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Partial discharge (PD) acoustic signal detection is one of the effective means to assess the insulation status
of power transformers. In actual monitoring, white noise is likely to cause strong interference to the partial
discharge acoustic signal of the transformer, which seriously affects the discharge fault identification and
monitoring results. In order to suppress the interference of white noise in partial discharge detection, this paper
proposes an adaptive partial discharge based on the combination of variational mode decomposition (VMD)
and principal component analysis (PCA) based on improved Spearman correlation coefficient. The white noise
suppression method is analyzed for the separation and denoising of partial discharge acoustic signals in the
environment of −10 ∼ 10 dB. Firstly, the Spearman correlation coefficient is used to determine the optimal
number of decomposing modes of VMD. Then the decomposed modal components are adaptively reduced
and reconstructed by principal component analysis to remove redundant clutter interference and reduce the
influence of human error. Finally, through the simulation signal and actual discharge pulse acoustic signal are
tested for denoising. The results show that SVMD-PCA can suppress the interference of white noise in partial
discharge acoustic signals and extract clean discharge pulse signal characteristics, the method has enhanced
anti-noise performance and can effectively suppress white noise interference.
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1. Introduction

As a core component of the power system, transformers
play an important role in the transmission and distribution
process, and the reasonable evaluation of their operational
status is of great significance in preventing unexpected
power outages and improving power supply reliability [1].
Partial discharge is an early sign of its insulation deteriora-
tion, which can cause its insulation performance to degrade
and even lead to transformer failure in severe cases, there-
fore, PD testing is an effective method to test and evaluate
the insulation condition of transformers [2]. However, the
PD test site has a complex electromagnetic environment
with many mixed sound sources, and the measured partial

discharge signal is often mixed with white noise interfer-
ence, periodic narrow-band interference and pulse interfer-
ence, resulting in serious distortion of the PD waveform
and affecting subsequent fault diagnosis [3]. Moreover, the
initial signal of partial discharge itself is relatively weak,
and the local discharge signal may be completely drowned
out, especially in white noise interference, the accurate mea-
surement of partial discharge will be seriously misjudged.
Therefore, how to effectively suppress white noise inter-
ference becomes an essential part of the partial discharge
monitoring system, moreover, it is an important prerequi-
site for partial discharge pattern identification and analysis
[4].

At present, domestic and foreign scholars have pro-
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posed a variety of effective methods for white noise sup-
pression and made a large number of contributions, such as
wavelet analysis [5], morphological filtering [6], empirical
modal decomposition [7, 8], singular spectrum decompo-
sition [9, 10] and parameter-optimized feature mode de-
composition (FMD) [11]. Traditional denoising methods
are based on filter-based noise frequency removal, but they
have obvious limitations for signals with broadband noise,
especially non-stationary signals and short-time transients
[12]. Wavelet threshold denoising methods are superior to
traditional denoising methods, but they still don’t provide
the desired results due to frequency overlap in wavelet
decomposition and the difficulty in choosing an accurate
threshold value. Discrete wavelet variation is widely used
for white noise suppression in partial discharge monitoring
due to its high time-frequency resolution, however, because
of the randomness and diversity of partial discharge sig-
nals, it is difficult to select a suitable wavelet basis function
in advance, in addition, the number of wavelet decompo-
sition layers and threshold selection will also affect the
denoising effect, and these three parameters are generally
obtained by empirical formulae, so they are not adaptive
[13], which is easy to cause signal distortion. The mor-
phological filtering method has no threshold defect, but
it is difficult to determine its structural elements, which
exerts a certain influence on signal denoising. Huang et al.
proposed an adaptive signal processing technique called
empirical mode decomposition in 1998 [[14], which has
shown excellent performance in processing non-linear and
non-stationary signals, but the method still suffers from
uniquely selected thresholds, endpoint effects and modal
aliasing, and has certain limitations in practical applica-
tions. The singular spectrum decomposition technique can
achieve white noise suppression by performing singular
value decomposition on noisy signals and selecting a rea-
sonable singular value threshold to reconstruct the signal,
but its threshold selection is also subject to human interfer-
ence, and incomplete denoising may result if the threshold
is not selected properly. However, when FMD analysis is
introduced, the corresponding input parameters must be
artificially defined, and its decomposition performance is
easily affected by its parameter settings.

