
Journal of Applied Science and Engineering, Vol. 26, No 12, Page 1829-1841 1829

Reward-weighted DHER Mechanism For Multi-goal Reinforcement
Learning With Application To Robotic Manipulation Control

Xueyu Wei, Lilong Duan, and Wei Xue∗

School of Computer Science and Technology, Anhui University of Technology, Maanshan 243032, China

∗Corresponding author. E-mail: xuewei@ahut.edu.cn

Received: Oct. 26, 2022; Accepted: Mar. 08, 2023

In multi-goal reinforcement learning, an agent learns to achieve multiple goals using a goal-oriented policy,
obtaining rewards from positions that have been achieved. Dynamic hindsight experience replay method
improves the learning efficiency of the algorithm by matching the trajectories of past failed episodes and
creating successful experiences. But these experiences are sampled and replayed by a random strategy, without
considering the importance of the episode samples for learning. Therefore, not only bias is introduced as the
training process, but also suboptimal improvements in terms of sample efficiency are obtained. To address these
issues, this paper introduces a reward-weighted mechanism based on the dynamic hindsight experience replay
(RDHER). We extend dynamic hindsight experience replay with a trade-off to make rewards calculated for
hindsight experience numerically greater than actual rewards. Specifically, the hindsight rewards are multiplied
by a weighting factor to increase the Q-value of the hindsight state–action pair, which drives the update of
the policy to select the maximum action for the given hindsight transitions. Our experiments show that the
hindsight bias can be reduced in training using the proposed method. Further, we demonstrate RDHER is
effective in challenging robot manipulation tasks, and outperforms several other multi-goal baseline methods in
terms of success rate.

Keywords: Reinforcement learning, Multi-goal learning, Hindsight experience replay, Hindsight bias, Reward-weighted
© The Author(’s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC
BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are cited.

http://dx.doi.org/10.6180/jase.202312_26(12).0015

1. Introduction

Reinforcement learning (RL) is the process by which an
agent learns to perform a task by interacting with an un-
known dynamic environment. In training, the learning
algorithm updates the policy parameters of the agent. The
goal of the learning algorithm is to find the best policy
to maximize the long-term rewards obtained during the
training task. Deep reinforcement learning [1] uses neural
networks as function approximators [2] for RL, and has
been shown in recent years to achieve human-level per-
formance in Go [3–5], video games [6–8], and challenging
robotic tasks [9–11].

In most of these tasks, the RL algorithm learns a pol-

icy to handle a single task for a specific goal. However,
learning from sparse reward signals [12] remains difficult
or even impossible to obtain successful policies. Because
rewards are only available at the end of completing a task,
resulting in too few successful experiences in the replay
buffer. Some studies have proposed designing dense re-
ward functions [13], but this approach requires manually
designing reward functions with domain-specific knowl-
edge, making it difficult to generalize to different envi-
ronments as well. One approach is to generalize RL from
single-goals to multi-goal [14] settings. In many real-world
applications where an agent needs to perform a set of tasks
with the same dynamics but different goals, even if each
task has few rewards, the agent will reason about the goals

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6180/jase.202312_26(12).0015

1830 Xueyu Wei et al.

and the learning process will be easier. Multi-goal RL en-
ables the agent to find policies to achieve multiple goals by
extending typical RL to action-value functions and policies
under goal conditions, where the reward function of the
environment also depends on the goal.

