0 . . . 0
1 0 0 2 . . . 4
2 0 2 0 . . . 0
.

2n − 1 0 0 8 . . . 2

3 Cryptanalysis of TNT

In our discussions on TNT and cascaded LRW1, we always fix τ = n. Here-
after, we only consider the TNT construction in information-theoretic setting.

12

Accordingly, we instantiate TNT based on three independent random permuta-
tions πππ1, πππ2, and πππ3 of {0, 1}n. Recall that, the TNT construction is defined by
the mapping

(t,m)
TNT7−−−→ πππ3(t⊕ πππ2(t⊕ πππ1(m))), (4)

3.1 A Non-Random Behavior in TNT

Consider a random function F : {0, 1}n → {0, 1}n that is constructed as

F (T) = π̃−1(T ⊕∆, π̃(T,M0)),

where M0 ∈ {0, 1}n and ∆ ∈ {0, 1}n \ {0n} are constants. It is easy to see that
F is indistinguishable from a random function if π̃ is an ideal tweakable random
permutation. We show in this section that if the same function is instantiated
with TNT instead of π̃, it is distinguishable from a random function. This implies
a distinguisher against the STPRP security of TNT. The distinguisher D is
parameterized by the complexity q and a threshold θ(q). It makes q forward
queries and q backward queries. It is described in Algorithm 1.

π1

T

π2

T

π3 π−1
3

T ⊕∆

π−1
2

T ⊕∆

π−1
1M X

Fig. 3: One iteration of the distinguisher in Algorithm 1.

The description of the distinguisher is quite simple: Cascade the forward and
inverse queries, with tweaks T and T ⊕∆ where ∆ and the plaintext M are fixed
for all queries, and ∆ ̸= 0. Make sure that for all 0 < i < q, 0 < j < q and i ̸= j,
Ti ̸= Tj and Ti ̸= Tj⊕∆. Count the number of collisions at the output of backward
queries. One iteration of the distinguisher is visually depicted in Figure 3, and
Figure 4 depicts the effective behavior as the effect of π3 is removed and we have
an XOR with a constant ∆ between the forward and backward queries. Figure 5
shows the internal values in the effective trace during one iteration.

Analysis of the distinguisher In the ideal world, each query uses a unique tweak
and a new uniform random permutation is sampled for each query. Hence, all
the responses X are uniformly distributed. Given two queries, the probability
of collision is 1/2n, and the behaviour follows the birthday collision search. The
input space of the construction in Figure 4 is T and has size of 2n possibilities.
Thus, the expected number of collisions in the range of X can be estimated by(

2n

2

)
2n

=
2n − 1

2
.

13

Algorithm 1 The distinguisher D against the CCA security of TNT.

1: M
$←− {0, 1}n

2: ∆← itobn(2
n−1)

3: L← [0 ∀ 1 ≤ i ≤ 2n]
4: coll← 0
5: for i ∈ {0, 1, · · · , q − 1} do
6: C ← Ẽ(itobn(i),M)
7: X ← Ẽ−1(itobn(i)⊕∆,C)
8: coll← coll+ L[btoi(X)]
9: L[btoi(X)]← L[btoi(X)] + 1

10: end for
11: if coll ≥ θ(q) then
12: return 1
13: else
14: return 0
15: end if

π1

T

π2

∆

π−1
2

T ⊕∆

π−1
1M X

Fig. 4: The effective iteration of the distinguisher in Algorithm 1.

In the real world, we have a relation that is maintained across all queries:

Vo ⊕ Ve = ∆.

Furthermore, each query defines a difference equation over π2:

π2(Uo ⊕ δ)⊕ π2(Uo) = ∆,

where δ = Uo ⊕ Ue. By construction, this equation must have at least two
solutions. The first is is Uo and the second is Ue. Hence, the query (T ⋆,M),
where T ⋆ = Ue ⊕ So collides with (T,M). However, whether this is the only
collision that leads to X, or not, depends on the difference distribution of the
permutation π2. For now, let the set of solutions to the difference equation

π2(x⊕ β)⊕ π2(x) = ∆

be Sβ,∆. Consider an equation π2(x⊕ δ)⊕ π2(x) = ∆ that has four solutions:

π2(Uo ⊕ δ)⊕ π2(Uo) = ∆

π2((Uo ⊕ δ)⊕ δ)⊕ π2(Uo ⊕ δ) = ∆

14

π1

So Uo

T

π2

∆

Vo Ve

π−1
2

T ⊕∆

Ue Se

π−1
1M X

Fig. 5: The internal values of an iteration of the distinguisher in Algorithm 1.

π2(Uo ⊕ γ ⊕ δ)⊕ π2(Uo ⊕ γ) = ∆

π2((Uo ⊕ γ ⊕ δ)⊕ δ)⊕ π2(Uo ⊕ γ ⊕ δ) = ∆

and the four corresponding tweaks

So ⊕ Uo

So ⊕ Uo ⊕ δ

So ⊕ Uo ⊕ γ

So ⊕ Uo ⊕ γ ⊕ δ.

Then,
S(0)
e = (Uo ⊕ δ)⊕ So ⊕ Uo ⊕∆ = So ⊕ δ ⊕∆

S(1)
e = Uo ⊕ (δ ⊕ So ⊕ Uo)⊕∆ = So ⊕ δ ⊕∆

S(2)
e = (Uo ⊕ γ ⊕ δ)⊕ (So ⊕ Uo ⊕ γ)⊕∆ = So ⊕ δ ⊕∆

S(3)
e = (Uo ⊕ γ)⊕ (δ ⊕ So ⊕ Uo ⊕ γ)⊕∆ = So ⊕ δ ⊕∆.

Thus,
S(0)
e = S(1)

e = S(2)
e = S(3)

e

and they form a multi-collision. The value propagation of this example is visually
depicted in Figure 6. This multi-collision gives us an insight on the different
types of collisions that can occur. Either the collision consists of two instances
where the first instance has Uo = X,Ue = X ⊕ δ and the second instance
has Ue = X,Uo = X ⊕ δ, i.e., the two values are flipped, or it consists of
Uo = X,Ue = X ⊕ δ and Uo = X ⊕ γ, Ue = X ⊕ δ ⊕ γ where X and X ⊕ γ are
different solutions to the required difference equation.

If we know the exact values of |Sβ,∆| ∀β ∈ {0, 1}n, we can calculate the
exact number of collisions in the range of X. However, since the permutation
is secret, such information is not available. The next best thing is to know for
a given ∆, how many equations have 0 solutions, how many equations have 2
solutions,...etc. Let Qi be the number of values β such that π2(x⊕β)⊕π2(x) = ∆
has i solutions and m is the maximum number of possible solutions for any such
equation. Then, the number of collisions is given by

coll = Q2 +Q4 ∗ 6 +Q6 ∗ 15 +Q8 ∗ 28 + ...+Qm

(
m

2

)
. (5)

15

π1

So Uo

So ⊕ Uo

π2

∆

V
(0)
o V

(0)
e

π−1
2

So ⊕ Uo ⊕∆

Uo ⊕ δ So ⊕ δ ⊕∆

π−1
1M X

π1

So Uo ⊕ δ

So ⊕ Uo ⊕ δ

π2

∆

V
(0)
e V

(0)
o

π−1
2

So ⊕ Uo ⊕ δ ⊕∆

Uo So ⊕ δ ⊕∆

π−1
1M X

π1

So Uo ⊕ γ

So ⊕ Uo ⊕ γ

π2

∆

V
(2)
o V

(2)
e

π−1
2

So ⊕ Uo ⊕ γ ⊕∆

Uo ⊕ γ ⊕ δ So ⊕ δ ⊕∆

π−1
1M X

π1

So Uo ⊕ γ ⊕ δ

So ⊕ Uo ⊕ γ ⊕ δ

π2

∆

V
(2)
e V

(2)
o

π−1
2

So ⊕ Uo ⊕ γ ⊕ δ ⊕∆

Uo ⊕ γ So ⊕ δ ⊕∆

π−1
1M X

Fig. 6: The propagation in a four-way multi-collision.

16

If π2 is an APN, then coll = 2n−1. This means that on the average, the APN
case has half a collision more than the ideal case. This may not be enough to
distinguish between the two cases. However, if π2 deviates in the slightest from
being an APN, e.g., if one of the considered equations has 4 solutions, we get

coll = 2n−1 − 2 + 6 = 2n−1 + 4,

which is 4.5 more than the ideal case. As we consider that more equations have
more than two solutions, the number of expected collisions increases. The worst
case scenario is when π2 is an affine permutation, in which case, the expected
number of collisions is

(
2n

2

)
. However, this case is not relevant for attacks on

designs based on block ciphers. We are interested in the expected number of
collisions when π2 is a random permutation. We show below that the expected
number of collisions is 2n, twice that of the ideal world.

On the Statistics of Random Permutations A random permutation over n bits
is sampled uniformly from the set of all possible permutations over n bits. We
recall that the DDT of a permutation π is a 2n × 2n table that for an input
difference β and output difference ∆ includes the number of solutions of the
difference equation:

π(X ⊕ β)⊕ π(X) = ∆.

O’Connor showed in Eurocrypt 93 [32] that the expected percentage of zeros
in such table for a random permutation is 60.65%. If π is an APN, then the
percentage of zeros will be slightly higher than 50%. This already shows that
the distinguishing advantage is non-negligible, as the relatively high percentage
of zeros will be offset by many entries that are larger than 2, since each row and
column in the DDT must add up to 2n. In fact, Daemen and Rijmen [11] showed
that the distribution of the entries of the DDT is given by Poisson’s distribution.
Particularly,

Pr[|Sβ,∆| = x] =
0.5x/2e−0.5

(x/2)!
.

Using Bayes’ theorem, then for x > 0,

Pr[|Sβ,∆| = x||Sβ,∆| > 0] =

Pr[|Sβ,∆| = x] Pr[|Sβ,∆| > 0||Sβ,∆| = x]

Pr[|Sβ,∆| > 0]
=

Pr[|Sβ,∆| = x]

Pr[|Sβ,∆| > 0]
=

0.5x/2e−0.5

(x/2)!(1− e−0.5)

These distributions can be used to estimate Equation 5. Let x = 2i, then3

E[coll] = e−0.5 · 2n
∑
i>0

0.5i
(
2i
2

)
i!

=

3 ex =
∑∞

i=0
xi

i!
and ex =

∑
i>b

xi−b−1

(i−b−1)!
.

