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Event-triggered Joint Connectivity Topology Containment Control For
Unmanned Surface Ship Systems Under Time Delay
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For the containment control problem of unmanned surface ship systems (USSs) with time delay and limited
communication bandwidth, this paper proposes a distributed event-triggered control strategy using a joint
connection switching topology. The communication of unmanned surface ship systems inevitably has delay and
the topology is time-varying. Firstly, a joint connectivity switching topology model and the state control method
of USSs with delay are designed. Secondly, an event-triggered control mechanism is established, and a new
trigger condition of USSs communication is designed. In case of time delay, the USS updates its information
and sends it to its neighboring USSs under time delay, minimizes communication consumption and saves
energy, and rapidly converges to the steady state. Based on the Lyapunov method, the stability of the system is
analyzed, and the Zeno behavior when event-triggered is excluded. It is proved that under the designed control
strategy, if the communication topology is jointly connected in a certain time, the follower USS can converge to
the convex hull formed by multiple leader USS within a certain delay range. Finally, the correctness and validity
of the conclusions are verified by simulation.
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1. Introduction

USS is an important tool for conducting operations at sea,
such as environmental monitoring, biological detection,
search and rescue, and sensor networks. Therefore, with
the development of technology, the motion control of USSs
has received considerable attention [1, 2]. The cooperative
control of the USSs has been widely used in the military
and civil fields, and many scholars have done a lot of re-
lated research. The current research has gone beyond the
control scope of a single USS, and many works are devoted
to the cooperative control of multiple USS. Clearly, coop-
erative control enables individual USS to perform more
challenging tasks, thus increasing efficiency and effective-
ness [3, 4]. Cooperative motion control scenarios include

coordinated trajectory tracking [5], coordinated target track-
ing [6] and coordinated target containment [7]. Among
them, the coordination target containment system is com-
posed of multiple leaders and multiple followers. Under
the corresponding control law, the followers are continu-
ously enveloped in the minimum convex hull enclosed by
the leader and complete the specific task.

In recent years, target tracking of maritime ships has
been widely studied [8, 9]. In [8], a target tracking con-
troller was developed for a surface ship with random dis-
turbances, which was used to track a target with limited
torque under environmental disturbances. Authors pro-
posed a target tracking control law for autonomous surface
ships to track a target under the constraints of line of sight
and angle in [9].
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However, in practice, the follower may not be able to
obtain the speed information of the target due to the lim-
ited sensing ability. To track leaders whose dynamics are
unknown, a variety of control methods can be used [10–
12]. Among them, in [12] authors developed a linear target
tracking controller for an underactuated unmanned surface
vehicle, which was used to track a moving target at high
speed. However, the methods proposed in the above work
are all target tracking consistency. These methods have
somewhat limited the use of the USS in challenging mis-
sions, such as using the USS fleet to cooperatively track un-
derwater submarines. Because the follower can only track
and control a single target, and the communication topol-
ogy of the system usually changes due to environmental
interference, complete error-free dynamic target tracking
cannot be achieved. Therefore, it is of considerable sig-
nificance and application value to study the containment
control problem of unmanned surface ship system with
time delay and limited communication bandwidth when
it is applied to complete coordination tasks such as sea
dangerous goods disposal, enemy search, fire rescue and
cooperative transportation.

There have been some research results on the contain-
ment control of UAVs, unmanned ground vehicles, and
unmanned underwater vehicles [13–16]. Chen et al. [13]
proposed a kind of unscented information filter based on
weighted average consistency to realize cooperative target
tracking. Brinon-Arranz et al. [14] proposed a circular con-
tainment formation control method for target tracking of
unmanned vehicle fleets. In [15], a local cooperative control
method based on output feedback linearization was pro-
posed to solve the problem of moving targets containment
control in multi-robot systems subject to nonholonomic con-
straints, which could realize the speed estimation of mov-
ing target and ensure obstacle avoidance between robots.
Through the above literature analysis, it can be found that
all the proposed control strategies require constant data
updates between USS, which requires a large amount of
communication and driving resources, which will cause
serious waste of communication resources and aggravate
the energy. The event-triggered transmission mechanism is
that when the gap between the actual state of the system
and the set reference state is greater than the set threshold,
the neighbor USS communicates with each other and up-
dates the current status. In this way, the communication
times of the system are effectively reduced, the occupa-
tion of communication resources is reduced, and energy
is saved. In the marine environment, the communication
bandwidth may be limited, so it is necessary to integrate
the event-triggering mechanism into the coordinated target-