Although the above methods have application limita-
tions, it cannot deny their progress and achievements on
white noise suppression, the challenge of noise suppression
in partial discharge monitoring still exists, and research on
white noise suppression cannot stop, it is still necessary
to open up new corridors and find new methods to im-
prove the signal quality in partial discharge monitoring.
Local discharge radiation noise is not only non-linear, non-

smooth, and multi-component complex characteristics [15],
external interference noise signal can be isolated and op-
timized by muffler material, but the sound signal caused
by partial discharge is currently facing serious challenges
such as complex crossover of signal components, unknown
noise signal characteristics and incomplete denoising and
excessive denoising to lose effective signal characteristics.
Especially for the internal discharge sound signal of the
transformer, as the effective signal characteristics cannot
be determined in advance, the noise and discharge sound
signals cannot be distinguished when denoising, which
brings great resistance to the extraction of discharge sig-
nal characteristics. It even causes serious interference to
the subsequent discharge sound signal feature extraction
[16], fault diagnosis [17], etc. Therefore, it is necessary
to carry out feature decomposition of the original signal,
from which the discharge pulse signal components can be
extracted to discover insulation defects in time.

VMD is a new variable scale adaptive decomposition
method [18], which can decompose the signal into a finite
number of intrinsic mode functions (IMFs) with different
features. This method provides excellent accuracy and sta-
bility for spectral feature extraction in the low frequency
band, and has been widely used in signal denoising, fault
diagnosis [19], predictive analysis [20], feature extraction
[21] and other fields. However, VMD needs to determine
the maximum decomposition mode number K in advance,
especially for multi-component complex signals with un-
known features, the optimal decomposition mode number
cannot be reasonably determined. If the K value is chosen
small, the signal decomposition is incomplete and there is
modal blending. While the K value is chosen too large, it is
easy to cause over-decomposition and inadequate modal
selection. In practice, the K value is obtained by the proces-
sor through several trials, so the human influence factor is
large, which increases the time consumption of the opera-
tion. In addition, after the signal is decomposed by VMD,
it is very important to extract the effective signal modal
components in the denoising process, and the effectiveness
of denoising depends on the reasonable selection of the
effective signal, but in the current research on VMD-related
denoising [22, 23], the selection of the eigenmode function
after decomposition has rarely been introduced, and the
adaptive selection of the effective modal components is
missing.

Therefore, in view of the determination of the decom-
position modulus K and the difficult choice of effective
components for complex noise features in practice, an adap-
tive denoising method is proposed in this paper. Firstly,
in view of the defect that VMD is difficult to adaptively
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select decomposition parameters in practical applications,
the original signal is decomposed by VMD based on the
improvement of Spearman correlation coefficient to deter-
mine the optimal number of decomposition modes K, and
then each IMF mode signal is analyzed by principal compo-
nents [24], using the maximum variance contribution rate
and the method of finding the maximum principal axis to
achieve data dimensionality reduction, signal de-noising
and reconstruction, which can well separate the effective
signal and noise signal components, finally the adaptive
selection problem of denoising and reconstructing modal
functions in complex signals is realized. After verification
of simulated signals and actual partial discharge signals, it
is found that the proposed method can effectively suppress
white noise pollution, improve the signal-to-noise ratio of
noisy signals, and retain the active component information
in the signal to the greatest extent.

2. Svmd-pca denoising method

2.1. VMD

VMD estimates the individual signal components by solv-
ing a frequency domain variational optimization problem
[18], first assuming that all components are narrowband
signals concentrated around their respective center frequen-
cies, so VMD establishes a constrained optimization prob-
lem based on the component narrowband condition to
estimate the center frequencies of the signal components
as well as to reconstruct the corresponding components.
VMD decomposition can decompose complex signals into
several intrinsic mode component sub-sequences, namely
IMF, where the decomposed signal is the same as the sum
of the modes. Assuming that the signal f (t) consists of
K natural mode components and each natural mode com-
ponent can be defined as an FM/AM signal, uk(t) can be
expressed as

uk(t) = Ak(t) cos [φk(t)] (1)

where Ak(t) is the amplitude of uk(t) and Ak(t) ≥ 0; φk(t)
is the phase of uk(t). The instantaneous frequency ωk(t) of
uk(t) is obtained by taking the derivative of φk(t).

ωk(t) =
dφk(t)

dt
(2)

For the variational modal problem of constructing the
signal f (t), solving the Hilbert transform for the one-sided
spectrum of each uk(t) yields the analytic signal corre-
sponding to each uk(t) as(

δ(t) +
j

πt

)
∗ uk(t) (3)

Where δ(t) denotes the unit pulse function, the resolved
signal corresponding to each uk(t) signal plus the correc-
tion factor e−jωkt modulates the spectrum of each uk(t) to
its corresponding fundamental frequency, then the corre-
sponding demodulated signal is obtained as[(

δ(t) +
j

πt

)
∗ uk(t)

]∗
e−jωkt (4)