17

e−0.5 · 2n
∑
i>0

0.5i 2i(2i−1)
2

i!
=

e−0.5 · 2n+1
∑
i>0

0.5ii(i− 0.5)

i!
=

e−0.5 · 2n+1
∑
i>0

0.5ii(i− 1 + 0.5)

i!
=

e−0.5 · 2n+1
∑
i>0

(
0.5ii(i− 1)

i!
+

0.5ii× 0.5

i!

)
=

e−0.5 · 2n+1

(∑
i>0

0.5ii(i− 1)

i!
+
∑
i>0

0.5ii× 0.5

i!

)
=

e−0.5 · 2n+1

(∑
i>1

0.5i

(i− 2)!
+ 0.5

∑
i>0

0.5i

(i− 1)!

)
=

e−0.5 · 2n+1

(
0.52

∑
i>1

0.5i−2

(i− 2)!
+ 0.52

∑
i>0

0.5i−1

(i− 1)!

)
=

e−0.5 · 2n+1
(
0.52e0.5 + 0.52e0.5

)
= 0.5 · 2n+1.

Therefore,
E[coll] = 2n,

which means that the distinguisher in Algorithm 1 is expected to have twice as
many collisions in the real world as in the ideal world. θ(q) can be generalized
as:

θ(q) = 22d−1 + 22d−2

when q = 2n/2+d, which is ≈ 1.5× the expected number of collisions in the ideal
case.

To verify that the sampled permutations follow the same distribution, we
have implemented a Monte-Carlo experiment to estimate the probability distri-
bution of the number of solutions of a difference equation given that solutions
exist by generating many random permutations for 16 ≥ n ≥ 30. Almost all the
generated permutations satisfied that the percentage of zero entries is around
60.65%. We found that the distribution settles around approximately the distri-
bution in Table 4.

Table 4: The estimated probability distribution of the number of solutions for a dif-
ference equation over a random permutation, when it is known that solutions exist.

x 2 4 6 ≥ 8
Pr(x) 0.772 0.192 0.032 0.004

18

The distribution in Table 4 helps us estimate the number of expected solu-
tions and the probability of a collision. Note that while stopped at 8 solutions,
including mores solutions only increases the probability of collision. Since the
probability of more than 8 solutions seems to be very small, we believe estima-
tion to be a good enough approximation. Assuming the maximum number of
solutions is 8, we can estimate Qi as

E[Qi] = 0.3935× Pr[i]× 2n.

By substituting in Equation 5, we get

E[coll] = 0.3935× 2n(0.772 + 0.192× 6 + 0.032× 15 + 0.004× 28) =

0.3935× 2.516× 2n ≈ 2n.

This estimation indicates that when π2 is a random permutation (or a well-
designed block cipher), the expected number of collisions is twice that of the
ideal world. Hence, by setting q = c2n/2 for a small constant c, and setting the
appropriate θ, in Algorithm 1, we get a distinguisher that succeeds with very
high probability.

Experimental Verification In order to gain more confidence in the attack, we
have implemented two experiments to verify the distinguishing advantage. In
the first experiment, we used random permutations generated using Python
NumPy’s shuffle and argsort functions, to generate and invert a permuta-
tion, respectively. We generated permutations of sizes 16, 20, 24, 28 and 32 bits
and performed the distinguishing attack on each generated permutation. Results
where taken over an average of 1, 000 ∼ 10, 000 random generations (each con-
sisting of 3 independent permutations). In the ideal world, random values are
sampled, since the uniqueness of the tweak ensures each permutation is sampled
at most once. Table 5 includes the average number of collisions for n = 16 and
n = 20, which matches the number of collisions observed for other values of n, as
well. The distinguisher reaches 16 expected collisions in the real world 4× faster
than the distinguisher in [16] for n = 16 and 16× faster for n = 20.

Table 5: Average number of collisions using random permutations.

n 16
log2(q) 6 7 8 9 10 11
real 0.06 0.27 0.96 3.72 15.62 63.59
ideal 0.023 0.12 0.48 1.98 7.91 31.17

n 20
log2(q) 8 9 10 11 12 13
real 0.073 0.203 1.02 4.01 15.69 63.63
ideal 0.023 0.11 0.47 1.94 7.92 32.57

19

Table 6 shows the success rate for the different values of n and different pa-
rameters q and θ(q). The distinguisher reaches ≥ 85% with complexity 2n/2+3

and and 99% success rate with complexity 2n/2+4, since each iteration includes
two queries to the construction. For large n, the factors 23 and 24 are small. For
a visual representation, Figure 7 shows the comparison between the complexity
of the distinguisher against the birthday bound and the claim in [3]. The distin-
guisher breaks the claim with ≥ 85% success rate for 18 < n ≤ 24, and breaks it
with ≥ 99% for n > 24. With complexity 2n/2+5, we get a success rate of almost
100%, and an attack that breaks the security claim for In practice, n ≥ 64.

Table 6: The success rate achieved for different values of n and q.

n q (85%) θ(q) (85%) Success Rate q (99%) θ(q) (99%) Success Rate

16 10 12 87.2% 11 48 99%
20 12 12 86.6% 13 48 99%
24 14 12 90% 15 48 99%
28 16 12 85% 17 48 99%
32 18 12 87.5% 19 48 99%

In order to validate our experiments further, and eliminate any issues that
may arise from Python’s random generation, we ran a second experiment us-
ing the implementation of the 16-bit cipher Small-Present-16 [26] provided by
the authors of [16]. The number of collisions is taken as an average over 10, 000
executions of the attack. The results are presented in Table 7. The results statis-
tically match the random permutation case. A sample of the distribution of the
number of solutions for a input difference against all possible output differences
and for a given key is given in Table 8. The distribution follows closely the simu-
lated distribution in Table 4, which both validates our simulations and indicates
that Small-Present-16 behaves closely to a randomly selected permutation. We
have also replicated the success rate experiment and got 90.9% for q = 210 and
99.7% for q = 211.

Table 7: Average number of collisions using Small-Present-16.

n 16
log2(q) 6 7 8 9 10 11
real 0.058 0.25 0.98 4.02 16 63.94
ideal 0.027 0.12 0.49 1.98 7.98 31.92

20

n

lo
g

C
om

pl
ex

ity

0

5

10

15

20

25

16 18 20 22 24 26 28 30 32

q(85%) Claim Birthday q(99%)

Claim vs Complexity

Fig. 7: The complexity of the distinguisher for different success rates compared to the
claim of [3] and the birthday bound.

Table 8: A sample of the distribution of the number of solutions for a difference
equation defined over Small-Present-16 for a given secret key.

x 2 4 6 ≥ 8
Pr(x) 0.773 0.191 0.031 0.005

3.2 Formal Attack Algorithm A∗

Based on the previous observations and experimentatl verifications, we now give
a formal attack with rigorous advantage calculations.
Fix a message m ∈ {0, 1}n, a subspace T ⊆ {0, 1}n of size q (assuming q is a

power of 2), and a ∆ ̸∈ T . We write T = {t1, . . . , tq}. Let πππ1(m) = M̂ (unknown
secret). For all ti ∈ T :

1. Make encryption query (ti,m) and suppose the response is Ci.
2. Make decryption query (ti ⊕∆,Ci) and suppose the response is Xi.
3. Return 1, if for some j < i, Xi = Xj .

Note that, the time and space complexity of the attack algorithm are both
dominated by the query complexity.

21

3.3 Advantage Calculation

m πππ1 πππ2 πππ3 πππ−1
3 πππ−1

2 πππ−1
1 Xi

ti ti ti ⊕∆ ti ⊕∆

m πππ1 πππ2 πππ−1
2 πππ−1

1 Xi

ti ∆ ∆ ti

m πππ1 π∆ πππ−1
1 Xi

ti ti

Ui Vi

Fig. 8: Cancellation of πππ3.

Ui πππ2 πππ−1
2 Vi

∆ ∆

Ûi V̂i

Fig. 9: The π∆ permutation.

Ideal world collision probability. The ideal world probability of obtaining
a collision can be derived as follows

Pr
Id
[∃i, j ∈ [q] : Xi = Xj] = 1− Pr (∀i, j ∈ [q] : Xi ̸= Xj)

= 1− (2n)q
2nq

We denote this ideal probability as cp(q) := 1− (2n)q
2nq for future use.

Real world collision probability. Note that since the same message m is
used in every query by the attacker we have Ui ⊕ Uj = ti ⊕ tj for all i, j ∈ [q].
If two responses collide, i.e., Xi = Xj then we must have Vi ⊕ Vj = ti ⊕ tj .

22

Therefore, there will be a collision in the i-th and j-th responses if and only if
Ui ⊕ Vi = Uj ⊕ Vj .

From Fig. 9 we can observe that Ui ⊕ Vi = Uj ⊕ Vj , or equivalently Ui ⊕ V̂i =

Uj ⊕ V̂j , holds if and only if:

• Either Ûi ⊕ Ûj = ∆

• Or (Ûi ⊕ Ûj ̸= ∆) ∧
(
πππ−1
2 (Ûi ⊕∆)⊕ Ui = πππ−1

2 (Ûj ⊕∆)⊕ Uj

)
Let us define the following three events

E0 := (∃i, j ∈ [q] : Ui ⊕ Vi = Uj ⊕ Vj)

E1 :=
(
∃i, j ∈ [q] : Ûi ⊕ Ûj = ∆

)
E2 :=

(
∃i, j ∈ [q] : πππ−1

2 (Ûi ⊕∆)⊕ Ui = πππ−1
2 (Ûj ⊕∆)⊕ Uj

)
The above observation says that E0 ⇔ E1 ∪ E2. Then we can write

Pr (E0) = Pr (E1) + Pr (Ec1 ∧ E2) (6)

Calculating Pr (Ec1). Assuming the underlying permutation πππ2 as a random per-

mutation, Pr (Ec1) is same as the probability that Ûi⊕ Ûj ̸= ∆, ∀i, j ∈ [q], where

Û1, . . . , Ûq
wor←− {0, 1}n. Suppose, for some t < q, Û1, . . . , Ût is chosen such that

(Ûi ⊕ Ûj ̸= ∆) ∧ (Ûi ̸= Ûj), ∀i, j ∈ [t] (7)

Then the possible choices for Ût+1 are exactly {0, 1}n \ St, where

St := {Û1, . . . , Ût} ∪ {Û1 ⊕∆, . . . , Ût ⊕∆}.