tracking system to reduce the network burden.
At present, learned most of the literature considers the

communication topology as the connected graph is without
time delay transmission and communication, the topology
structure and communication transmission have intense de-
mand. The reality is because the interaction of information
transfer area is limited, many power systems may suffer
from some unpredictable structure changes. For example,
the repair of random faults and sudden environmental dis-
turbances [17, 18] leads to communication delay at a certain
time, disconnection of the topology map, and a possible
handover. Therefore, this paper is of important significance
for the study of the joint-connected topology containment
control of event-triggered unmanned surface ship systems
under time delay. This paper analyzes and studies this
problem, and its main contributions are as follows:

1. The joint-connected switching topology model is de-
signed, and a state feedback control scheme is de-
signed considering the delay condition. This scheme
enables the follower USS to quickly enter the convex
hull formed by the leader USS within a certain delay
range, to ensure the stability of the system.

2. A new event-triggered control mechanism is designed.
With the given event-triggered control condition, the
discontinuous communication between USS is estab-
lished to reduce the update times and energy loss of
the controller.

3. Theoretically, the stability of the system is analyzed
based on the Lyapunov method, and Zeno behavior
triggered by events is excluded. It is proved that if
the communication topology is jointly connected in a
limited time, the following USS can rapidly converge
to the convex hull formed by multiple leading USS
agents even if there is a delay.

The remaining parts of this paper are as follows: Sec-
tion 2 introduces algebraic graph theory and related defi-
nition lemma; In Section 3, the control protocol and event-
triggered control rules of USSs are designed. In Section 4,
the effectiveness of the designed control protocol is proved
and the event-triggered Zeno behavior is excluded. In Sec-
tion 5, the validity of the theoretical results is verified by
experimental simulation. Finally, the relevant conclusions
are drawn.

Notations: N represents the set of positive integers.
Rn represents the vector space on the n-dimensional
real body R, Rn×n represents the dimensional real matrix
space. diag {M1, M2, . . . , Mn} represents the diagonal ma-
trix with elements Mi, i = 1, 2, L, n. 1n is an n dimensional
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column vector with all ones. In is an n-dimensional square
matrix whose elements on the main diagonal are all ones
and the rest are all zeros. 0 represents all zero matrices
with proper dimension. A > 0 denotes A symmetric pos-
itive definite matrix, ρ(A) denotes the smallest nonzero
eigenvalue of matrix A, AT denotes the transpose of matrix
A.

2. Problem description

2.1. Basic knowledge

Suppose that the N th order directed graph G = {V , ε, A}
is the information interaction topology among the USSs,
where V = {1, 2, K, N} represents the set of vertices of N
USSs, and a single agent can be understood as a vertex of
the weighted graph G = {V , ε, A}. ε ∈ {V ∗ V} denotes
the set of edges formed between the nodes in the graph.
A =

(
aij

)
∈ Rn×n denotes the neighbor matrix of graph G,

and i, j denotes the corresponding i, j th USS. The neighbors
of the ith USS can be denoted by Ni = {j ∈ V : (i, j) ∈
ε, i ̸= j}. Suppose there is no loop of its own nodes in the
graph, i.e. (i, i) /∈ ε, if (i, j) ∈ ε, then aij > 0, which means
that point j is an adjacent node of point i, otherwise aij = 0.
If (i, j) ∈ ε and (j, i) ∈ ε, then the graph G is known as an
undirected graph, otherwise it is a directed graph.