The gradient squared L2 parametrization of Eq. (4) is cal-
culated to obtain the bandwidth of uk(t). Using the band-
width, the corresponding constrained variational problem
can be constructed, which is expressed as

 min{uk}{ωk}

{
∑K

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]∗
e−jωkt

∥∥∥2

2

}
s.t. ∑K

k=1 uk(t) = f (t)
(5)

Where uk denotes the K IMF components obtained from
the VMD decomposition, ωk denotes the central frequency
of the IMF components, ∗ denotes the convolution opera-
tion, ∂t denotes the derivative of the function with respect
to time, and δ(t) is the unit impulse function. Eq. (5) is trans-
formed into an unconstrained variational problem and its
optimal solution is found. In order to ensure the accuracy
of signal reconstruction under Gaussian noise, a quadratic
penalty factor α is introduced, and a Lagrangian operator
λ is introduced to ensure the strictness of the constraints
in the solution process. Thus, the augmented Lagrangian
expression is

L ({uk} , {ωk} , λ) = α
K

∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]∗
e−jωkt

∥∥∥∥2

2

+

∥∥∥∥∥ f (t)−
K

∑
k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

K

∑
k=1

uk(t)

〉
(6)

In the formula, un+1
k , ωn+1

k and λn+1
k are continuously

updated alternately with each other, so as to find the saddle
point of Eq. (6), that is, the optimal solution of Eq. (5). The
expression to update the variable during iteration is

ûn+1
k (ω) =

f̂ (ω)− ∑K
k=1 ûk(ω) + λ̂(ω)

2

1 + 2α (ω − ωk)
2

ωn+1
k =

∫ ∞
0 ω |ûk(ω)|2 dω∫ ∞

0 |ûk(ω)|2 dω

λ̂n+1(ω) = λ̂n(ω) + τ

[
f̂ (ω)−

K

∑
k=1

ûn+1
k (ω)

] (7)

where ûn+1
k (t) denotes the Wiener filter of the current resid-

ual, ωn+1
k denotes the center frequency of the power spec-

trum of the current mode function, and then the Fourier
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inversion of {uk(ω)} is performed to take the real part to
obtain the time-domain mode component {uk(t)}.

2.2. Improved VMD based on Spearman correlation co-
efficient

Before using VMD for signal processing, some algorithm
parameters need to be set. Two important control param-
eters of the VMD algorithm have a large impact on the
denoising effect of the signal, one is the penalty factor α

and the other is the number of modes decomposed K. They
seem to be two unrelated parameters, but in fact they affect
each other, and an unreasonable setting of the value of K
will have a negative impact on the parameter α. Among
them, if the number of decomposition modes K is set too
small, some components will be included in other modes
or some modes will be regarded as noise and discarded,
at this time, the effect is similar to setting a smaller α pa-
rameter or a larger α parameter setting, and some modes
will be easily regarded as noise and discarded when de-
noising. Similarly, if the number of decomposition layers K
is set too large, it will generate additional noise or lead to
mode duplication, at this time, the same as the α parameter
setting. Therefore, the decomposition mode number K in
the VMD method has a great influence on its application,
and the value of K affects the effect of setting the parameter
α. It is important to make reasonable optimisation for the
decomposition mode number K.

The Spearman correlation coefficient [25], which is a test
method independent of data distribution, is more suitable
for dealing with abrupt state acoustic signals in complex en-
vironments. Importantly, the Spearman correlation can be
calculated without prior knowledge of the probability dis-
tributions of X and Y, for the original data xi and yi, convert
their ranks to rgxi and rgyi, respectively. The Spearman
correlation coefficient rs is calculated as shown in Eq. (8).

rs =
cov (rgxi, rgyi)

σrgxi σrgyi

(8)

where cov (rgxi, rgyi) is the covariance of the rank vari-
able, σrgxi and σrgyi are the standard deviations of the rank
variable.

In order to illustrate the characteristics of the Spearman
correlation coefficient between the reconstructed signal and
the original signal when the VMD method is applied, this
paper analyses the steady-state simulated signal generated
by the MATLAB platform and the partial discharge pulse
acoustic signal acquired in the laboratory. For the unde-
composed noisy signal, first assume that K = 1 in VMD
decomposition, K IMF component signals will be obtained
after VMD decomposition, and according to the VMD de-
composition principle x(t) = ∑K