Since Û1, . . . Ût satisfies condition (7) we have |St| = 2t. Thus total number of

ways of selecting Û1, . . . , Ûq is 2n(2n − 2) · · · (2n − 2q + 2). Hence we have,

Pr (Ec1) =
2n(2n − 2) · · · (2n − 2q + 2)

(2n)q

≤ (2n)q
2nq

= (1− cp(q)) (8)

Hence, Pr (E1) ≥ cp(q). So, we get that the probability of collision of responses
in the real world is bounded as follows

PrRe (∃i, j ∈ [q] : Xi = Xj) = Pr (E0)

= Pr (E1) + Pr (Ec1 ∧ E2)
≥ cp(q) + Pr (Ec1 ∧ E2)
= PrId (∃i, j ∈ [q] : Xi = Xj) + Pr (Ec1 ∧ E2)

23

Hence the advantage of our distinguisher A∗ will be

Advtsprp
TNT (A∗) ≥ Pr (Ec1 ∧ E2) (9)

So, it is sufficient to provide a lower bound for Pr (Ec1 ∧ E2) which is the same as
Pr (E2 | Ec1)× Pr (Ec1).

Pr (Ec1) =
2n(2n − 2) · · · (2n − 2q + 2)

(2n)q

= (1− cp(q))

q−1∏
i=1

(
1− i2

(2n − i)2

)

≥ (1− cp(q))

q−1∏
i=1

(
1− i2

(2n − q)2

)
≥ (1− cp(q))

(
1− q(q − 1)(2q − 1)

6(2n − q)2
)

≥ (1− cp(q))(1− 2q3

22n
) (10)

In the last inequality, we assume that q ≤ 2n−1 as we eventually use q = O(2n/2).

Calculating Pr (E2|Ec1). Given the condition that Ûi ⊕ ∆ ̸= Ûj , ∀i, j ∈ [q], we

have that πππ−1
2 (Ûi⊕∆) ̸∈ U := {U1, . . . ,Uq}. Note that the set U = T ⊕πππ1(m) is

the affine space obtained from the subspace T by translating it by πππ1(m). Now,

declaring the variables V̂i := πππ−1
2 (Ûi ⊕∆) and noting that Ui ⊕Uj = ti ⊕ tj , we

have that (E2|Ec1) is same as the event,∨
i ̸=j∈[q]

(
V̂i ⊕ V̂j = ti ⊕ tj

)
, where V̂1, . . . , V̂q

wor←− Uc := {0, 1}n \ U .

For every i ̸= j ∈ [q], we define the events E{i,j} = (V̂i ⊕ V̂j = ti ⊕ tj) where

V̂1, . . . , V̂q
wor←− Uc. Note that for any distinct i, j,

V̂i, V̂j
wor←− Uc.

In general, any subset follows WOR distribution. Using this observation we have
Pr
(
E{i,j}

)
= (2n − q − 1)−1. This is true because any choice of V̂i from the set

Uc, we have V̂i ⊕ ti ⊕ tj ̸∈ U . By using a similar argument, one can show that

Pr
(
E{i,j} ∧ E{k,ℓ}

)
≤ 1

(2n − q − 1)(2n − q − 3)
.

24

Hence, by using Bonferroni’s inequality and denoting α(q) :=
(q2)

2n−q−1 we have

Pr

 ∨
i ̸=j∈[q]

E{i,j}

 ≥ (
q
2

)
2n − q − 1

−
(
q
2

)2
2(2n − q − 1)(2n − q − 3)

= α(q)
(
1−

(
q
2

)
2(2n − q − 3)

)
≥ α(q)

(
1− α(q)

2
(1 +

2

(2n − q − 3)
)
)

(11)

Note that cp(q) ≤ α(q) (by union bound). Thus, using (9)-(11), we have the
following result on the TSPRP advantage of A∗.

Theorem 2. For q ≤ 2n−1, and α(q) = q(q−1)
2n−q−1 , we have

Advtsprp
TNT (A∗) ≥ α(q)(1− α(q))(1− α(q)

2
− α(q)

2n − q − 3
)(1− 2q3

22n
).

Specifically, suppose q0 be the value such that α(q0) = 1/2. Clearly, q0 = O(2n/2).
So, for q = ⌈q0⌉, we have

Advtsprp
TNT (A∗) ≥ 1

8
− λ(n),

where λ(n) = O(
q30
N2) = O(2−n/2) is negligible function of n.

4 Birthday-bound Security of TNT and Its Single Key
Variant

One can rely on the TSPRP bound by Zhang et al. to demonstrate the tightness
of the proposed attacks. However, we observe that the generic bound in [40]
introduces some constant factors, and in general, an independent security proof,
using a different proof technique, will instill greater confidence in the revised
security claims of TNT.

In light of the above discussion, it is clear that the security of TNT is in
a limbo. Here, we salvage a birthday-bound security for TNT based on three
independent random permutations πππ1, πππ2, and πππ3 of {0, 1}n.

Theorem 3. For all q ≥ 1, we have

Advtsprp
TNT (q) ≤ q2

2n
.

Proof. The statement is vacuously true for q ≥ 2n/2. We will use the H-coefficient
technique (see Corollary 1) to prove the statement for 1 ≤ q < 2n/2.

25

Let O0 and O1 be the oracles corresponding to TNT and a tweakable random
permutation π̃ππ, respectively. If (Ti,Mi) is the encryption query with a tweak Ti

we write the response as Ci. Similarly, if (Ti,Ci) is the decryption query with
a tweak Ti we write the response as Mi. After all queries have been made, the
two oracles release some additional data to the adversary, who is obviously free
to ignore this additional information, Xq and Yq.

In the real world, Xq and Yq correspond to the output of πππ1 and input of πππ3,
respectively, and thus they are well defined from the definition of TNT. The real
world transcript is thus defined as the tuple

Θ1 := (Tq,Mq,Cq,Xq,Yq).

In the ideal system π̃ππ, we sample Xq,Yq as follows for all i ∈ [q]:

1. Xi = Xj whenever Mi = Mj for j < i. Otherwise (for all j < i, Mj ̸= Mi),
we sample

Xi ←$ {0, 1}n \ {x ∈ {0, 1}n : ∃j < i,Xj = x}.
2. Yi = Yj whenever Cj = Ci for j < i. Otherwise (for all j < i, Cj ̸= Ci), we

sample
Yi ←$ {0, 1}n \ {y ∈ {0, 1}n : ∃j < i,Yj = y}.

The ideal world transcript is defined as

Θ0 := (Tq,Mq,Cq,Xq,Yq).

Note that, we use the same notation to denote the random variables in both
the worlds. However, their probability distributions will be unambiguously de-
termined at the time of probability computations.

Bad Transcript and Its Analysis. A transcript (tq,mq, cq, xq, yq) is called
bad if and only if

• there is a collision among uq values where ui = xi + ti; or
• there is a collision among vq values where vi = yi + ti.

Let Ωbad denote the set of all bad transcripts. Now, Θ0 ∈ Ωbad if either for some
i < j, Xi+Ti = Xj +Tj or Yi+Ti = Yj +Tj . It is easy to see that for any fixed
i < j, Pr (Xi + Ti = Xj + Tj) ≤ (2n − 1)−1 and similarly for the other case. So,
by using the union bound,

Pr (∈ Ωbad) ≤
q(q − 1)

2n − 1
≤ q2

2n
.

Analysis of Good Transcripts. For a good transcript τ = (tq,mq, cq, xq, yq),
we know that (mq, xq), (yq, cq), and (uq, vq) are permutation consistent and
hence for the real world we have

Pr (Θ1 = ω) = Pr (πππ1(m
q) = xq)× Pr (πππ2(u

q) = vq)× Pr (πππ3(y
q) = cq)

=
1

(2n)r
× 1

(2n)q
× 1

(2n)s

26

where r and s denote the the number of distinct values present in mq and cq

respectively. In the ideal world, we have,

Pr (Θ0 = ω) = Pr (π̃ππ(tq,mq) = cq)× 1

(2n)r
× 1

(2n)s

≤ 1

(2n)q
× 1

(2n)r
× 1

(2n)s
,

where the final inequality follows from the fact that Pr (π̃ππ(tq,mq) = cq) maxi-
mizes when ti = tj for all 1 ≤ i < j ≤ q. The result follows from the H-coefficients
technique.

4.1 Birthday-bound Security of single key-variant of TNT

Now we show that even the single key-variant of TNT, which we denote as
1k-TNT, is sufficient to achieve birthday-bound security. Here we replace the
three underlying blockciphers by the same random permutations πππ of {0, 1}n.

πππ ⊕⊕⊕ πππ ⊕⊕⊕ πππm c
x y

t

Fig. 10: The single-keyed TNT construction.

Theorem 4. For all q ≥ 1, we have

Advtsprp
1k-TNT(q) ≤

13q2

2n
.

Proof. The statement is vacuously true for q ≥ 2n/2. We will use the H-coefficient
technique (see Corollary 1) to prove the statement for 1 ≤ q < 2n/2.

Let O0 and O1 be the oracles corresponding to 1k-TNT and a tweakable
random permutation π̃ππ, respectively. If (Ti,Mi) is the encryption query with a
tweak Ti we write the response as Ci. Similarly, if (Ti,Ci) is the decryption query
with a tweak Ti we write the response as Mi. After all queries have been made,
the two oracles release some additional data to the adversary, who is obviously
free to ignore this additional information, Xq and Yq.

In the real world, Xq and Yq correspond to the output of first permutation
and input of the third permutation, respectively, and thus they are well defined
from the definition of 1k-TNT. The real world transcript is thus defined as the
tuple

Θ1 := (Tq,Mq,Cq,Xq,Yq).

In the ideal system π̃ππ, we sample Xq,Yq as follows: For every i ∈ [q],

27

1. Xi = Xj whenever Mi = Mj for j < i. Otherwise (for all j < i, Mj ̸= Mi),
we sample

Xi ←$ {0, 1}n \ {x ∈ {0, 1}n : ∃j < i,Xj = x}.

2. Yi = Yj whenever Cj = Ci for j < i. Otherwise (for all j < i, Cj ̸= Ci), we
sample

Yi ←$ {0, 1}n \ {y ∈ {0, 1}n : ∃j < i,Yj = y}.

The ideal world transcript is defined as

Θ0 := (Tq,Mq,Cq,Xq,Yq).

Note that, we use the same notation to denote the random variables in both
the worlds. However, their probability distributions will be unambiguously de-
termined at the time of probability computations.