The information interaction topology graph G is com-
posed of followers and leaders, which is a discon-
nected graph under the condition of switching topol-
ogy. din (vn) = ∑n

i=1 aij is the in-degree of node i,
and define the in-degree matrix of graph G as Din =

diag {din (v1) , L, din (vn)}, and the Laplacian matrix as:

lij =
{

−aij, i ̸= j
∑n

i=1 aij, i = j (1)

Definition 2.1. [19] Assume the topological graph
G1, G2, . . . , Gϕ have the same set of vertices V, and G1−∞

represent the union of the set of edges of G1, G2, . . . , Gϕ,
and G1−ϕ is jointly connected if G1, G2, . . . , Gϕ is connected.
ϕ is the number of all possible topologies.

Definition 2.2. [20] Define Q be the set of real vector
space W ⊆ Rn. If there is a point (1 − c)x + cy ∈ Q for
any c(0 ≤ c < 1) and any x, y in the set Q, then Q is
convex. The convex hull of point set Y = {y1, y2, . . . , yn}
in W is the smallest convex set containing all points in Y,
and expressed by Co(Y), then

Co(Y) =

{
n

∑
i=1

βiyi | yi ∈ Y, βi ∈ R, βi ≥ 0,
n

∑
i=1

βi = 1

}
.

(2)
Definition 2.3. [21] If the control law designed for

each follower USS can ensure that they all converge to

the convex hull crossed by the dynamic leader USS, then
it is said that the USSs with multiple leaders realizes the
bounding control, i.e

lim
t→∞

dis{xi(t), conv{xj(t) | i ∈ F, j ∈ R}} = 0. (3)

2.2. The establishment of system model

Consider the USSs composed of n + m USS, including n
followers and m leaders. Define the subscript set of the
following USS as F = {1, 2, . . . , n}, and the subscript set
of the leading USS as R = {n + 1, n + 2, . . . , n + m}. The
system description is as follows:{

ẋi(t) = ui(t), t ≥ 0, i ∈ F
vk(t) ∈ R, t ≥ 0, k ∈ L (4)

where xi(t) ∈ Rn and ui(t) ∈ Rm represents the state vector
of the ith USS and the control input vector, respectively.
vk(t) ∈ Rn is the k th state vector leading USS.

Definition 2.4. [21] Consider a set of nonempty,
bounded, and continuous time intervals [tk, tk+1) , k =

0, 1, . . . n, where t0 = 0, tk+1 − tk ≤ T1, T1 > 0. There are fi-
nite time subintervals [tk, tk+1) , k = 0, 1, . . . in time interval[

tr
k, tr+1

k

)
, r = 0, 1, . . . , mk − 1, t0

k = tk, tmk
k = tk+1, mk ≥ 0,

that satisfy tr+1
k − tr

k ≥ T2, T2 > 0
When the communication topology of the USSs switches

dynamically, we consider the switching signal ξt, when
t ∈ [0,+∞), ξt ∈ ℵ,ℵ = {1, 2, . . . , ϕ}, Gξt denotes the topo-
logical graph of the USSs at time t, and its Laplacian matrix
is denoted by Lξ2t.

Definition 2.5. [22] In the USSs, there are m leaders
and n followers. Since the leader’s input degree is zero and
considering the dynamic switching topology of the system,
the Laplacian matrix of G can be written as follows:

Lξt =

[
Lξt

1 Lξt
2

0 0

]
(5)

where Lξt
1 ∈ Rn×n represents the adjacency matrix between

the following USS in the corresponding communication
topology at time ξt.L

ξt
2 ∈ Rn×m represents the adjacency

matrix between leading USS in the corresponding commu-
nication topology at time ξt.

The system meets the following two assumptions:
Assumption 2.1. The information interaction topology

graph Gξt of USSs switches at time tk, then its topology
structure remains unchanged during span [tk, tk+1). For
the followers in the connected subgraph, there exists at
least one leader who communicates with the followers.