In the reward function setting for multi-goal RL, the
reward is 0 when the distance between the achieved goal
and the desired goal is less than a certain threshold, and
negative one in all other cases. Thus, the agent receives
non-negative rewards only when it successfully achieve
the desired goal. In robotic arm tasks, due to the dynamic
complexity and lack of exploration, it is usually difficult to
achieve the desired goal by stochastic strategies. In order
to improve the learning efficiency of goal-oriented RL [15]
agents in sparse reward environments, hindsight experi-
ence replay (HER) [16] is based on the idea of off-policy
data replay, using hindsight goals that allow agents to learn
from failures. Specifically, the agent draws from the failed
experiences in the replay buffer that have been achieved to
replace the original goal as the desired goal in HER, allow-
ing the agent to learn faster and receive positive rewards.
The rewards are then recalculated and placed in the experi-
ence buffer for training. Since the experiences are sampled
and replayed in a random strategy that does not take into
account the degree of importance of the sample episodes
for learning, using HER not only introduces bias but also
decreases efficiency as training proceeds. To improve the
efficiency of HER, prioritizing the more valuable episodes
becomes the focus of research. Inspired by the working
energy principle of physics, HER with energy-based priori-
tisation (HEBP) [17] assumes that higher-energy trajectories
are more valuable to learn, it assigns higher probabilities
to trajectory goals with high energy, and then samples tran-
sitions uniformly. Bias-reduced HER with virtual goal pri-
oritization (BRHER) [18] then prioritizes the virtual goals
to learn more valuable information from the agents and
define them by heuristic metrics. It also improves learning
algorithm by filtering misleading samples, reducing exist-
ing biases in HER. Aggressive rewards to counter bias in
HER (ARCHER) [19] extends HER with a trade-off to make
rewards calculated for hindsight experiences numerically
greater than the real rewards. BHER [20], which handles
the hindsight bias by using the bias-corrected hindsight
reward in training. Curriculum-guided HER (CHER) [21]
samples trajectories uniformly, and then performs hybrid
sampling based on proximity to the desired goal and sam-
ple diversity.

In this paper, we propose a method for reward-weighted
DHER mechanism learning for multi-goal RL (RDHER).
New experiences are first collected from the experience of

buffer failure, and combined into new goal trajectories to
enable the processing of dynamic goals and reduce sample
complexity. Then, a weighted trade-off between actual
and hindsight rewards is performed to counter the bias
introduced in HER and improve the sampling efficiency
of the samples. We evaluate RDHER for four challenging
robotic manipulation tasks. Experimentally, our proposed
method achieves higher success rates than previous work.

The rest of this paper is organized as follows. Section 2
introduces the preliminaries of RL, multi-goal RL and HER,
and deep deterministic policy gradient, Section 3 presents
other related works in recent years, Section 4 presents the
proposed method in detail, and in Section 5 we give some
comparative experiments to demonstrate the performance
of the proposed method. Finally, we summarize this paper
in Section 6.

2. Preliminaries

This section provides some preliminaries to help under-
standing, including RL, multi-goal RL and HER.

2.1. Reinforcement learning

RL explores the optimal policy for maximizing cumulative
rewards by an agent that learns from experiences and con-
tinuously optimizes the relationship between the mapping
of states and actions. The interaction process between an
agent and its environment can be represented by Markov
decision process (MDP) [22]. We denote the episode MDP
by the tuple (S, A, T, P, r), where S represents the set of
discrete spaces, A represents the set of discrete actions, P is
the unknown transition dynamics, T is the episode length,
and r is the reward function. In a periodic type task, the
MDP consists of a series of discrete time steps 0, 1, 2, ..., t, ...,
T, where T then denotes the abort time step. At each time
step t, the agent observes the state of the environment st

and then selects an action at according to the existing policy
π (at | st). After executing the action, the MDP reaches the
next time step t + 1. This action transfers the state at of
the agent to the next state st+1, and the environment gets a
new reward rt+1 for performing the action. The reward of
an episode T in the MDP is the discounted sum of rewards
received by the agent during that episode, defined as:

Rt =
T

∑
i=t

γi−tri (1)

where γ ∈ [0, 1] is the discount factor, which downplays
the influence of future rewards exponentially, effectively
reducing the variance of returns. The goal of the agent is
to maximize the expected reward by adjusting the policy

Journal of Applied Science and Engineering, Vol. 26, No 12, Page 1829-1841 1831

over a trajectory of length T. The action-value function can
be denoted as Qπ (st, at) and defined by:

Qπ (st, at) := Eπ [Rt] (2)

which represents the expected cumulative reward for tak-
ing the action at starting from state st, and following the
policy π until the end of the episode.