Bad Transcript and Its Analysis. A transcript (tq,mq, cq, xq, yq) is called
bad if and only if any of the following bad events occur:

bad1a: there is a collision between xq and cq values.

bad1b: there is a collision between yq and mq values.

bad2a: there is a collision among uq values where ui = xi + ti;

bad2b: there is a collision among vq values where vi = yi + ti.

bad3a: there is a collision between uq and mq values.

bad3b: there is a collision between vq and cq values.

bad4a: there is a collision between uq and yq values.

bad4b: there is a collision between vq and xq values.

Let Ωbad denote the set of all bad transcripts.

• Pr (badc1a) = Pr (badc1b) ≥ (2n − q)q/(2
n)q ≥ 1 − 2q2/2n, this is because for

badc1a to hold, xi has to be chosen from {0, 1}n \mq and it has to be distinct
from x1, . . . , xi−1.

• Pr (bad2a) ≤
∑

i<j Pr (Xi + Ti = Xj + Tj) ≤
(
q
2

)
/(2n − 1) ≤ q2/2n+1. The

same bound holds for Pr (bad2b).

• Pr (badc2a) = Pr (badc2b) ≥ (2n − q)q/(2
n)q ≥ 1 − 2q2/2n, this is because for

badc2a to hold, xi has to be chosen from {0, 1}n \ (mq + ti) and it has to be
distinct from x1, . . . , xi−1.

• Given the yq values the the probability of badc4a can be bounded in the same
way as badc3a. Similarly, given the xq values the the probability of badc4b
can be bounded in the same way as badc3b. Hence Pr (bad4a) = Pr (bad4b) ≤
2q2/2n.

Thus, we have

Pr (Θ0 ∈ Ωbad) ≤
13q2

2n
.

28

Analysis of Good Transcripts. For a good transcript τ = (tq,mq, cq, xq, yq),
we know that (mq, xq), (yq, cq), and (uq, vq) are permutation consistent non-
overlapping input-output pairs and hence for the real world we have

Pr (Θ1 = ω) = Pr (πππ(mq) = xq)× Pr (πππ(uq) = vq)× Pr (πππ(yq) = cq)

=
1

(2n)r+q+s

where r and s denote the the number of distinct values present in mq and cq

respectively. In the ideal world, we have,

Pr (Θ0 = ω) = Pr (π̃ππ(tq,mq) = cq)× 1

(2n)r
× 1

(2n)s

≤ 1

(2n)q
× 1

(2n)r
× 1

(2n)s
,

where the final inequality follows from the fact that Pr (π̃ππ(tq,mq) = cq) maxi-
mizes when ti = tj for all 1 ≤ i < j ≤ q. Thus

Pr (Θ1 = ω)

Pr (Θ0 = ω)
≥ (2n)q × (2n)r × (2n)s

(2n)q+r+s
≥ 1

Now the result follows from the H-coefficients technique.

5 The Generalized LRW Paradigm

Throughout, we fix two positive integers τ and n to denote the tweak and block
size in bits.

Let H̃ be a (τ, n)-tweakable permutation family, and H be a (τ, n)-hash func-

tion family. Let Ĥ = (H̃2×H), (H̃HH1, H̃HH2,HHH)← KG
(
Ĥ
)
, and (πππ1,πππ2)←$ Perm(n),

where KG
(
Ĥ
)
is an efficient probabilistic algorithm that returns a random triple

from Ĥ.
The LRW+ construction is a (τ, n)- tweakable permutation family, defined

by the following mapping (see Figure 11 for an illustration):

(t,m) 7→ H̃HH
−1

2

(
t,πππ2

(
HHH(t)⊕ πππ1

(
H̃HH1 (t,m)

)))
. (12)

5.1 Security of LRW+

We say that KG
(
Ĥ
)
is a pairwise independent sampling mechanism or PISM,

if (H̃HH1, H̃HH2,HHH)← KG
(
Ĥ
)
is a pairwise independent tuple.

29

H̃HH1
πππ1 ⊕⊕⊕ πππ2 H̃HH

−1

2
M C

X Y V U

HHH

T

∆

Fig. 11: The LRW+ construction.

We say that H̃ is an ϵ-almost universal tweakable permutation family (AUTPF)
if and only if for all distinct (t,m), (t′,m′) ∈ {0, 1}τ × {0, 1}n,

Pr
(
H̃HH←$ H̃ : H̃HH(t,m) = H̃HH(t′,m′)

)
≤ ϵ.

Theorem 5. Let τ, n ∈ N, and ϵ1, ϵ2 ∈ [0, 1]. If H̃ and H are respectively ϵ1-

AUTPF and ϵ2-AUHF, and KG
(
Ĥ
)
is a PISM, then, for q ≤ 2n−2, we have

Advtsprp
LRW+(q) ≤ ϵ(q, n),

where

ϵ(q, n) = 2q2ϵ1.51 +
9q4ϵ21
2n

+
32q4ϵ1
22n

+
13q4

23n
+ q2ϵ21 + q2ϵ1ϵ2 +

2q2

22n
. (13)

The proof is simply a generalization of Jha and Nandi’s proof [22] for 2-LRW2.
In particular, we use the expectation method with JN’s adaptation of mirror
theory [34,9] in the tweakable permutation settings. The complete proof is given
in the remainder of this section.

Note that, we are in the information-theoretic setting. In other words, we
consider computationally unbounded distinguisher A . Without loss of generality,
we assume that A is deterministic and non-trivial.

5.2 Oracle Description

The two oracles of interest are: O1, the real oracle, that implements LRW+;

and, O0, the ideal oracle, that implements π̃ππ ←$ P̃erm(τ, n). We consider an
extended version of these oracles, the one in which they release some additional
information. We use notations analogously as given in Figure 11 to describe the
transcript generated by A ’s interaction with its oracle.

30

Description of the real oracle, O1: The real oracle O1 faithfully runs
glrw. We denote the transcript random variable generated by A ’s interaction
with O1 by the usual notation Θ1, which is an 11-ary q-tuple

(Tq,Mq,Cq,Xq,Yq,Vq,Uq,∆q, H̃HH1, H̃HH2,HHH),

defined as follows: The initial transcript consists of (Tq,Mq,Cq), where for all
i ∈ [q]:

Ti : i-th tweak value Mi : i-th plaintext value Ci : i-th ciphertext value,

where, Cq = LRW+(Tq,Mq). At the end of the query-response phase O1 releases

some additional information (Xq,Yq,Vq,Uq,∆q, H̃HH1, H̃HH2,HHH), such that for all i ∈
[q]:

• (Xi,Yi): i-th input-output pair for πππ1,
• (Vi,Ui): i-th input-output pair for πππ2,

• ∆i: i-th internal masking, H̃HH1, H̃HH2,HHH: are the hash keys.

Note that Xq, Uq, and ∆q are completely determined by the hash keys H̃HH1, H̃HH2,HHH,
and the initial transcript (Tq,Mq,Cq). We include them anyhow for the sake of
convenience.

Description of the ideal oracle, O0: The ideal oracle O0 has access to π̃ππ.
Since O1 releases some additional information, O0 must generate these values as
well. The ideal transcript random variable Θ0 is also an 11-ary q-tuple

(Tq,Mq,Cq,Xq,Yq,Vq,Uq,∆q, H̃HH1, H̃HH2,HHH),

defined below. The initial transcript consists of (Tq,Mq,Cq), where for all i ∈ [q]:

Ti : i-th tweak value Mi : i-th plaintext value Ci : i-th ciphertext value,

where Cq = π̃ππ(Tq,Mq). Once the query-response phase is over O0 first samples

(H̃HH1, H̃HH2,HHH)←$ KG
(
Ĥ
)
, and then computes (Xq,Uq,∆q), as follows:

Xq := H̃HH1(T
q,Mq) Uq := H̃HH2(T

q,Cq) ∆q := HHH(Tq).

Note that, the conditional distributions of (Xq,Uq,∆q, H̃HH1, H̃HH2,HHH), given
(Tq,Mq,Cq) is identical in both the worlds. This means that Xq, Uq, and ∆q

are defined honestly.

Given the partial transcript Θ′
0 := (Tq,Mq,Cq,Xq,Uq,∆q, H̃HH1, H̃HH2,HHH) we wish

to characterize the hash key Ĥ̂ĤH := (H̃HH1, H̃HH2,HHH) as good or bad. We write Ĥbad

for the set of bad hash keys, and Ĥgood := Ĥ \ Ĥbad. We say that the hash key

Ĥ̂ĤH ∈ Ĥbad (or Ĥ̂ĤH is bad) if and only if one of the following predicates is true:

1. H1: ∃∗i, j ∈ [q] such that Xi = Xj ∧ Ui = Uj .

31

2. H2: ∃∗i, j ∈ [q] such that Xi = Xj ∧∆i = ∆j .

3. H3: ∃∗i, j ∈ [q] such that Ui = Uj ∧∆i = ∆j .

4. H4: ∃∗i, j, k, ℓ ∈ [q] such that Xi = Xj ∧ Uj = Uk ∧ Xk = Xℓ.

5. H5: ∃∗i, j, k, ℓ ∈ [q] such that Ui = Uj ∧ Xj = Xk ∧ Uk = Uℓ.

6. H6: ∃k ≥ 2n/2q,∃∗i1, i2, . . . , ik ∈ [q] such that Xi1 = · · · = Xik .

7. H7: ∃k ≥ 2n/2q,∃∗i1, i2, . . . , ik ∈ [q] such that Ui1 = · · · = Uik .

Case 1. Ĥ̂ĤH is bad: If the hash key Ĥ̂ĤH is bad, then Yq and Vq values are sampled
degenerately as Yi = Vi = 0 for all i ∈ [q]. It means that we sample without
maintaining any specific conditions, which will almost certainly lead to inconsis-
tencies.

Case 2. Ĥ̂ĤH is good: To characterize the transcript corresponding to a good
hash key, it will be useful to study a random bipartite edge-labeled graph asso-
ciated with (Xq,Uq,∆q).

Definition 5 (Transcript Graph). A transcript graph G = (X ,U , E) associ-
ated with (Xq,Uq,∆q), denoted G(Xq,Uq,∆q), is an undirected bipartite graph,
where X := {(Xi, 0) : i ∈ [q]} and U := {(Ui, 1) : i ∈ [q]} are the two partitions
of the vertex-set, and E := {((Xi, 0), (Ui, 1)) : i ∈ [q]} denotes the edge-set. We
also associate the label ∆i with edge ((Xi, 0), (Ui, 1)) ∈ E.