Assumption 2.2. A communication topology graph Gξ

on a subinterval
[
tr
k, t+1

k

)
has ϕ ≥ 1 connected subgraphs

Gi
ξt, i = 1, 2, · · · , ϕ, then there exists a matrix U such that:



1752 Binfeng Tang et al.

UT
ξtLξtUξt = diag

{
L1

ξt, L2
ξt, · · · , Lϕ

ξt

}
, (6)

eT(t)Uξt =
[
e1T

ξt (t), e2T
ξt (t), · · · , eϕT

ξt (t)
]

, (7)

xT(t)Uξt =
[

x1T
ξt (t), x2T

ξt (t), · · · , xϕ
ξt(t)

]
(8)

xT
0 Uξt =

[
x1T

0 , x2T
0 , · · · , xϕT

0

]
, (9)

where xi T
ξt (t) =

[
xi

ξt1
(t), xi

ξt2
(t), · · · , xi

ξtm
(t)
]

, ei T
ξtt
(t) =[

ei
ξt1

(t), ei
ξt2

(t), · · · , ei
ξtm

(t)
]

, xi T
0 =

[
xi

0,1, xi
0,2, · · · , xi

0,m

]

3. System control scheme design

3.1. Design of control law for distributed state observer

The ith control protocol following USS of system Eq. (4) is
designed as follows:

ui(t) = ∑
j∈Ni

−aij

(
xi(t − τ(t))− xj(t − τ(t))

)
+

n+m

∑
k=n+1

bk,i (vk(t)− xi(t − τ(t))) , i ∈ F,
(10)

where τ(t) is the time delay constant, bk,i is the weighting
between the follower USS and the leader USS, if and only if
there is a communication connection between them bk,i > 0,
otherwise bk,i = 0

Based on the control protocol (10), the event trigger
control rules are combined.

{
ki

wi

}
, i ∈ F is defined as the

triggering moment of the i th event following USS, and let
x̂i(t) = xi

(
ki

wi

)
represent the marking data of the ith event

following USS state triggering moment. Protocol (10) can
be rewritten as follows:

ui(t) = ∑
j∈Ni

−aij

(
x̂i(t − τ(t))− x̂j(t − τ(t))

)
n+m

∑
k=n+1

bk,i (vk(t)− x̂i(t − τ(t))) , i ∈ F
(11)

where x = (x1, . . . , xn) , v = (vn+1, . . . , vn+m).Then the
dynamic equations of system (11) and control law (12) can
be written as follows.

˙̂x(t) = (L1 ⊗ In) x̂i (t − τ(t) + (L2 ⊗ In) v (12)

4. Design of event triggering rules

Design a distributed event triggering algorithm following
USS:

∥Ξ∥ >
σρ (L1)

∥L1∥
∥Z∥ (13)

where 0 ≤ σ < 1, L1 is the smallest nonzero eigenvalue
of ρ (L1), Z = col (Z1, . . . , Zn) , Ξ = col (Ξ1, . . . , Ξn), when
the following USS implementation moves in the convex
hull formed by the leader USS, its state is defined as

Zi = ∑
j∈Ni

−aij

(
xi(t − τ(t))− xj(t − τ(t))

)
1 +

n+m

∑
k=n+1

bk,i (vk(t)− xi(t − τ(t))) , i ∈ F
(14)

The state error vector is

Ξi = ∑
j∈Ni

−aij

(
x̂i(t − τ(t))− x̂j(t − τ(t))

)
.

+
n+m

∑
k=n+1

bk,i (vk(t)− x̂i(t − τ(t)))− Zi.
(15)

In the designed event-triggering algorithm, when the
condition of event-triggering is met, the follower USS up-
dates their information at the trigger time

{
ki

wi

}
i ∈ F, and

there is no information exchange between USS between the
two trigger intervals.