2.2. Multi-goal RL and HER

Under conditions of sparse rewards, a single-goal RL task
starts with an initialization strategy and requires contin-
uous exploration until a specified location is achieved in
order to obtain rewards. RL can be extended to a multi-goal
setting: the agent can obtain rewards from the positions
already achieved. We use the tuple (S, A, T, P, r,G) to de-
note the MDP of multi-goal RL. The tuple has an additional
goal space G, where the policy of the agent and the reward
function R (st, at) of the environment also depend on the
goal G. Each set starts with an original goal go ∈ G which
is randomly drawn from the goal space. A transition in
the environment is denoted as: (st, at, ro

t , st + 1, go), and
at every time step t, the agent is also provided with the
currently achieved goal ga

t+1. The reward function ro
t is

defined as:

ro
t := r

(
ga

t+1, go) = 1

{∥∥ga
t+1 − go∥∥2

2 < ϵ
}
− 1 (3)

where ϵ is the tolerance distance. The reward function is
defined as whether the state at the next time step reaches
the position of the specified goal, and a negative reward
will be given when the distance between the achieved goal
and the desired goal exceeds a certain threshold. This
binary reward setting makes it difficult for the agent to
obtain positive feedback and hinder the learning process.

To overcome this, HER is used to solve multi-goal RL
problems with binary rewards, which uses a hindsight goal
gh sampled from the replay transition to substitute the
original goal, there:

gh = Unif
{

ga
t+1, ga

t+2, . . . , ga
T−1

}
(4)

where the Unif stands for discrete uniform distribution,
and then, the hindsight reward is calculated as:

rh
t := r

(
ga

t+1, gh
)
= 1

{∥∥∥ga
t+1 − gh

∥∥∥2

2
< ϵ

}
− 1 (5)

In HER, the original transform tuple is replaced with a new
hindsight transform tuple

(
st, at, rh

t , st+1, gh
)

. Her uses the

hindsight goal gh sampled from the replay transitions to re-
place the original goal, providing the agent with successful
experiences to learn.

3. Related work

The need for a large number of samples is more evident
when RL are introduced into deep neural networks. If
the learning is performed directly using sparse samples
sometimes not only fails to enhance the policy, but also
leads to the training divergence of the neural network. At
present, the research for solving the sparse reward problem
mainly contains reward design and learning, experience
replay mechanism, exploration and exploitation, multi-goal
learning and auxiliary tasks. In this work, we focus on
multi-goal RL algorithms that concern the generalization of
tasks with the same MDP but different goals. The research
covers a broad field of RL methods for robotics control
[23, 24] and cybernetics [25]. Methods based on multi-goal
RL are expected to be applied to practical applications,
including aerial manipulators [26] and humanoid robots
[27].

Multi-goal learning algorithms have also been exten-
sively studied in previous work. UVFA [28] extended value
functions to multiple goals, while TDM [29] extended them
to different time horizons. [30] investigated the effect of size
of the replay buffer on performance and proposed Com-
bined Experience Replay (CER) to alleviate the liability of
a large replay buffer. [16] proposed HER method based on
the goal value function, which has the ability to generalize
in the goal space to train the policies of RL algorithms in a
sparse and binary reward environment, thus avoiding the
need for complex reward engineering. HER can be com-
bined with any off-policy algorithm, e.g., DQN [31], DDPG
[32]. Although HER shows good results in multi-goal RL,
it does not consider the bias caused by hindsight goals.
[33] extended HER to dynamic goals for processing tasks
with dynamic goals in the presence of sparse rewards. Sam-
pling rate decay [34] came up with a sampling rate decay
strategy that can reduce the number of training hindsight
experiences. [35] combined the HER with the policy gradi-
ent method, using importance sampling for bias correction,
and extending the multi-goal mechanism to the policy al-
gorithm. [36] extended the HER to the task of representing
states as images, using variational autoencoder [37] to ob-
tain hidden variable representations of states and goals.
Goal replacement and training under the hidden space
further extends the application of the multi-goal algorithm.

Hindsight methods can also be considered as an explo-
ration method [38] in solving sparse-reward tasks. [39]
introduced a competition between two agents for better
exploration. Entropy regularization HER [40] presented
a new multi-goal RL based on weighted entropy that en-
courages agents to maximize expected returns and achieve
diverse goals. Multi-goal RL can also be combined with

1832 Xueyu Wei et al.

multitask learning [41], imitation learning [42], multiagent
learning [43], and planning [44] to solve complex tasks.