k=1 uk(t), the reconstructed

signal can be obtained by adding; Then calculate the Spear-
man correlation coefficient between the original signal and
the reconstructed signal, and finally judge whether the
Spearman correlation coefficient is greater than or equal
to 1. If it is not satisfied, then K = K + 1 iterative update,
repeat the above process, if it is satisfied, then terminate the
calculation, and retain the K value data at this time, thus we
can obtain the Spearman correlation coefficient between the
reconstructed sequence and the original sequence shown in
Fig. 1 as a function of the VMD decomposition mode num-
ber K value. Fig. 1 shows the joint results of the analogue
and PD pulse signals, both of which vary in the same pat-
tern and are unaffected by the signal modalities. The curve
change pattern shows that the Spearman correlation coeffi-
cient between the reconstructed sequence and the original
sequence will keep increasing as the number of decom-
position modes K increases, and when the signal is com-
pletely decomposed, the Spearman correlation coefficient
gradually tends to stabilize as K increases, which means
it will converge to a reasonable threshold value T. There-
fore, when the Spearman correlation coefficient between
the original signal and the reconstructed signal reaches a
reasonable threshold, the noisy signal is considered to have
been sufficiently decomposed by the VMD, and the K value
can be reasonably determined, in this paper, this process
is referred to as SVMD. Through several experiments on
the denoising of simulated and partial discharge acoustic
signals, it is found that the proposed SVMD method has
the best denoising effect when the Spearman correlation co-
efficient between the reconstructed signal and the original
signal is 0.996 , so the ideal threshold T is set to 0.996 .

Fig. 1. Spearmna correlation coefficient with VMD
decomposition mode number K

In VMD decomposition, the decomposition mode num-
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ber K is the main parameter of the VMD denoising method,
different K values will directly lead to the difference in
the IMF components after VMD decomposition. The other
parameters in the VMD method will also have denoising ef-
fects, however this paper only discusses the decomposition
mode number K. Therefore, the default options are kept for
the remaining related parameters in the VMD method, and
only the K value is changed in multiple decompositions,
among which, the PenaltyFactor = 1000, LMUpdateRate
= 0.01, and MaxIterations = 500.

2.3. Effective modal component selection

SVMD determines the optimal number of decomposition
modes, but it has always been a big problem to reason-
ably select the reconstructed features of the decomposed
signal. The traditional method selects the signal to be recon-
structed by a fixed threshold, and the selection process has
the lack of effective signal and the influence of subjective
factors. To address this deficiency, this paper proposes an
effective modal signal selection method based on principal
component analysis, called SVMD-PCA.

In signal processing, it is usually necessary to observe
signals containing multiple components, collect a large
number of signals and analyze them to find rules, and
more importantly, in many cases, there may be correla-
tions between many signal components, which increases
the complexity of problem analysis. If each component
is analyzed separately, the analysis is often isolated and
cannot fully utilize the information in the data, so it is
necessary to find a reasonable method to minimize the
loss of the original signal containing information while
reducing the components that need to be analyzed, so as
to achieve the purpose of comprehensive analysis of the
collected signal. Since there are certain correlations among
the components after decomposition by SVMD, it is pos-
sible to consider turning the closely related components
into as few new components as possible, so that these new
components are two uncorrelated, then it is possible to
use fewer integrated components to represent the various
types of information present in each component, respec-
tively, and principal component analysis belongs to this
type of dimensionality reduction algorithm.

The main idea of PCA is to map n-dimensional fea-
tures to k-dimensional features (k ≤ n). The k-dimensional
feature is a new orthogonal feature called the principal
component, which is reconstructed from the original n-
dimensional feature. The steps of PCA are described in
detail as follows:

1. Calculate the sample mean of an n-dimensional

dataset X, where X = {x1, x2, · · · , xm}.

x̄ =
1
m

m

∑
i=1

xi (9)

where m is the total number of samples and x̄ is the
resulting sample mean.

2. Use the generated sample mean to further calculate
the covariance matrix of the sample set.

C =
1
m

m

∑
i=1

(xi − x̄) (xi − x̄)T (10)

where C is the covariance matrix of the sample set.

3. Calculate the eigenvalues and eigenvectors of the co-
variance matrix of complex data samples.

C = Q · ∑ ·QT

Σ = diag (λ1, λ2, · · · , λn) , λ1 ≥ · · · ≥ λn ≥ 0

Q = [q1, q2, · · · , qn]

(11)

Among them, Σ is a diagonal matrix in which the
n eigenvalues of the covariance matrix are arranged
in descending order, λi is the eigenvalue correspond-
ing to the covariance matrix, and Q is an eigenmatrix
composed of the eigenvectors corresponding to the
eigenvalue λi.

4. Calculate the cumulative variance contribution rate
of the first k principal elements using the obtained
eigenvalues and eigenvectors.

θ =
k

∑
i=1

λi/
m

∑
j=1

λj (12)

In the formula, θ is the cumulative variance contribu-
tion rate of the first k main elements, and the value of
θ is usually greater than or equal to 0.9 , and is set to
0.95 in this paper.