Note 1: The event-triggered condition is determined by
the embedded microprocessor installed in the agent, and
the event-triggered time is determined by the designed
triggered function. When the conditions are met, the event
is triggered immediately. The USS transmits the observed
value of the current time to the neighbor USS, otherwise,
no information is transmitted between the two USS. Com-
pared with the continuous communication between USS
or periodic sampling communication, these two methods
cause computing burden on the system processor and com-
munication channel blocking due to high communication
frequency and a large amount of communication data. The
event-triggered mode can effectively reduce the commu-
nication times between USS, thus reducing the network
communication load and the computation and energy con-
sumption of the controller.

5. Main result

For the convenience of analysis, the following lemma is
given:

Lemma 4.1. [19] The topological graph is jointly con-
nected during [tk, tk+1) if and only if
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⋃
t∈[t,tt+1)

ζ (ξt) = {1, . . . , N} (16)

where ζ (ξt) =
{

i : Gξt
}

corresponds to all the non-
zero eigenvalues of the L1 matrix λi, i ∈ 1, . . . , N}

Lemma 4.2. [23] Assuming Assumption 2.1 is true,
all followers (starting from any initial state) will converge
asymptotically into the static convex hull formed by the
leader if and only if any of the following conditions are
satisfied:

1. τ ∈ (0, τmin) where τmin = Π/2λk, λk = λmax(L)

2. The Nyquist graph of Γ(s) = e−τs/s has a zero enve-
lope around −1/λk, ∀k > 1.

In addition, when τ = τmin, the system has a globally
asymptotically stable frequency vibration solution ω = λk.
The eigenvalues of matrix L can be changed by adding
control parameters to the control protocol, and the contain-
ment control of the system can be guaranteed according to
the actual needs.

Lemma 4.3 [24] Assuming Assumption 2.1 is true, all
eigenvalues of L1 have positive real parts, every entry of
−L−1

1 L2 is nonnegative, and every row of −L−1
1 L2 has a

sum of 1. Let e(t) = x(t)−
(

L−1
1 L2 ⊗ In

)
v. The system

can realize containment control if and only if limt→∞ e(t) =
0, i.e. limt→∞ x =

(
−L−1 L2 ⊗ In

)
v.

Lemma 4.4. [25] For any differentiable real function
ω(t) ∈ Rn, there are n × n dimensional constant matrices
M = MT > 0 such that the inequality

τ−1
min[ω(t)− ω(t − τ(t))]T M[ω(t)− ω(t − τ(t))]

≤
∫ t

t−τ(t)
ω̇T(s)Mω̇(s)ds

(17)

holds, where 0 ≤ τ(t) ≤ h, t ≥ 0.

Lemma 4.5. [26] For a given symmetric matrix S =[
S11 S12

S12
T S22

]
, where S11 and S22 are square matrices of

the same dimension. S is positive definite if and only if S11

and S22 − S12
TS11

−1S12 are positive definite matrices.

Theorem 4.1 Considering the system (11) in the
switched topology, the switched topology described by
the switching topology signal F satisfies Assumption 2.1.
According to the control laws (11), (13) and Lemma 4.2,
for any delay 0 < τ(t) < τmin, the system is stable and all
followers can enter the convex hull formed by the leader
under any initial condition.

Proof: Choose the Lyapunov function

V(t) = eT(t)e(t)

+
∫ t

t−h
(s − t + τmin) ėT(s)ė(s)ds

(18)

according to Eq. (8) in Assumption 2.2, V(t) can be writ-
ten as

V(t) =
ϕ

∑
i=1

[
eiT

ξt (t)e
i
ξt(t)

+
∫ t

t−h
(s − t + τmin) ėiT

ξt (s)ė
iT
ξt (s)ds

]
,

(19)

according to (14) and Lemma 4.3,

ė(t) = −L1e(t − τ(t)), (20)

then

V̇(t) =
ϕ

∑
i=1

{[
−Li

ξξt
ei

ξt(t − τ(t))
]T

ei
ξt(t)

+ eiT
ξtt(t)

[
−Li

ξte
i
ξt(t − τ(t))