For all practical purposes we may drop the partition markers 0 and 1, for each
vertex (Xi, 0) ∈ X and (Ui, 1) ∈ U , as they can be easily distinguished from
the context and notations. Note that, the event Xi = Xj and Ui = Uj , although
extremely unlikely, will result in a parallel edge in G. Finally, each edge (Xi,Ui) ∈
E corresponds to a query index i ∈ [q], so we can equivalently view (and call)
the edge (Xi,Ui) as index (or query) i.

Consider the random transcript graph G(Xq,Uq) arising due to Ĥ̂ĤH ∈ Ĥgood.
Lemma 5 and Figure 12 characterizes the different types of possible components
in G(Xq,Uq).

type-1

.

type-2

.

type-3

.

type-4

.

type-5

Fig. 12: Enumerating all possible types of components of a transcript graph corre-
sponding to a good hash key: type-1 is the only possible component of size = 1 edge;
type-2 and type-3 are star components with center in X and U , respectively; type-4
and type-5 are the only possible components that are not isolated or star (can have
degree 2 vertices in both X and U). Note that, the vertex-coloring is only for illustra-
tion purposes.

32

Lemma 5. The transcript graph G(Xq,Uq,∆q) generated by a good hash key Ĥ̂ĤH
has the following properties:

1. G is simple, acyclic and has no isolated vertices.

2. G has no two adjacent edges i and j such that ∆i ⊕∆j = 0.

3. G has no component of size ≥ 2n/2q edges.

4. G has no component such that it has 2 distinct degree 2 vertices in X or U .

In fact the all possible types of components in G are enumerated in Figure 12.

The proof of Lemma 5 is elementary and left as an exercise for the reader.

In what follows, we describe the sampling of Yq and Vq conditioned on the

fact that Ĥ̂ĤH ∈ Ĥgood. We collect the indices i ∈ [q] corresponding to the edges
in all type-1, type-2, type-3, type-4, and type-5 components, in the index sets
I1, I2, I3, I4, and I5, respectively. Clearly, the five sets are disjoint, and [q] =
I1 ⊔ I2 ⊔ I3 ⊔ I4 ⊔ I5. Let I = I1 ⊔ I2 ⊔ I3. Consider a constrained system of
equations

L = {Yi ⊕ Vi = ∆i : i ∈ I},

with the constraint

ϕ : Xq ↭ Y q ∧ Uq ↭ V q.

The solution space for L, satisfying the constraint ϕ, is precisely the set

S = {(yI , vI) : yI ↭ XI ∧ vI ↭ UI ∧ yI ⊕ vI = ∆I}.

Given these definitions, the ideal oracle O0 samples (Yq,Vq) as follows:

• (YI ,VI)←$ S, i.e., O0 uniformly samples one valid assignment from the set
of all valid assignments for YI and VI .

• Let G \ CI denote the subgraph of G after the removal of all type-1, type-2,
and type-3 components. For each component C of G \ CI :
• Suppose (Xi,Ui) ∈ C corresponds to an edge in C, where both Xi and Ui

have degree ≥ 2. Then, Yi ←$ {0, 1}n and Vi = Yi ⊕∆i.

• For each edge (Xi′ ,Ui′) ̸= (Xi,Ui) ∈ C, either Xi′ = Xi or Ui′ = Ui.
Suppose, Xi′ = Xi. Then, Yi′ = Yi and Vi′ = Yi′ ⊕ ∆i′ . Now, suppose
Ui′ = Ui. Then, Vi′ = Vi and Yi′ = Vi′ ⊕∆i′ .

At this point, Θ0 = (Tq,Mq,Cq,Xq,Yq,Vq,Uq,∆q, H̃HH1, H̃HH2,HHH) is completely de-
fined. In this way we maintain both the consistency of equations of the form
Yi ⊕ Vi = ∆i (as in the case of real world), and the permutation consistency

within each component, given that Ĥ̂ĤH ∈ Ĥgood. However, there might be collisions
among Y or V values from different components.

33

5.3 Definition and Analysis of Bad Transcripts

Given the description of the transcript random variable corresponding to the
ideal oracle we can define the set of transcripts Ω as the set of all tuples
ω = (tq,mq, cq, xq, yq, vq, uq, δq, h̃1, h̃2, h), where tq ∈ ({0, 1}τ)q; mq, cq, yq, vq ∈
({0, 1}n)q; ĥ = (h̃1, h̃2, h) ∈ Ĥ; xq = h̃1(t

q,mq); uq = h̃2(t
q, cq); δq = h(tq); and

(tq,mq) ↭ (tq, cq).

Our bad transcript definition is inspired by two requirements:

1. Eliminate all xq, uq, and δq tuples such that both yq and vq are trivially
restricted by way of linear dependence. For example, consider the condition
H2. This leads to yi = yj , which would imply vi = yi ⊕ δi = yj ⊕ δj = vj .
Assuming i > j, vi is trivially restricted (= vj) by way of linear dependence.
This may lead to uq ↭̸ vq as ui may not be equal to uj .

2. Eliminate all xq, uq, yq, vq tuples such that xq ↭̸ yq or uq ↭̸ vq.

Among the two, requirement 2 is trivial as xq ↭ yq and uq ↭ vq is always true
for real world transcript. Requirement 1 is more of a technical one that helps in
the ideal world sampling of yq and vq.

Bad Transcript Definition: Throughout the discussion, we consider the
transcript

ω = (tq,mq, cq, xq, yq, vq, uq, δq, ĥ)

to characterize the bad transcripts.
We first designate certain transcripts as bad depending upon the character-

ization of hash keys. Inspired by the ideal world description, we say that a hash
key ĥ ∈ Ĥbad (or ĥ is bad) if and only if the following predicate is true:

H1 ∨ H2 ∨ H3 ∨ H4 ∨ H5 ∨ H6 ∨ H7.

We say that ω is hash-induced bad transcript, if ĥ ∈ Hbad. We write this event
as BAD1, and by a slight abuse of notations,4 we have

BAD1 =

7⋃
i=1

Hi. (14)

This takes care of the first requirement. For the second one we have to enumerate
all the conditions which might lead to xq ↭̸ yq or uq ↭̸ vq. Since we sample
degenerately when the hash key is bad, the transcript is trivially inconsistent
in this case. For good hash keys, if xi = xj (or ui = uj) then we always have
yi = yj (res. vi = vj); hence the inconsistency won’t arise. So, given that the
hash key is good, we say that ω is sampling-induced bad transcript, if one of the
following conditions is true:
for some α ∈ [5] and β ∈ {α, . . . , 5}, we have

• Ycollαβ : ∃i ∈ Iα, j ∈ Iβ , such that xi ̸= xj ∧ yi = yj , and

• Vcollαβ : ∃i ∈ Iα, j ∈ Iβ , such that ui ̸= uj ∧ vi = vj ,

4 We use the notation Hi to denote the event that the predicate Hi is true.

34

where Ii is defined as before in section 5.2. By varying α and β over all possible
values, we get all 30 conditions which might lead to xq ↭̸ yq or uq ↭̸ vq. Here
we remark that some of these 30 conditions are never satisfied due to the sam-
pling mechanism prescribed in section 5.2. These are Ycoll11, Ycoll12, Ycoll13,
Ycoll22, Ycoll23, Ycoll33, Vcoll11, Vcoll12, Vcoll13, Vcoll22, Vcoll23, and
Vcoll33. We listed them here only for the sake of completeness. We write the
combined event that one of the 30 conditions hold as BAD2. Again by an abuse
of notations, we have

BAD2 =
⋃

α∈[5],β∈{α,...,5}

(Ycollαβ ∪ Vcollαβ) . (15)

Finally, a transcript ω is called bad, i.e. ω ∈ Ωbad, if it is either a hash-induced
or a sampling-induced bad transcript. All other transcripts are called good. It
is easy to see that all good transcripts are attainable (as required in the H-
coefficient technique or the expectation method).

Bad Transcript Analysis: We analyze the probability of realizing a bad
transcript in the ideal world. By definition, this is possible if and only if one of
BAD1 or BAD2 occurs. So, we have

ϵbad = Pr (Θ0 ∈ Ωbad) = PrΘ0
(BAD1 ∪ BAD2)

≤ PrΘ0
(BAD1)︸ ︷︷ ︸
ϵh

+PrΘ0
(BAD2)︸ ︷︷ ︸
ϵs

. (16)

Lemma 6 upper bounds ϵh to q2ϵ21+ q2ϵ1ϵ2+2q2ϵ1.51 +16q4ϵ12
−2n and Lemma 7

upper bounds ϵs to 9q4ϵ212
−n. Substituting these values in (16), we get

ϵbad ≤ q2ϵ21 + q2ϵ1ϵ2 + 2q2ϵ1.51 +
16q4ϵ1
22n

+
9q4ϵ21
2n

. (17)

Lemma 6. ϵh ≤ q2ϵ21 + q2ϵ1ϵ2 + 2q2ϵ1.51 +
16q4ϵ1
22n

.

Proof. Using (14) and (16), we have

ϵh = Pr (H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 ∪ H6 ∪ H7) ≤
7∑

i=1

Pr (Hi) .

H1 is true if for some distinct i, j both Xi = Xj , and Ui = Uj . Now Ti = Tj =⇒
Mi ̸= Mj . Hence Xi ̸= Xj (since H̃HH1 is a tweakable permutation) and H1 is not

true. So suppose Ti ̸= Tj . Then, using the fact that H̃ is an ϵ-AUHF and KG is
a PISM, for a fixed i, j we get an upper bound of ϵ21. Furthermore, we have at
most

(
q
2

)
pairs of (i, j). Thus, Pr (H1) ≤

(
q
2

)
ϵ21.

Following a similar line of argument one can bound Pr (H2) ≤
(
q
2

)
ϵ1ϵ2 and

Pr (H3) ≤
(
q
2

)
ϵ1ϵ2.

35

In the remaining, we bound the probability of H4 and H6, while the probability
of H5 and H7 can be bounded analogously. Now, H4 is true if for some pairwise
distinct i, j, k, ℓ,

H̃HH1(Ti,Mi) = H̃HH1(Tj ,Mj)H̃HH2(Tj ,Cj) = H̃HH2(Tk,Ck)H̃HH1(Tk,Mk) = H̃HH1(Tℓ,Mℓ).

Again, using the fact that KG is a PISM, we have that the second equation is
independent of the other two equations. Using Lemma 2, we have

Pr (H4) ≤ q2ϵ1.51 .