4. Proposed method

In this section, we formally describe the two main compo-
nents of our method, RDHER: (1) dynamic goal-based goal
matching and combination module (Fig. 1). New experi-
ences are collected from buffer failures and combined into
new goal trajectories to enable the processing of dynamic
goals and reduce sample complexity (see Section 4.1); (2)
reward-weighted mechanism module for overestimating
probability bias based on hindsight experiences (Fig. 2). We
introduce a weighted trade-off between the actual reward
and the hindsight reward to counter the bias introduced
in HER to improve the sampling efficiency of the samples
(see Section 4.2).

Fig. 1. Dynamic goal-based goal matching and
combination module.

4.1. Dynamic goal-based goal matching and combination

To solve the reward sparsity problem, a hindsight expe-
rience replay method is proposed, which is a simple and
effective method that can operate the replay buffer used
for RL algorithms. However, the application of HER al-
gorithm is limited, and with the increasing complexity of
the environment, it becomes difficult to achieve changing
the position of goal in different time steps within a cycle
when the goal is constantly changing. To overcome this
limitation, we consider reassembling failed experiences
into new episodes for training through cutting and splicing
operations.

4.1.1. Goal matching

We create successful trajectory rewards for the agents by
efficiently using the failed experiences in the experience
replay buffer {E0, E1, E2, · · · }. For the achieved goal tra-
jectory, we try to find a matching desired goal trajectory
from other episodes. First, we search for two episodes of

failures Ei and Ej (i ̸= j), where ∃ i, j, p, q, s.t. gac
i,p = gde

j,q.
gac

i,p denotes the goal achieved by the agent at time step p of

the episode i, and gde
j,q denotes the desired goal of the agent

at time step q of the episode j.

4.1.2. Goal combination

Next, the achieved goal trajectories are combined into new
episodes by matching the achieved goal trajectories with
the found desired goal trajectories. It should be known
that in a multi-goal RL setup, the state consists of three
parts: observation ot, desired goal gde

t and achieved goal

gac
t , define as st =

〈
ot, gac

t , gde
t

〉
, where gac

t indicates goals

that the agent has achieved and gde
t denotes the desired goal

at moment t. If we find two such failed episodes in 4.1.1, we
combine the two experience by replacing the desired goals
in Ei by gde

j,t, where j indicates Ei and t ≤ min{p, q}. On
this basis, the new combined goal trajectory is represented
as

{
gde

j,0, · · · , gde
j,t

}
. But the problem that arises from doing

this is that not all experiences deserve the same degree of
learning, and HER introduces significant bias in the replay
buffer.

Fig. 2. Reward-weighted mechanism module.

4.2. Reward-weighted mechanism module for hindsight
bias

To use HER more effectively, we consider the degree of
importance of the episode samples for learning. Applying
a reward-weighted mechanism, two real-valued scalar mul-
tipliers λr and λh are introduced to differentiate between
actual rewards rt and hindsight rewards rh

t , as is shown in
Eqs. (6) and (7):

rt = λr × r (st, at, gt+1) (6)

rh
t = λh × r

(
si,p−m+t, ai,p−m+t, gh

t+1

)
(7)

where r(·) denotes the given reward function for the task.
Matching the true probability of hindsight experience with
the probability of its bias drives the current policy to be
consistent with the hindsight experience data in the replay

Journal of Applied Science and Engineering, Vol. 26, No 12, Page 1829-1841 1833

buffer. We use more aggressive hindsight experience replay
rewards to increase the Q-value of hindsight state-action
pairs to indirectly drive policy updates and improve the
sampling efficiency of RL.

It is worth noting that the Vanilla HER is a special case
where λr and λh are equal to 1. We require that rh

t ≥ rt,
which yields:

λh × r
(

st, at, gh
)
> λr × r (st, at, g) (8)

however, if the agent is in the domain of functions with
negative rewards, i.e. r(·) ≤ 0, there is λr > λh. Con-
versely, if in the domain of functions with positive rewards,
i.e. r(·) ≥ 0, the formula λr < λh can be obtained. Us-
ing trade-off, the definition of the goal values for actual
experience and hindsight experience can take the form of:

yi = λr · ri + γQ′
(

si+1∥g, µ′
(

si+1∥g; θµ′
)

; θQ′
)

(9)

yh
i = λh · rh

i + γQ′
(

si+1∥gh, µ′
(

si+1∥gh; θµ′
)

; θQ′
)

(10)

where the Q′ function is the target action-value network
parameterized by θQ′ .