]
+τmineiT

ξtt(t)e
i
ξt(t)−

∫ t

t−h
eiT

ξt (s)e
i
ξtt(s)ds

} (21)

according to Lemma 4.4, we have

−
∫ t

t−τt
min

ei T
ξt (s)e

i
ξξt(s)ds

≤ −
∫ t

t−τ(t)
ei T

ξt (s)e
i
ξtt(s)ds

≤ −τ−1
min

[
ei

ξtt(t)− ei
ξtt(t − τ(t))

]T [
ei

ξtt(t)− ei
ξtt(t − τ(t))

]
,

(22)

define yi
ξt(t) =

[
eiT

ξt (t), eiT
ξt (t − τ(t))

]T
, then

V̇(t) ≤
ϕ

∑
i=1

{
−ei T

ξt (t − τ(t))Li
1ξt

Tei
ξt(t)− ei

ξt T(t)Li
ξte

i
ξt(t − τ(t))

+ τmin

[
−Li

1ξt
ei

ξt(t − τ(t))
]T [

−Li
1ξt

ei
ξt(t − τ(t))

]
−τ−1

min

[
ei

ξt(t)− x̃i
ξt(t − τ(t))

]T [
ei

ξt(t)− ei
ξt(t − τ(t))

]}
=−

ϕ

∑
i=1

ỹi T
ξt (t)Φ

i
ξt ỹ

i
ξt(t)

(23)

where Φi
ξt =

 τmin
−1 Im −τmin

−1 Im + Li
1ξt

−τmin
−1 Im + Li

1ξt

τmin
−1 Im − τminL1ξt

i Li i
ξt


According to Lemma 4.5, Φi

ξt is positive definite matrix,

Φi
ξt > 0 if and only if τ−1

min > 0, where



1754 Binfeng Tang et al.

Ψi
ξt =

(
τmin

−1 In − τminLi T
1ξt

Li
1ξt

i

)
× τmin In ×

(
−τmin

−1 In + Li
1ξt

)
= 2 Li

1i
ξt
− 2τminL

ξt
i
TL1

it
(24)

Obviously, if 2λg

(
Li

1ξt

)
− 2τminλ2

g

(
Li

1ξt

)
>

0, τmin
−1 > 0 and Φi

ξt > 0, where Li
1ξt

is symmetric,

Li
1ξt

is an eigenvalue of λg

(
Li

1ξt

)
, g = 1, 2, · · · , ϕ.

If λn

(
Li

1ξt

)
≤ λmax

(
L1ξt

)
< τmin

−1, Ψi
ξt > 0, ac-

cording to equation (7) in Assumption 2.2, we have
λn

(
Li

1ξt

)
≤ λmax

(
L1ξt

)
, where Li

1ξt is the largest eigen-

value of λmax

(
L1ξt

)
. Thus, when Lemma 4.3 is satisfied,

Φi
ξt is positive definite and V̇(t) < 0 ensures the stability

of the dynamically switched system.
It has been proved that the system is asymptotically

stable. e(t) and e(t − τ(t)) are bounded, according to (20),
ė(t) is bounded. According to equation (7) in Assump-
tion 2.2 and (20), the derivative of ∑i

i=1 ỹi T
ξt (t)Φ

i
ξt ỹ

i
ξt(t) is

bounded. Since V(t) is nonincreasing and has a lower
bound of 0, V(t) must have a limit when t → ∞, because

0 ≥
∫ t

0

(
−

ϕ

∑
i=1

ỹi
ξt( s)TΦi

ξt t̃
i
ξt( s)

)
ds

≥
∫ t

0
V̇(s)ds = V(t)− V(0)

(25)

∫ +∞
0

(
−∑

ρ
i=1 ỹi

ξt( s)TΦi
ξt ỹ

i
ξt( s)

)
ds exists, Φi

ξt > 0,

thus limt→+∞

(
−∑

ϕ
i=1 ỹi

ξt(t)
TΦi

ξt ỹ
i
ξt(t)

)
= 0,

limt→+∞ ei
ξt(t) = 0, limt→+∞ xi

ξt(t) = Li−1
1ξt xi

0 at

any time subinterval
[
tr
k, tr+1

k

)
, r = 0, 1, . . . , mk − 1,

limt→+∞ xi
ξt(t) = Li−1

1ξt xi
0, i = 1, · · · , ϕ.