5. Use the k eigenvectors obtained to achieve dimension-
ality reduction.

P = Qk

Y = P · X
(13)

where P is the eigenmatrix consisting of the corre-
sponding eigenvectors of the first k eigenvalues (k ⩽

n), and Qk is the eigenmatrix consisting of the first
k eigenvalues (k ⩽ n).Y is k-dimensional data, and
the transformation of data set X to Y also realizes the
linear transformation of data from n-dimensional to
k-dimensional, thereby realizing data dimensionality
reduction.
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Dimensionality reduction is a kind of pre-processing
method for high-dimensional feature data, which can
keep some of the most important features in high-
dimensional data and remove noise and unimportant
features, so as to achieve the purpose of improving
data processing speed. However, it should be em-
phasized that instead of simply removing the remain-
ing dimensional feature vectors, a completely new k-
dimensional orthogonal feature is reconstructed, and
the newly generated k-dimensional data contains as
much information as possible from the original n-
dimensional data.

Regarding the determination of new dimensions, it
can be achieved by maximizing the variance between
data, that is, transforming the data into a new dimen-
sion base, the data projection is scattered enough, and
the data is differentiated. The variance corresponds
to the discrimination of the feature, and the larger its
value, the better. If the variance is small, it means that
the features have mostly the same values, that is, the
features do not have valid information and are not
differentiated. Conversely, if the variance is large, it
means that the features have a lot of information and
are differentiated. In signal processing, it is generally
believed that the signal has a large variance and the
noise has a small variance, so when the variance of
the projected data on the spindle is small, it is gen-
erally considered to be caused by noise, so the noise
and signal can be separated to achieve effective signal
selection and denoising work.

In summary, the optimal signal decomposition can be
completed by SVMD, and PCA can realize signal di-
mension reduction and adaptive reconstruction, and
remove part of the interference signal. Similarity com-
parison, select the data with the highest similarity for
the final signal reconstruction, at this time the recon-
structed signal is the pure signal after complete de-
noising. The SVMD-PCA denoising process is shown
in Fig. 2, the detailed process will be explained subse-
quently.

3. Svmd-pca simulation signal de-noising verifica-
tion

In order to verify the denoising effect and complex signal
decomposition ability of the proposed SVMD-PCA method,
this paper describes the denoising process in detail by sim-
ulating the signal and verifies its reliability. Generate an
analog signal with f1 = 50 Hz, f2 = 300 Hz, and add
−10 ∼ 10 dB Gaussian white noise to the simulation signal

Fig. 2. SVMD-PCA denoising process

to simulate a low signal-to-noise ratio environment. Ac-
cording to the sampling law, the signal sampling frequency
fs = 1000 Hz, the analog signal can be expressed as

f (t) = cos (2π · f1 · t) + 2 cos (2π · f2 · t) + n(t) (14)

In the formula, n(t) is the Gaussian white noise signal
added with different signal-to-noise ratios.

The time-frequency characteristics of the signal after
adding white noise with different signal-to-noise ratios
are shown in Fig. 3. In Fig. 3(a), after adding 10 dB white
noise, the signal changes smoothly, and the frequency do-
main characteristics are obvious. Fig. 3(b) is after adding
−10 dB white noise. The signal characteristics are seriously
distorted in the time domain, and the white noise is dis-
tributed in the entire frequency band. Although the 50 Hz
and 300 Hz frequency values can appear, there are other
interference frequencies and clutter interference, which
brings serious interference to the signal feature extraction.

Decompose the simulation signal to extract the 50 Hz
and 300 Hz signal components, the process of determining
the optimal number of modes for SVMD is as follows:

Step 1: Assume that the decomposition mode number
K = 1, then the original signal f (t) is decomposed by
VMD to obtain the initial K IMF components.

Step 2: Solve the K IMF component reconstruction sig-
nal f̂ (t) according to f (t) = ∑K

k=1 uk(t) = ∑K
k=1 IMFk.

Step 3: Calculate the Spearman correlation coefficients
of the original signal f (t) and the reconstructed signal
f̂ (t).
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(a)

(b)

Fig. 3. Signal time-frequency diagram with 10dB and
-10dB white noise added

Step 4: Determine whether the Spearman correlation
coefficient obtained in step 3 is greater than or equal to
0.996 , if it is less than 0.996 , make K = K+ 1, and then
repeat steps 2,3 and 4 to continue the decomposition.
If it is greater than or equal to 0.996 , the value of K is
the best decomposition mode number at this time.