The pseudocode of the proposed method is described
in Algorithm 1. Note that since RDHER has to search for
all failed experiences, in our experiments we use two hash
tables to store the trajectories of achieved goals and desired
goals, respectively.

5. Experiment

In this section, we first present the experimental setup and
simulation environments in order to evaluate the effective-
ness of the proposed RDHER method. And also compared
with current state-of-the-art HER-based algorithms to solve
several challenging robot manipulation tasks for Gym that
use the MuJoCo [45] physics simulator. In addition, we
perform some sensitivity analyses on the weighting param-
eters in the experiments.

5.1. Experimental settings

In terms of the experimental settings, we give a brief intro-
duction to the environment and the experimental parame-
ter setting.

5.1.1. Simulation environments

The environment used for the experiments consists of
four different tasks, which are FetchReach-v1 (Fig. 3a),
FetchPush-v1 (Fig. 3b), FetchSlide-v1 (Fig. 3c) and
FetchPickAndPlace-v1 (Fig. 3d).

The Fetch environment is based on the 7-DoF (degrees
of freedom) Fetch robotics arm with a two-fingered parallel
gripper. In the Fetch environments, the state st contains

Cartesian positions, rotations, and velocities of joints and
positions of objects. The state is a 10-dimensional vector
in FetchReach and a 25-dimensional vector in the other
Fetch tasks. Each action at is a 4-dimensional vector, where
the 3-dimensional vector specifies the desired movement
of the gripper in Cartesian coordinates and the gripper
keeps closing during the process of reaching a certain target
location. The desired goal is where the goal wants to be,
while the achieved goal is where the goal has been achieved.
Each episode is of length T = 50. The reward function of
the agent is sparse and binary: the agent receives a reward
of zero if the goal has been achieved (within the tolerances
of certain tasks) and negative one otherwise.

• FetchReach-v1: FetchReach is the simplest task in all
Fetch environments. The task is to make the Fetch
move its gripper to the desired goal position.

• FetchPush-v1: The goal of the task is that the robot
need to learn how to shift its gripper towards the de-
sired goal.

• FetchSlide-v1: FetchSlide is the most difficult task in
all Fetch environments. The robot has to hit the slider
across a long table so that it slides off and stops on the
desired goal.

• FetchPickAndPlace-v1: This is even harder, the robot
has to grab a box from a table using its fingers and
move it to a desired goal above the table as well as in
the air.

5.1.2. Training parameters

We train different episodes for each agent in different en-
vironments. The basic hyperparameters in RDHER are
the same as in the HER, and we summarize the relevant
hyperparameters in the experiments in Table 1.

5.2. Ablation studies

We perform the following experiments to demonstrate the
extent to which the study reward-weighted mechanism
affects different environments. For each experiment, we
carefully chose trade-off parameters to deeply fit the rela-
tive reward optimization between dynamic hindsight and
standard experience replay. We set several sets of ratios
between hindsight and actual reward weights respectively,
and then evaluate our approach by comparing the suc-
cess rate of the learned policy with the number of cycles
required to achieve that performance.

• λr, λh ∈ {1, 2}: The weight of the hindsight experience
reward function is two times or one-half of the actual
reward function. We set λr = 1, λh = 2 and λr = 2,
λh = 1 separately in our experiments.

1834 Xueyu Wei et al.

Algorithm 1: RDHER method
Given:
• an off-policy RL algorithm A ▷ e.g. DQN, DDPG, NAF, SDQN
• a strategy S for sampling goals for replay ▷ e.g. S (s0, . . . , sT) = m (sT)
• a reward function r, real reward weight λr, hingsight reward weight λh and replay buffer R
for episode = 1, 2, · · · , M do