For H6, for some i1, . . . , ik, we have

Xi1 = Xi2 = · · · = Xik ,

where k ≥ 2n/2q. Since, (tij ,mij) ̸= (til ,mil) for all j ̸= l, we can apply Corol-
lary 2 to get

Pr (H6) ≤
8q4ϵ1
22n

. ⊓⊔

Lemma 7. ϵs ≤
9q4ϵ21
2n

.

Proof. Using (15) and (16), we have

ϵs = Pr

 ⋃
α∈[5],β∈{α,...,5}

(Ycollαβ ∪ Vcollαβ)


≤
∑
α∈[5]

∑
β∈{α,...,5}

(Pr (Ycollαβ) + Pr (Vcollαβ)) .

We bound the probabilities of the events on the right hand side in groups as
given below:

1. Bounding
∑

α∈[3],β∈{α,...,3} Pr (Ycollαβ) + Pr (Vcollαβ): Recall that the

sampling of Y and V values is always done consistently for indices belonging
to I = I1 ⊔ I2 ⊔ I3. Hence,∑

α∈[3],β∈{α,...,3}

Pr (Ycollαβ) + Pr (Vcollαβ) = 0, (18)

2. Bounding
∑

α∈[3],β∈{4,5} Pr (Ycollαβ) + Pr (Vcollαβ): Let’s consider the

event Ycoll14, which translates to there exist indices i ∈ I1 and j ∈ I4 such
that Xi ̸= Xj ∧ Yi = Yj . Since j ∈ I4, there must exist k, ℓ ∈ I4 \ {j}, such that
one of the following happens

Xj = Xk ∧ Uk = Uℓ

Uj = Uk ∧ Xk = Xℓ

Xj = Xk ∧ Uj = Uℓ.

36

We analyze the first case, while the other two cases can be similarly bounded.
To bound the probability of Ycoll14, we can look at the joint event

E : ∃i ∈ I1,∃∗j, k, ℓ ∈ I4, such that Yi = Yj ∧ Xj = Xk ∧ Uk = Uℓ.

Note that the event Yi = Yj occurs with exactly 2−n probability conditioned on
the event Xj = Xk ∧ Uk = Uℓ. Thus, we get

Pr (E) = Pr (∃i ∈ I1,∃∗j, k, ℓ ∈ I4, such that Yi = Yj ∧ Xj = Xk ∧ Uk = Uℓ)

≤
∑
i∈I1

∑
j<k<ℓ∈I4

Pr (Xj = Xk ∧ Uk = Uℓ)× Pr (Yi = Yj | Xj = Xk ∧ Uk = Uℓ)

≤ q

(
q

3

)
ϵ21
2n

,

where the last inequality follows from the AUHF property of H̃, the PISM prop-
erty of KG, and the uniform randomness of Yj . The probability of the other two
cases are identically bounded, whence we get

Pr (Ycoll14) ≤ 3q

(
q

3

)
ϵ21
2n

.

We can bound the probabilities of Ycoll24, Ycoll34, Ycollα5, Vcollα4, and
Vcollα5, for α ∈ [3], in a similar manner as in the case of Ycoll14. So, we skip
the argumentation for these cases, and summarize the probability for this group
as ∑

α∈[3],β∈{4,5}

Pr (Ycollαβ) + Pr (Vcollαβ) ≤
6q4ϵ21
2n

. (19)

3. Bounding
∑

α∈{4,5},β∈{α,5} Pr (Ycollαβ) + Pr (Vcollαβ): Consider the event

Ycoll44, which translates to there exists distinct indices i, j ∈ I4 such that
Xi ̸= Xj ∧ Yi = Yj . Here as i, j ∈ I4, there must exist k, ℓ ∈ I4 \ {j} such that
one of the following happens

Xj = Xk ∧ Uk = Uℓ

Uj = Uk ∧ Xk = Xℓ

Xj = Xk ∧ Uj = Uℓ.

The analysis of these cases is similar to 2 above. So, we skip it and provide the
final bound

Pr (Ycoll44) ≤ 3q

(
q

3

)
ϵ21
2n

.

The probabilities of all the remaining events in this group can be bounded in a
similar fashion. ∑

α∈{4,5},β∈{α,5}

Pr (Ycollαβ) + Pr (Vcollαβ) ≤
3q4ϵ21
2n

. (20)

The result follows by combining (18)-(20), followed by some simplifications. ⊓⊔

37

5.4 Good Transcript Analysis

From section 5.2, we know the types of components present in the transcript
graph corresponding to a good transcript ω are exactly as in Figure 12. Let
ω = (tq,mq, cq, xq, yq, vq, uq, δq, h̃1, h̃2, h) be the good transcript at hand. From
the bad transcript description of section 5.3, we know that for a good transcript
(tq,mq) ↭ (tq, cq), xq ↭ yq, vq ↭ uq, and yq ⊕ vq = δq.

First, we add some new parameters with respect to ω to aid the remaining
analysis.

For i ∈ [5], let ci(ω) and qi(ω) denote the number of components and number
of indices (corresponding to the edges), respectively of type-i in ω. Note that
q1(ω) = c1(ω), qi(ω) ≥ 2ci(ω) for i ∈ {2, 3}, and qi(ω) ≥ 3ci(ω) for i ∈ {4, 5}.
Obviously, for a good transcript q =

∑5
i=1 qi(ω).

Let (t′1, t
′
2, · · · , t′r) be an arbitrary ordering of S(tq), and for all i ∈ [r], let µi

denote the multiplicity of t′i in the multiset M(tq), i.e., r ≤ q and
∑r

i=1 µi = q. In
addition, let µ′

i denote the multiplicity of t′i in the multiset M(tI), i.e.,
∑r

i=1 µ
′
i =

|I|.
Let (δ′1, δ

′
2, · · · , δ′s) be an arbitrary ordering of S(δI), and for all i ∈ [s], let νi

denote the multiplicity of δ′i in the multiset M(δI), i.e., s ≤ |I| and
∑s

i=1 νi = |I|.
For all these parameters, we will drop the ω parametrization whenever it is

understood from the context.

Interpolation probability for the real oracle: In the real oracle, Ĥ̂ĤH←
KG
(
Ĥ
)
, πππ1 is called exactly p1 + 2c4 + q5 − c5 times and πππ2 is called exactly

p2 + q4 − c4 + 2c5 times, where p1 := q1 + c2 + q3 and p2 := q1 + q2 + c3. Thus,
we have

Pr (Θ1 = ω) = PrKG
(
Ĥ̂ĤH = ĥ

)
× 1

(2n)p1+2c4+q5−c5

× 1

(2n)p2+q4−c4+2c5

. (21)

Interpolation probability for the ideal oracle: In the ideal oracle,
the sampling is done in parts:

I. π̃ππ sampling : We have

Pr (π̃ππ(tq,mq) = cq) ≤ 1∏r
i=1(2

n)µi

.

II. Hash key sampling : This is identical to the real world, and simply given by

PrKG
(
Ĥ̂ĤH = ĥ

)
.

III. Internal variables sampling : The internal variables Yq and Vq are sampled
in two stages.

(A). type-1, type-2 and type-3 sampling : Recall the sets I1, I2, and I3, from
section 5.3. Consider the system of equation

L = {Yi ⊕ Vi = δi : i ∈ I}.

From Figure 12 we know that L is cycle-free and non-degenerate. Fur-
ther, ξmax(L) ≤ 2n/2q, since the transcript is good. So, we can apply

38

Theorem 1 to get a lower bound on the the number of valid solutions,
|S(L)| for L. Using the fact that (YI ,VI)←$ S(L), and Theorem 1, we
have

Pr
(
(YI ,VI) = (yI , vI)

)
≤

∏s
i=1(2

n)νi

ζ(ω)(2n)q1+c2+q3(2
n)q1+q2+c3

,

where

ζ(ω) =

(
1− 13q4

23n
− 2q2

22n
−

(
c2+c3∑
i=1

η2c1+i

)
4q2

22n

)
,

and ηi denotes the number of edges in the i-th component for all i ∈
[c1 + c2 + c3].

(B). type-4, and type-5 sampling : For the remaining indices, one value is sam-
pled uniformly for each of the components, i.e. we have

Pr
((

Y[q]\I ,V[q]\I
)
=
(
y[q]\I , v[q]\I

))
=

1

2n(c4+c5)
.

By combining I, II, III, and rearranging the terms, we have

Pr (Θ0 = ω) ≤ PrKG
(
Ĥ̂ĤH = ĥ

)
× 1

ζ(ω)
×

∏s
i=1(2

n)νi∏r
i=1(2

n)µi
(2n)p1

(2n)p2
(2n)c4+c5

.

(22)

5.5 Ratio of Interpolation Probabilities

On dividing (21) by (22), and simplifying the expression, we get

Pr (Θ1 = ω)

Pr (Θ0 = ω)
≥ ζ(ω) ·

∏r
i=1(2

n)µi∏s
i=1(2

n)νi
(2n − p1 − c4)c4+q5−c5(2

n − p2 − c5)q4−c4+c5

1
≥ ζ(ω) ·

∏r
i=1(2

n)µ′
i

∏r
i=1(2

n − µ′
i)µi−µ′

i∏s
i=1(2

n)νi(2
n − p1 − c4)c4+q5−c5(2

n − p2 − c5)q4−c4+c5

2
≥ ζ(ω) ·

∏r
i=1(2

n − µ′
i)µi−µ′

i

(2n − p1 − c4)c4+q5−c5(2
n − p2 − c5)q4−c4+c5

}
A

3
≥ ζ(ω). (23)

At inequality 1, we simply rewrite the numerator. Further, r ≥ s, as number
of distinct internal masking values is at most the number of distinct tweaks,
and S(tI) compresses to S(δI). So, using Proposition 1, we can justify inequality
2. At inequality 2, for i ∈ {2, 3, 4, 5}, ci(ω) > 0 if and only if r ≥ 2. Also,
µ′
i ≤ c1 + c2 + c3 ≤ p1 + c4 and µ′

i ≤ p2 + c5 for i ∈ [r]. Similarly, µi ≤
c1 + c2 + c3 + 2c4 + 2c5 ≤ p1 + 2c4 + q5 − c5, and µi ≤ p2 + q4 − c4 + 2c5. Also,∑r

i=1 µi−µ′
i = q4+q5. Thus, A satisfies the conditions laid out in Proposition 2,

and hence A ≥ 1. This justifies inequality 3.

39

We define ϵratio : Ω → [0,∞) by the mapping

ϵratio(ω) = 1− ζ(ω).