The USSs communication topology is jointly connected
in subinterval [tk, tk+1) , k = 0, 1, . . ., limt→+∞ xi

ξt(t) =

Li
1ξt

−1xi
0, i = 1, · · · , ϕ is still true. Since all USS commu-

nication topologies in each time interval are jointly con-
nected, from Lemma 4.3, all the following USS states can
converge to the convex hull formed by the leading USS,
limt→∞ e(t) = 0.

Theorem 4.2 According to the control protocol (11) and
trigger condition (13), all assumptions and conditions in
Theorem 4.1 hold, and for any initial condition, the lower
bound of the event trigger interval

[
ki

wi+1
− ki

wi

)
of system

(4) is η > 0, given by the following equation

η =
σρ (L1)

∥L1∥ (∥L1∥+ σρ (L1))

ti
k+1 − ti

k . . . η, k ∈ {1, 2, . . .}.
(26)

Proof: According to Eqs. (13) to (15) and Eq. (26)

dPΞP
dtPxP

=
ΞT x&

PΞPPxP
− xT x&

PxP2
PΞP
PxP

≤PΞPPx&P
PΞPPxP

+
Px&PPΞP
PxPPx&P

=

(
1 +

PΞP
PxP

)
Px&P
PxP

≤
(

1 +
PΞP

Px&P

)
∥L1∥ (PxP + PΞP)

PxP

= ∥L1∥
(

1 +
PΞP
PxP

)2

(27)

Let θ̇ = ∥z∥
∥x∥ , θ̇ ≤ ∥L1∥ (1+ θ)2, from the above equation

that when θ̇ ≤ ∥L1∥ (1 + θ)2, the increase rate of θ reaches
the maximum.

Let the expression θ (t, θ0) denote the initial value θ0

and the value at time t. Accordingly, there is H. Let θ(η, 0)
be the solution to equality θ = PL1P(1 + θ)2.

θ(η, 0) =
ηPL1P

1 − ηPL1P
(28)

In Eq. (28), the growth rate of θ reaches the maximum
value. By substituting Eq. (28) into Eq. (13), the shortest
event triggering interval η can be obtained:

η =
σρ (L1)

∥L1∥ (∥L1∥+ σρ (L1))
(29)

So, the lower bound of the event firing interval{
ki

wi+1
− ki

wi

}
is greater than 0, and the Zeno behavior is

excluded.

6. Simulation example

On the basis of theoretical analysis, the correctness of the
theory and the effectiveness of the system are verified by
a simulation example. The system is composed of 8 USS,
as shown in Fig. 1. Nodes 1-5 represent the following USS,
and nodes 6-8 represent the leading USS. The initial state
following USS is x1(0) = (1,−1), x2(0) = (3, 11), x3(0) =
(5, 20), x4(0) = (7,−7), x3(0) = (9,−4), The initial state
following USS is x6(0) = (3, 4), x7(0) = (7, 6), x8(0) =

(5, 9).
As can be seen from Fig. 1, the communication topology

of the system is {G1, G2, G3}, Assume that the topology
is switched in the order of G1 → G2 → G3 → G1 → . . .,
and the topology switching process is shown in Fig. 2. The
topology map is switched at a period of 0.9 s. The topology
maps in each period form a joint topology of graph Ḡ.