For the noisy signal after adding 10 dB white noise, after
SVMD decomposition, the Spearman correlation coefficient
values between the reconstructed signal with different K
values and the original signal are shown in Table 1. When
the number of decomposition modes is K = 6, the correla-
tion coefficient between the reconstructed signal and the
original signal has reached the optimal threshold of 0.996,
so the optimal number of decomposition modes for the
noisy signal is determined to be K = 6. After the simu-
lation signal is decomposed by SVMD, the waveforms of
each IMF component are shown in Fig. 4. Analyzing its

frequency distribution characteristics, it is found that IMF6
corresponds to 50 Hz, and IMF3 corresponds to 300 Hz. It
can be seen that the frequency distribution of the IMF3 and
IMF6 component signals is exactly the main information
component in the original signal, and the remaining IMF
components are interference information brought by white
noise, that is, the effective modal components of the noisy
signal are extracted.

The above analysis shows that SVMD can achieve a rea-
sonable decomposition of the signal, and select the effective
modal components in the noisy signal through the inverse
comparison of the signal characteristics, but this is a de-
composition selection under the premise of known signal
characteristics. For the actual complex signal, its character-
istics are unknown, the effective signal components cannot
be selected only by observing the frequency characteristics,
and the effective signal modes need to be further extracted.
In this paper, the principal component analysis method is
introduced to adaptively select the effective signal modal
components. The selection idea is to perform principal
component analysis on each IMF modal data decomposed
by SVMD, determine the number of spindles according
to the principle that the cumulative variance contribution
rate is greater than or equal to 0.95, and then reconstruct
the signal according to the number of spindles, and finally
reduce the PCA dimension and reconstruct it. Similarity
analysis is performed on the latter signal, and the feature
with the largest similarity is selected as the effective signal
component, and the rest of the noise components are elim-
inated. Because there is no parameter adjustment in the
whole process, by revealing the simple structure hidden
behind the complex data, the linear correlation between
the data is reduced, and the best description of the data in-
formation is obtained. More importantly, PCA can reduce
the redundancy of data on the premise of retaining the
effective information of the original signal to the greatest
extent, so as to achieve the purpose of data dimensionality
reduction, so it can achieve adaptive denoising and reduce
the impact of human interference. The adaptive denoising
result of dimensionality reduction and reconstruction by
SVMD-PCA is shown in Fig. 5

After dimensionality reduction by principal component
analysis, the corresponding number of spindles when the
cumulative variance contribution rate is greater than or
equal to 0.95 is 2, and the result is shown in Fig. 6, so
only two IMF components after reconstruction have the
highest similarity with the IMF components decomposed
by SVMD. Fig. 7 shows the IMF components after SVMD-
PCA dimension reduction and reconstruction. In order to
achieve adaptive selection, the difference between the IMF
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Table 1. Reconstructed signal and original signal Spearman correlation coefficient table

K value K=1 K=2 K=3 K=4 K=5 K=6
Spearman correlation coefficient 0.6593 0.7636 0.8858 0.9126 0.9883 0.9972

Fig. 4. IMF patterns after SVMD decomposition under the condition of 10dB white noise

Fig. 5. The similarity between the reconstructed signal after PCA and the IMF components of SVMD

components is averaged, and then the initial value of the
original difference is subtracted. It was found that IMF3
and IMF6 had the smallest difference and the highest sim-
ilarity. From the reconstructed Fig. 5, it can be observed
that IMF3 and IMF6 are the components with the highest
similarity, that is, the effective components of the simu-
lation signal. The adaptive selection result corresponds
exactly to the distance difference analysis, so the effective
modal components of the adaptive selection signal can be

reconstructed through PCA dimensionality reduction.

The short-time Fourier transform (STFT) [26] results of
the denoised and reconstructed signals are compared with
the original signals. The results are shown in Fig. 8. It
can be seen that SVMD-PCA can effectively remove white
noise after decomposing and dimensionally reducing and
reconstructing the noisy signal, and can extract the original
signal features, which not only removes the white noise in
the stationary signal but also preserves the original signal
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Fig. 6. Cumulative variance contribution rate and number
of principal components

Fig. 7. The difference between the reconstructed signal
after PCA and the IMF components of SVMD

to the greatest extent. The main information component,
without losing the effective information of the data.

In order to quantitatively describe the denoising effect,
this paper selects signal-to-noise ratio (SNR) [27], root mean
square error (RMSE), mean squared error (MSE) [28], mean
absolute error (MAE) [28] and noise intensity (NI) [29] to
quantify the denoising effect. Among them, the signal-to-
noise ratio is an effective method to evaluate the denois-
ing effect, and the denoising effect is explained by analyz-
ing whether the signal-to-noise ratio is improved. Let the
original signal be f (t), the denoised signal, that is, the re-
constructed signal is f̂ (t), and f̄ is the mean value of the
original signal, N is the signal length.