Clearly ϵratio is non-negative and the ratio of real to ideal interpolation proba-
bilities is at least 1 − ϵratio(ω) (using (23)). Thus, we can use the expectation
method to get

Advtsprp
LRW+(q) ≤

2q2

22n
+

13q4

23n
+

4q2

22n
Ex

(
c2+c3∑
i=1

η2c1+i

)
+ ϵbad. (24)

Let ∼1 (res. ∼2) be an equivalence relation over [q], such that α ∼1 β (res.
α ∼2 β) if and only if Xα = Xβ (res. Uα = Uβ). Now, each ηi random variable
denotes the cardinality of some non-singleton equivalence class of [q] with respect
to either ∼1 or ∼2. Let P1

1 , . . . ,P1
r and P2

1 , . . . ,P2
s denote the non-singleton

equivalence classes of [q] with respect to ∼1 and ∼2, respectively. Further, for
i ∈ [r] and j ∈ [s], let ni = |P1

i | and n′j = |P2
j |. Then, we have

Ex

(
c2+c3∑
i=1

η2c1+i

)
≤ Ex

 r∑
j=1

nj
2

+ Ex

(
s∑

k=1

n′k
2

)
≤ 4q2ϵ1. (25)

where the first inequality follows from linearity, and the second inequality follows
from Lemma 4. Theorem 5 then follows from (17), (24), and (25). ⊓⊔

6 Instantiating LRW+

In this section, we show that any cascaded LRW construction with r ≥ 2 rounds
can be viewed as an instance of LRW+. Thus, they can be proven secure up to
23n/4 queries provided the derived hash functions are 2−n-universal. Note that,

it would be sufficient to define H̃HH1, H̃HH2, HHH, πππ1 and πππ2 for each construction. In the
following discussion, let πππ′r ←$ Perm(n) and HHH′r ←$Hr, where H is an ϵ-AUHF.

6.1 Cascaded LRW1

For r ≥ 2, the r-LRW1[πππr] construction takes as input (t,m) ∈ {0, 1}n × {0, 1}n
and returns c ∈ {0, 1}n, which is defined as follows:
Let y0 = m and for all i ∈ [r]:

xi := t⊕ yi−1,

yi := πππ′
i(xi),

and finally c := yr. The inverse of r-LRW1 is analogously defined.

40

Cascaded LRW1 as an Instance of LRW+. For some r ≥ 2, r′ = ⌊r/2⌋, and
any (t, k,m) such that r-LRW1(t,m) = c, let

H̃HH1(t,m) := xr′ HHH(t) := t H̃HH2(t, c) := yr′+1,

and
πππ1 := πππ′

r′ πππ2 := πππ′−1
r′+1.

Clearly, the LRW+ instance so defined is same as r-LRW1. Furthermore, assum-

ing r ≥ 4, πππ′r ←$ Perm(n), KG is a PISM, H̃HH1 and H̃HH2 are (2n − 1)−1-AUTPF,
and HHH is 0-AUHF. Thus, using Theorem 5, we have the following corollary on
the security of cascaded LRW1.

Corollary 3. For r ≥ 4, we have

Advtsprp
r-LRW1(q) ≤

2q2

(2n − 1)1.5n
+

54q4

(2n − 1)3
+

3q2

(2n − 1)2
.

In particular, for r = 4, we have proved CCA security for 4-LRW1 up to 23n/4

queries.

6.2 Cascaded LRW2

For r ≥ 1, the r-LRW2[πππr,HHH′r] construction takes as input (t,m) ∈ {0, 1}τ ×
{0, 1}n and returns c ∈ {0, 1}n, which is defined as follows:
Let y0 = m, HHH′

0 be a constant function that returns 0n, and for all i ∈ [r]:

xi := HHH′
i−1(t)⊕HHH′

i(t)⊕ yi−1,

yi := πππ′
i(xi),

and finally c := HHH′
r(t)⊕ yr. The inverse of r-LRW2 is analogously defined.

Cascaded LRW2 as an Instance of LRW+. For some r ≥ 2, r′ = ⌊r/2⌋, and
any (t, k,m) such that r-LRW2(t,m) = c, let

H̃HH1(t,m) := xr′ HHH(t) := HHH′
r′(t)⊕HHH′

r′+1(t) H̃HH2(t, c) := yr′+1,

and
πππ1 := πππ′

r′ πππ2 := πππ′−1
r′+1.

Clearly, the LRW+ instance so defined is same as r-LRW2. Furthermore, assum-

ing πππ′r ←$ Perm(n) and HHH′r ←$ Hr, KG is a PISM, H̃HH1 and H̃HH2 are ϵ-AUTPF,
and HHH is ϵ-AUHF Thus, using Theorem 5, we have the following corollary on the
security of cascaded LRW2.

Corollary 4. For r ≥ 2, we have

Advtsprp
r-LRW2(q) ≤ 2q2ϵ1.5 +

9q4ϵ2

2n
+

32q4ϵ

22n
+

13q4

23n
+ 2q2ϵ2 +

2q2

22n
.

In particular, for r = 2, assuming ϵ = O (2−n), we have reproved the CCA
security for 2-LRW2 up to 23n/4 queries.

41

7 Conclusion

In this paper, we gave a birthday-bound CCA distinguisher on TNT, thereby
completely invalidating its beyond-the-birthday bound security claims. Further,
we showed that our attack is tight by reestablishing a birthday bound security
for TNT and its single-keyed variant.

In addition, we showed that by adding just one more block cipher call, the
security can be amplified to 3n/4-bit even in the CCA setting. We note that
our generalization of the cascaded LRW constructions could be of independent
interest.

Acknowledgments: The authors would like to thank Chun Guo for his com-
ments on the attacks presented on TNT. Ashwin Jha carried out this work in
the framework of the French-German-Center for Cybersecurity, a collaboration
of CISPA and LORIA.

References

1. Roberto Avanzi. The qarma block cipher family. almost mds matrices over
rings with zero divisors, nearly symmetric even-mansour constructions with non-
involutory central rounds, and search heuristics for low-latency s-boxes. IACR
Transactions on Symmetric Cryptology, pages 4–44, 2017.

2. Zhenzhen Bao, Chun Guo, Jian Guo, and Ling Song. TNT: How to Tweak a Block
Cipher. In Advances in Cryptology - EUROCRYPT 2020, Proceedings, Part II,
pages 641–673, 2020.

3. Zhenzhen Bao, Chun Guo, Jian Guo, and Ling Song. Tnt: how to tweak a block
cipher. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 641–673. Springer, 2020.

4. Augustin Bariant and Gaëtan Leurent. Truncated boomerang attacks and applica-
tion to aes-based ciphers. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 3–35. Springer, 2023.

5. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The skinny fam-
ily of block ciphers and its low-latency variant mantis. In Advances in Cryptology–
CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part II 36, pages 123–153. Springer,
2016.

6. Srimanta Bhattacharya and Mridul Nandi. A note on the chi-square method:
A tool for proving cryptographic security. Cryptography and Communications,
10:935–957, 2018.

7. Ritam Bhaumik, Eik List, and Mridul Nandi. ZCZ - Achieving n-bit SPRP Se-
curity with a Minimal Number of Tweakable-Block-Cipher Calls. In Advances in
Cryptology - ASIACRYPT 2018, Proceedings, Part I, pages 336–366, 2018.

8. Debrup Chakraborty and Palash Sarkar. A General Construction of Tweakable
Block Ciphers and Different Modes of Operations. IEEE Trans. Information The-
ory, 54(5):1991–2006, 2008.

9. Benôıt Cogliati, Avijit Dutta, Mridul Nandi, Jacques Patarin, and Abishanka Saha.
Proof of Mirror Theory for a Wide Range of $\xi {\max }$. In Advances in
Cryptology - EUROCRYPT 2023, Proceedings, Part IV, pages 470–501, 2023.

42

10. Paul Crowley. Mercy: A Fast Large Block Cipher for Disk Sector Encryption. In
Fast Software Encryption - FSE 2000, Proceedings, pages 49–63, 2000.

11. Joan Daemen and Vincent Rijmen. Probability distributions of correlation and
differentials in block ciphers. Journal of Mathematical Cryptology, 1(3):221–242,
2007.

12. Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-theoretic indis-
tinguishability via the chi-squared method. In Annual International Cryptology
Conference, pages 497–523. Springer, 2017.

13. Nilanjan Datta, Shreya Dey, Avijit Dutta, and Sougata Mondal. Cascading Four
Round LRW1 is Beyond Birthday Bound Secure. IACR Cryptol. ePrint Arch.,
page 1242, 2023.

14. Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Improved
Masking for Tweakable Blockciphers with Applications to Authenticated Encryp-
tion. In Advances in Cryptology - EUROCRYPT 2016, Proceedings, Part I, pages
263–293, 2016.

15. Chun Guo, Jian Guo, Eik List, and Ling Song. Towards Closing the Security Gap
of Tweak-aNd-Tweak (TNT). In Advances in Cryptology - ASIACRYPT 2020,
Proceedings, Part I, pages 567–597, 2020.

16. Chun Guo, Jian Guo, Eik List, and Ling Song. Towards closing the security gap
of tweak-and-tweak (tnt). In Advances in Cryptology–ASIACRYPT 2020: 26th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Daejeon, South Korea, December 7–11, 2020, Proceedings, Part I
26, pages 567–597. Springer, 2020.

17. Zhenzhen Guo, Gaoli Wang, Orr Dunkelman, Yinxue Pan, and Shengyuan Liu.
Tweakable sm4: How to tweak sm4 into tweakable block ciphers? Journal of In-
formation Security and Applications, 72:103406, 2023.

18. Viet Tung Hoang and Stefano Tessaro. Key-Alternating Ciphers and Key-Length
Extension: Exact Bounds and Multi-user Security. In Advances in Cryptology -
CRYPTO 2016, Proceedings, Part I, pages 3–32, 2016.

19. Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin. ZMAC:
A Fast Tweakable Block Cipher Mode for Highly Secure Message Authentication.
In Advances in Cryptology - CRYPTO 2017, Proceedings, Part III, pages 34–65,
2017.

20. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Advances in Cryptology - ASIACRYPT
2014, Proceedings, Part II, pages 274–288, 2014.

21. Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. The deoxys aead
family. Journal of Cryptology, 34(3):31, 2021.