Sample an initial goal go and an initial state so
for t = 0, · · · , T − 1 do

Sample an action at using the behavioral policy from A:
at ← π (st | gt)
Execute the action at and observe a new state st+1 and a new goal gt+1

end for
for t = 0, · · · , T − 1 do

rt := λr × r (st, at, gt+1)
Store the transitions (st |gt, at, rt, st+1| gt+1) in R (Standard experience replay)

end for
Collected failed episodes to ϵ
for Ei ∈ E do

Search another Ej(i ̸= j) ∈ E where gac
i,p = gde

j,q
if Ej ̸= ∅ then

Clone a goal trajectory
{

gh
0 , · · · , gh

m

}
m=min

{p, q} in which gh
t = gde

j,q−m+t from Ej

for t = {0, · · · , m− 1} do
rh

t := λh × r
(

si,p−m+t, ai,p−m+t, gh
t+1

)
Store the transition

(
si,p−m+t

∣∣∣gh
t , ai,p−m+t, rh

t , si,p−m+t+1

∣∣∣ gh
t+1

)
in R

end for
end if

end for
for t = 0, · · · , N do

Sample a minibatch B from the replay buffer R
Optimize A using the minibatch B

end for
end for

Table 1. Hyperparameters for RDHER.

Hyperparameters Value Description
optimizer Adam Adam optimizer is used for training.
layers 3 Number of layers in the critic/actor networks.
hidden 256 Number of neurons in each hidden layers.
learning rate 0.001 The learning rate for both the actor and the critic.
buffer_size int(1E6) For experience replay.
polyak factor 0.95 Polyak averaging coefficient.
rollout_batch_size 2 Per mpi thread.
n_batches 40 Training batches per cycle.
batch_size 256 Per mpi thread, measured in transitions and reduced to even multiple of chunk_length.
n_test_rollouts 10 Number of test rollouts per epoch, each consists of rollout_batch_size rollouts.
random_eps 0.3 Percentage of time a random action is taken.
noise_eps 0.2 Std of gaussian noise added to not-completely-random actions as a percentage of max_u.
norm_eps 0.01 Epsilon used for observation normalization.
norm_clip 5 Normalized observations are cropped to this values.

• λr, λh ∈ {1, 4}: The weight of the hindsight experi-
ence reward function is four times or one-fourth of the
actual reward function. We set λr = 1, λh = 4 and
λr = 4, λh = 1 separately in our experiments.

• λr, λh ∈ {0.5, 4}: The weight of the hindsight experi-
ence reward function is eight times or one-eighth of

the actual reward function. We set λr = 0.5, λh = 4
and λr = 4, λh = 0.5 separately in our experiments.

We train the policy by using one CPU core and set the
above different weighting factors in different environments
to train the policy of the agent. Fig. 4 shows the perfor-
mance plots in the four Fetch environments. From these

Journal of Applied Science and Engineering, Vol. 26, No 12, Page 1829-1841 1835

(a) FetchReach-v1 (b) FetchPush-v1

(c) FetchSlide-v1 (d) FetchPickAndPlace-v1

Fig. 3. Robot Fetch environments.

figures, we observe that the overall blue line part is superior
to the red line, which means we can learn and enhance the
performance proportionally from hindsight and actual ex-
perience. Since the reward function is binary negative -1/0,
when λr > λh, it corresponds to increasing the Q-value of
the hindsight transition state-action pair. Following this,
the effective influence of the reward-weighted mechanism
on the agent’s search for the optimal policy.

Figs. 5 to 8 show the comparative effects of these differ-
ent weighting factors and Vanilla HER. In the FetchReach
environment, we can observe that the final results of the
RDHER are better than the baseline Vanilla HER regardless
of the ratio set by λr and λh. Of course, when λr is 2, 4, 8
times λh is always better than λh is 2, 4, 8 times λr. In the
FetchPush environment, the algorithm works best when
λr is set to 8 times λh, but the variance is larger, and when
λr, λh ∈ {1, 4}, the effect is not as good as the baseline
Vanilla HER, and when λr is set to 2 times λh, the effect
is not only better than the baseline but also the variance

is smaller. In the FetchSlide environment, similar to the
FetchReach environment, the final result of the algorithm is
better than the baseline Vanilla HER regardless of the ratio
of λr and λh settings. When λr, λh ∈ {1, 4}, the algorithm
is comparable, and when λr is set to 2 and 8 times of λh,
both are stronger than when λh is greater than λr. In the
FetchPickAndPlace environment, the training effect of the
algorithm is not only comparable when λr, λh ∈ {0.5, 4},
but also comparable to the Vanilla HER. The effect is better
than the baseline when λr, λh ∈ {1, 4} and is best when
λr is four times λh. When λr, λh ∈ {1, 2}, the curves are
on the upper and lower sides of the baseline algorithm
respectively, and the best results are obtained when λr is
two times of λh.