When the SNR value becomes larger after denoising, it
indicates that the noise signal contained after denoising
has been suppressed, and the denoising effect is obvious.

RMSE, MSE, MAE, and NI have values in the range of
[0,+∞), and the smaller their values are, the closer the
time domain waveforms of the reconstructed signal and
the original signal after denoising are, and the better the
denoising effect is. Similarly, when the NI value is smaller,
it means that the signal is smoother after denoising and the
noise signal is removed more completely. The performance
indicators of denoising white noise signals with different
signal-to-noise ratios are shown in Table 2, where SNRin is
the size of the added white noise signal-to-noise ratio and
SNRout is the signal-to-noise ratio after noise reduction.

SNR = 10 log10

(
∑N

t=1 | f (t)|2

∑N
t=1 | f (t)− f̂ (t)|2

)
(15)

RMSE =

√√√√ 1
N

N

∑
t=1

| f (t)− f̂ (t)|2 (16)

MSE =
1
N

N

∑
t=1

( f (t)− f̂ (t))2 (17)

MAE =
1
N

N

∑
t=1

| f (t)− f̂ (t)| (18)

NI =

√√√√ 1
N

N

∑
t=1

( f̂ (t)− f̄ (t))2 (19)

From the data in Table 2, it is found that the signal-to-
noise ratio is improved after denoising. In the low signal-to-
noise ratio environment, the SVMD-PCA proposed in this
paper also has excellent denoising performance, and can re-
move the white noise that appears. degree of preservation
of the original signal characteristics.

In order to highlight the denoising advantages of the
method in this paper, we compared EMD, ensemble empir-
ical mode decomposition (EEMD) [30] and VMD denoising
effect under different effective modal selection criteria of
PCA and correlation coefficient (CC) [31], and the results
are shown in Fig. 9.

In Fig. 9, EMD, EEMD and SVMD can improve the SNR
of the original signal, it is gradually increases after denois-
ing from −10 dB to 10 dB. The high SNR environment is
more conducive to its denoising effect; Among them, the
EMD denoising effect is the worst among the three, which
is due to its end effect and modal mixing problem, which
leads to the unsatisfactory denoising effect, SVMD-PCA
is the best denoising effect among the three. At the same
time, it is found that the effective mode selection is also a
major factor affecting the denoising effect. In EMD, EEMD
and SVMD, the denoising effect of the PCA criterion is
better than the correlation coefficient threshold criterion.
This is because PCA has the effect of data dimensionality
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(a) STFT spectrum before and after adding 10dB white noise signal denoising

(b) STFT spectrum before and after adding -10dB white noise signal denoising

Fig. 8. STFT spectra before and after adding 10 and -10dB white noise signal denoising

Table 2. Denoising performance evaluation parameters of signals with different signal-to-noise ratios

SNRin 10/dB 5/dB 0/dB −5 dB −10/dB
SNRout 15.800 9.6657 4.1286 -1.4981 -5.4410
RMSE 0.0959 0.1481 0.1961 0.2801 0.3039
MSE 0.0092 0.0219 0.0385 0.0785 0.0924
MAE 0.0766 0.1196 0.1556 0.2231 0.1960

NI 0.1244 0.1493 0.2492 0.3169 0.3941

reduction, and redundant data can be eliminated during
the reconstruction selection process, while the correlation
coefficient threshold selection only selects effective modal
components and does not perform data processing, so the
selection of PCA criteria has the advantage of data elimina-
tion.

4. Measured partial discharge acoustic signal de-
noising

4.1. Experimental setup

In order to simulate the discharge defect of the metal tip
inside the transformer, the discharge model of the oil-paper-
insulated needle plate electrode shown in Fig. 10(a), and
Fig. 10(b) is the schematic diagram of the test connection
of the partial discharge test platform. A layer of insulating

cardboard with a thickness of 1 mm is placed in the needle
plate electrode, and the discharge model is completely im-
mersed in the transformer oil. The distance between the
tip of the needle electrode and the upper end of the card-
board L can be adjusted arbitrarily within a certain range,
during the test, L is taken as 2 mm. The electrode holder is
placed in the center of the simulated fuel tank to reduce the
interference of the refraction and reflection of the acoustic
signal. The distance between the end of the partial dis-
charge sound signal microphone and the outer wall of the
simulated fuel tank is 1000 mm, the frequency band of the
microphone is 20 Hz ∼ 20kHz, the sampling frequency of
the partial discharge sound signal is 44100 Hz, and the sam-
pling time is 1 min. In addition, the transformer discharge
model box is placed in an open laboratory environment,
to reduce the interference of surrounding environmental
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Fig. 9. Denoising effect of EMD&EEMD&VMD on PCA
and CC

factors on the discharge audible sound signal, the test is
carried out at night.