Consider the three jointly connected graphs G1, G2, and
G3 in figure 1 , whose union Ḡ is connected. The Laplacian
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Fig. 1. The communication topology of USSs

Fig. 2. Process of communication topology switching

matrix Lξ,
1 , Lξ,t

2 corresponding to each topology is shown as
follows:

L1
1 =


1 −1 0 0 0
−1 2 0 0 0
0 0 2 −1 0
0 0 −1 1 0
0 0 0 0 0



L1
2 =


0 0 0
−1 0 0
0 −1 0
0 0 0
0 0 0

 ,

L2
1 =


2 0 0 0 −1
0 0 0 0 0
0 0 1 −1 0
0 0 −1 2 0
−1 0 0 0 1



L2
2 =


−1 0 0
0 0 0
0 0 0
0 0 −1
0 0 0

 ,

L3
1 =


0 0 0 0 0
0 0 0 0 0
0 0 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2



L3
2 =


0 0 0
0 0 0
0 −1 0
0 0 0
0 0 −1

 .

The five eigenvalues of L1
1 are denoted λ1 = 0, λ2 =

0.328, λ3 = 0.328, λ4 = 2.618, λ5 = 2.618; The five eigen-
values of L2

1 are denoted λ1 = 0, λ2 = 0.328, λ3 =

0.328, λ4 = 2.618, λ5 = 2.618; The five eigenvalues of L3
1

are denoted λ1 = 0, λ2 = 0, λ3 = 0.5858, λ4 = 2, λ5 =

3.4142.ζ(1) ∪ ζ(2) ∪ ζ(3) = {1, 2, 3, 4, 5}, this illustrates the
result in Lemma 4.1. According to Lemma 4.2, the upper
limit τmin = 0.46 of the allowable delay of the designed
system can be obtained.

Figs. 3 and 4 respectively show the state trajectories of
the USSs at τ = 0.28, τmin = 0.46, τ = 0.47, and τ = 0.55.
By comparison, according to the new control law designed
by combining the joint connected switching topology and
event-triggered control mechanism in this paper, when
the time delay is 0.28 s, the state trajectory can quickly
converge to the convex hull formed by the leader USS and
maintain the equilibrium state during 0 ∼ 0.25 s.

In Fig. 3(b) and Fig. 4(f), when the communication delay
increases to the maximum of 0.46 s, the state trajectories
following USS can still recover stability within a limited
time though they have obvious oscillations. In Fig. 3(c),
when the communication delay increases to slightly exceed
the maximum delay range τ = 0.47, the state trajectory
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(a) (b)

(c) (d)

Fig. 3. (a), (b), (c), (d) are USS state trajectories xa(t) with delays of

τ = 0.28, τ = 0.46, τ = 0.47, τ = 0.55

following USS has relatively large oscillations and cannot
keep moving in the minimum convex hull enclosed by the
leader USS. In Fig. 3(d) and Fig. 4(h), since 0.55 s exceeds
the given upper bound of communication delay, each state
trajectory following USS cannot remain stable and converge
to the convex hull formed by the leading USS.

Therefore, when the delay is within the range (0, τmin),
although the system will have topological switching, all
the follower USS can gradually converge to the convex hull
formed by the leader USS and eventually tend to be stable.

Figs. 5 and 6 show delay-free and τ = 0.46 USSs fol-
lowing the trigger moment of the USS in the process of
forming the containment control under the control protocol
(11) and the event trigger condition (13), respectively. Ac-
cording to the simulation results, it can be verified that the
system does not have Zeno behavior, and the smaller the
delay, the lower the frequency of events triggered. Com-
pared with continuous communication transmission, the
proposed event-triggered control protocol can reduce the
communication times of the system and save the energy
resources of the system.

7. Conclusions

Articles on joint connected with a time delay switch topol-
ogy conditions surrounded by USSs events trigger control
problem is analyzed and the research, put forward a joint
connected topology structure of the system communication

constraints of smaller, on this basis, combining the situation
of the communication time delay design surrounded by
USSs control events trigger control rules, effectively reduce
the communication load, reduce the energy consumption
at the same time, It also makes the USSs more adaptable to
the complex and changeable communication environment
and can accomplish more complex tasks such as Marine
dangerous goods handling, fire rescue, and cooperative
transportation. The future work may consider the combi-
nation of bounding control and more complex nonlinear
systems.
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