22. Ashwin Jha and Mridul Nandi. Tight Security of Cascaded LRW2. J. Cryptol.,
33(3):1272–1317, 2020.

23. Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In Fast Software Encryption - FSE 2011. Revised Selected
Papers, pages 306–327, 2011.

24. Rodolphe Lampe and Yannick Seurin. Tweakable Blockciphers with Asymptoti-
cally Optimal Security. In Fast Software Encryption - FSE 2013, Revised Selected
Papers, pages 133–151, 2013.

25. Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable Block-
ciphers with Beyond Birthday-Bound Security. In Advances in Cryptology -
CRYPTO 2012, Proceedings, pages 14–30, 2012.

26. Gregor Leander. Small scale variants of the block cipher present. Cryptology ePrint
Archive, 2010.

43

27. Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable Block Ci-
phers. In Advances in Cryptology - CRYPTO 2002, Proceedings, pages 31–46,
2002.

28. Bart Mennink. Towards Tight Security of Cascaded LRW2. In Theory of Cryp-
tography - TCC 2018, Proceedings, Part II, pages 192–222, 2018.

29. Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and Its Dual: Towards
Optimal Security Using Mirror Theory. In Advances in Cryptology - CRYPTO
2017, Proceedings, Part III, pages 556–583, 2017.

30. Kazuhiko Minematsu. Improved Security Analysis of XEX and LRW Modes. In
Selected Areas in Cryptography - SAC 2006, Revised Selected Papers, pages 96–113,
2006.

31. Alexander Moch and Eik List. Parallelizable MACs Based on the Sum of PRPs
with Security Beyond the Birthday Bound. In Applied Cryptography and Network
Security - ACNS 2019, Proceedings, pages 131–151, 2019.

32. Luke O’Connor. On the distribution of characteristics in bijective mappings. In
Advances in Cryptology—EUROCRYPT’93: Workshop on the Theory and Appli-
cation of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings
12, pages 360–370. Springer, 1994.

33. Jacques Patarin. The ”Coefficients H” Technique. In Selected Areas in Cryptogra-
phy - SAC 2008, Revised Selected Papers, pages 328–345, 2008.

34. Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of Linear
Equalities and Linear Non Equalities for Cryptography. IACR Cryptol. ePrint
Arch., page 287, 2010.

35. Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated Encryption
Modes for Tweakable Block Ciphers. In Advances in Cryptology - CRYPTO 2016,
Proceedings, Part I, pages 33–63, 2016.

36. Gordon Procter. A Note on the CLRW2 Tweakable Block Cipher Construction.
IACR Cryptology ePrint Archive, 2014:111, 2014.

37. Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refine-
ments to Modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT 2004,
Proceedings, pages 16–31, 2004.

38. Rich Schroeppel and Hilarie Orman. The Hasty Pudding Cipher. AES candidate
submitted to NIST, 1998.

39. Yaobin Shen, Thomas Peters, François-Xavier Standaert, Gaëtan Cassiers, and
Corentin Verhamme. Triplex: an Efficient and One-Pass Leakage-Resistant Mode
of Operation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):135–162, 2022.

40. Zhongliang Zhang, Zhen Qin, and Chun Guo. Just tweak! Asymptotically optimal
security for the cascaded LRW1 tweakable blockcipher. Des. Codes Cryptogr.,
91(3):1035–1052, 2023.

41. Zhongliang Zhang, Zhen Qin, and Chun Guo. Just tweak! asymptotically opti-
mal security for the cascaded lrw1 tweakable blockcipher. Designs, Codes and
Cryptography, 91(3):1035–1052, 2023.

A On the Security Proof of BaoGGS20

The authors of [2] presented a CCA security proof of TNT that clearly con-
tradicts our attack. Assuming our attack is correct, given it is supported by
practical verification, theoretical analysis and practical estimations, the contra-
diction must stem from a bug in the proof. The proof follows the χ2 method

44

proposed by Dai et al. [12]. Compared to other proof methods, this method is
quite recent. After carefully studying the security proof, we identified an issue
that involves a fundamental, yet subtle, case analysis. The main technique of
the proof, from a high level point of view, works as follows:

• A deterministic distinguisher observes the first l − 1 queries and selects
whether the next query is a forward or inverse query as well as the tweak Tl

and the plaintext Ml or ciphertext Cl.
• Find the probability distribution of all the internal values of the construction
given the first l− 1 query. We call a set of possible vectors of internal values
Inter.

• For each possible Inter, estimate the probability distribution of each possible
response to query l.

The authors then analyze different possible cases and apply the χ2 method on
the resulting distribution.

In order to better understand the issue, we analyze our distinguisher in the
flow of the security proof. The distinguisher in Algorithm 1 works as follows:

• If l is odd, it makes a forward query (X0, Tl−2 + 1).
• If l is even, it makes a backward query (Yl−1, Tl−1 ⊕∆).

Let (So, Uo, Vo) are the output of π1, input of π2 and output of π2 in the last
(odd) query l − 1, and we estimate the probability

Pr[Xl = Xi|Xi ∈ Ql and i is odd].

Let (Si, Ui, Vi) and (Se, Ue, Ve) are the corresponding internal values of Xi and
Xl, respectively. Then, we know that

Vo ⊕ Ve = ∆

and
Pr[Xl = Xi|Xi ∈ Ql and i is odd] =

Pr[Se = S
′
|X

′
∈ Ql and i is odd] =

Pr[Ue ⊕ Tl−1 ⊕∆ = Ui ⊕ Ti−1 ⊕∆|X
′
∈ Ql and i is odd] =

Pr[Ue ⊕ Ui = Tl−1 ⊕ Ti−1|X
′
∈ Ql and i is odd] =

Since X0 is fixed for all odd queries, so is So. Thus, Uo ⊕ Tl−1 = Ui−1 ⊕ Ti−1.
Therefore,

Pr[Ue ⊕ Ui = Uo ⊕ Ui−1|X
′
∈ Ql and i is odd] =

Pr[Ue ⊕ Uo = Ui ⊕ Ui−1|X
′
∈ Ql and i is odd] ≈ |Sδ,∆| − 1

2n

where δ = Uo ⊕ Ue. As discussed in the analysis of the distinguisher, this prob-
ability depends on the DDT of π2 and is not the same for every permutation.
Thus, it deviates from the distribution assumed in [2]. In terms of the proof

45

presented in [2], the event we are discussing belongs to case 5 (case 1 if we swap
all the forward and backward queries). In this case, the authors claim

Pr[Xl = Xi|Xi ∈ Ql and i is odd] ≤ 4l

22n
+

1

2n − l

(Equation (9) of [2]). It is easy to see that our analysis/distinguisher violates
this bound. We argue that the distribution assumed for case 5/case 1 - class B
erroneously underestimates the probability of certain bad events, and by chang-
ing the distribution to account for these bad events, the proof argumentation
falls apart. Besides, it is not clear how to do so in the existing proof framework
using the χ2 method.

In particular, we look at the term 4l/22n. The term stems from the following
argument in [2]:

“It remains to bound Pr[Inter ∈ A|Ql−1]. For this, note that once the values
in Inter except for (Sl,Wl) have been fixed, the number of choices for (Sl,Wl)
is at least (2n − α(Ql−1))(2

n − γ(Ql−1)) ≥ 22n/4, where α(Ql−1) ≥ q ≥ 2n/2
and γ(Ql−1) ≥ q ≥ 2n/2 are the number of distinct values in (S1, . . . Sl−1)
and (W1, . . .Wl−1). Out of these ≥ 22n/4 choices, the number of choices that
ensure the desired property TNT(Tl, Xl) = Yl is at most l−1, which results from
the following selection process: we first pick a pair of input-oput (Ui, Vi) with
i ≤ l − 1, and then set Sl = Tl ⊕ Ui and Wl = Tl ⊕ Vi. Therefore, Pr[Inter ∈
A|Ql−1] ≤ 4l/22n,and thus the upper bound in this case is

4l

22n
+

1

2n − l
′′.

Consider the first case of the 4-way multi-collision in Figure 6, which we recall
in Figure 13. We note that if the triplet (δ, So, Uo) is known, then the collision
happens with probability 1, which puts it in class A. Then, what remains is to
calculate what is the probability that the adversary can force this collision, i.e.,

Pr[Inter ∈ A|Ql−1] = Pr[Ue ⊕ Uo = T1 ⊕ T2|Ql−1],

where T1 and T2 are determined by the adversary during previous queries. This
means than once Uo in Inter is fixed (both Uo and Ue belong to a queries
i, j < l), Ue has at most 2n − 1− α(Ql−1) choices

5, where α(Ql−1) ≤ q ≤ 2n−1

is the number of distinct values in {U1, . . . Ul}\{Uo, Ue} only 1 of them enforces
the collision. In other words,

Pr[Inter ∈ A|Ql−1] =

Pr[Ue ⊕ Uo = T1 ⊕ T2|Ql−1]

≥ 1

2n − 1− α(Ql−1)

≥ 1

2n − 1
≫ 4l

22n
,

46

π1

So Uo

T1 = So ⊕ Uo

π2

∆

V
(0)
o V

(0)
e

π−1
2

So ⊕ Uo ⊕∆

Ue = Uo ⊕ δ So ⊕ δ ⊕∆

π−1
1M X

π1

So Uo ⊕ δ

T2 = So ⊕ Uo ⊕ δ

π2

∆

V
(0)
e V

(0)
o

π−1
2

So ⊕ Uo ⊕ δ ⊕∆

Uo So ⊕ δ ⊕∆

π−1
1M X

Fig. 13: A class A Collision.

when l≪ q, contradicting Equation (9) of [2].
Note that the values of Vi and Wi for i < l did not affect the behaviour of the

collision or the probability that Inter is in class A. It seems the ambiguity may
stem from applying the χ2 method to a primitive with two dependent functions
(Ẽ and its inverse). By cascading forward and backward queries, we managed
to eliminate Wi for all 1 ≤ i ≤ q and the values of Wl do not matter for the
attack. Similarly, by fixing the difference between Vo and Ve to a constant ∆, we
minimize the effect of their exact values on the attack.

A potential fix of this issue could be to add a tweak dependent operation
after π3, to prevent π3 and π−1

3 from cancelling each other out. However, such
solution may introduce new issues and is beyond out scope of study. On the
other hand, we argue that fixing the proof using the exact same method is
neither required nor needed, since [41] already provides a birthday bound proof
and our distinguisher shows its tightness.

5 We use the notation of [2] in this part.

47

	Tight Security of and Beyond[0.5em] Attacks, Proofs and Possibilities for the Cascaded LRW Paradigm