4.2. SVMD-PCA denoising

In the actual discharge acoustic signal, the corona acoustic
signal has always existed in the whole discharge process,
which is very important to the extraction of the discharge
pulse signal, it is assumed that the discharge acoustic signal
of the needle plate electrode in the oil contains the corona
acoustic signal d(x), and the pulse discharge Acoustic sig-
nal m(x), and other noise interference q(x), so the actual
partial discharge acoustic signal can be expressed as

s(x) = d(x) + m(x) + q(x) (20)

SVMD-PCA is used to denoise a section of the partial dis-
charge acoustic signal collected in the laboratory, and the
adaptive selection result of PCA dimensionality reduction
is shown in Fig. 11, and Fig. 12 is the intermediate result of
the measured partial discharge acoustic signal denoising.

In Fig. 12(a), it can be seen from the cumulative contri-
bution of variance that the number of spindles is 2, that is,
there are two effective components in the signal, which cor-
respond to the corona sound and the discharge pulse sound
in the measured data. The optimal decomposition mode
number K=6, the corona acoustic signal is the fourth feature,
and the discharge pulse acoustic signal is the sixth feature,
which can separate and extract each component in the orig-
inal signal. The de-noised reconstructed signal perfectly
retains the characteristics of the discharge pulse acoustic
signal, can clearly capture the discharge timing, and pro-
vide a good signal envelope for fault detection. At the same
time, the discharge pulse sound signal is separated from

(a) Test wiring schematic

(b) Physical map of simulated fuel tank and electrode
support

Fig. 10. Schematic diagram and physical diagram of
partial discharge test.

the corona sound signal, and there is no cross-interference
between the two, and their respective characteristics can be
extracted for specific signals.

The biggest advantage of SVMD-PCA in the paper is
the adaptiveness of decomposition and reconstruction sig-
nal selection, which is also the innovation of this paper.
First, effective adaptive decomposition can be performed
for continuous smooth signals or impulse signals, which is
determined by the characteristics of the VMD decomposi-
tion method itself, which has the advantage of adaptive de-
composition without the need to select the decomposition
signal type in advance. Secondly, the decomposition modal
number of VMD is obtained adaptively by Spearman cor-
relation coefficient, which can avoid over-decomposition
and modal mixing defects, and the decomposition modal
number does not need to be set by human interference,
which reduces the subjective influence. In addition, how to
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Fig. 11. Denoising results of pulsed acoustic signal of
needle plate electrode discharge in oil

choose the effective signal and noise signal after decompo-
sition is also adaptive, and the features of dimensionality
reduction and reconstruction through principal component
analysis to find the essential features of decomposed data
for differentiation greatly reduce the artificial threshold
interference, so as to achieve the adaptiveness of denoising.
Finally, SVMD-PCA can decompose complex component
signals into modal signals with different features, which
is conducive to the extraction of each component feature
in the signal, more thorough decomposition of the signal,
and more adequate signal feature extraction. In summary,
the application of SVMD-PCA to the denoising of local dis-
charge pulse acoustic signals can suppress the interference
of white noise on discharge acoustic signals.

5. Conclusions

In order to reduce the influence of artificially selected pa-
rameters on the signal processing results, a VMD decompo-
sition method based on Spearman correlation coefficient is
proposed in this paper, and the eigenmode components of
the signal are selected for dimension reduction and recon-
struction through principal component analysis. The acous-
tic signal of needle plate electrode discharge is de-noised
and reconstructed, and the conclusions are as follows:

1. The VMD decomposition method based on the Spear-
man correlation coefficient can fully adaptively de-
compose the partial discharge acoustic signal, and can
extract the characteristics of each modal component
of the original signal, avoiding the problem of modal
mixing.

2. The principal component analysis method can reduce

(a) Partial discharge signal SVMD-PCA results

(b) The difference between the reconstructed signal after
PCA and the IMF components of SVMD

(c) Partial discharge signal SVMD-PCA

Fig. 12. Denoising results of pulsed acoustic signal of
needle plate electrode discharge in oil

the dimension of each IMF component after the VMD
decomposition, and eliminate the interference compo-
nents in the signal; at the same time, it can realize the
adaptive selection of each IMF component after the
VMD is completely decomposed, reducing the human
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subjective influence, compared with the correlation
coefficient threshold criterion, its advantage is that it
can be adaptively selected and can reduce data redun-
dancy.

3. SVMD-PCA can de-noise the disturbance signal in the
discharge acoustic signal, and at the same time retain
the characteristics of mutation points to the greatest
extent, which is helpful for the extraction of discharge
pulse timing characteristics.
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