5.3. Benchmark results

Our evaluation of different methods is based on DDPG.
We use different methods to sample hindsight experiences
to replay and train policies on the environments issuing
sparse rewards. We compared the following baselines in

1836 Xueyu Wei et al.

(a) FetchReach-v1 (b) FetchPush-v1

(c) FetchSlide-v1 (d) FetchPickAndPlace-v1

Fig. 4. Robot Fetch environments.

(a) λr, λh ∈ {1, 2} (b)λr, λh ∈ {1, 4} (c) λr, λh ∈ {0.5, 4}

Fig. 5. Comparison of different weights with Vanilla HER in FetchReach-v1.

our experiments.

• DDPG [32]: which is a model-free RL algorithm
for continuous control that simultaneously learns Q-
functions and policies. It learns a deterministic policy
by using a stochastic counterpart to explore in the
training.

• HER [16]: which uses hindsight goals to obtain hind-
sight rewards without adjustment to the bias.

• CHER [21]: which controls the explo-
ration–exploitation trade-off in HER by the difficulty
and diversity of hindsight goals via hindsight
experience selection.

• DHER [33]: which is able to address the tasks with
sparse rewards and dynamic goals.

We sequentially selected the curves with the best weight
fits for the different baseline algorithms in the ablation

Journal of Applied Science and Engineering, Vol. 26, No 12, Page 1829-1841 1837

(a) λr, λh ∈ {1, 2} (b)λr, λh ∈ {1, 4} (c) λr, λh ∈ {0.5, 4}

Fig. 6. Comparison of different weights with Vanilla HER in FetchPush-v1.

(a) λr, λh ∈ {1, 2} (b)λr, λh ∈ {1, 4} (c) λr, λh ∈ {0.5, 4}

Fig. 7. Comparison of different weights with Vanilla HER in FetchSlide-v1.

(a) λr, λh ∈ {1, 2} (b)λr, λh ∈ {1, 4} (c) λr, λh ∈ {0.5, 4}

Fig. 8. Comparison of different weights with Vanilla HER in FetchPickAndPlace-v1.

experiments (Section 5.2), where the parameters selected in
the FetchReach and FetchPickAndPlace environments were
λr=2, λh=1, the parameters selected in the FetchPush and
FetchSlide environments were λr=4, λh= 0.5. Fig. 9 depicts
the median test success rates of the RDHER method and
baseline methods on the four Fetch tasks. We use the best-
learned policy for evaluation and test it in the environment.
The testing results are the mean success rates. The best
trained success rate of each algorithm in the set number of
episodes is shown in Table 2, and the time spent in a single
run is shown in Table 3. In the FetchReach and FetchSlide
environments, RDHER method takes the least training time

under the premise of ensuring the success rate. In the other
two environments, although it is not as time-consuming
as DDPG and HER, it is still slightly less time-consuming
than DHER. Compared to all other methods, our method
learns relatively faster and has a higher success rate. In
particular, without using HER, DDPG is almost unable to
solve any task other than FetchReach.

In summary, we fit different weighting factors to dif-
ferent environments to train the algorithm, and derive the
optimal ratio of hindsight rewards to actual rewards in
different environments by ablation studies.

1838 Xueyu Wei et al.

(a) FetchReach-v1 (b) FetchPush-v1

(c) FetchSlide-v1 (d) FetchPickAndPlace-v1

Fig. 9. Shows the training curves for the five algorithms. To make a fair comparison for each algorithm, we repeated the
experiment five times for each algorithm in all tasks to exclude the effect of randomness on the comparison results. The

reward curves for the algorithms are plotted after taking the sliding average of the five experiments.

Table 2. Comparison of mean success rate over seeds of the best policy. Bold scores signify the best score out of all methods.

DDPG HER CHER DHER RDHER(ours)
FetchReach 100% 88% 89% 100% 100%
FetchPush 15% 39% 14% 21% 58%
FetchSlide 2% 24% 17% 41% 50%

FetchPickAndPlace 8% 25% 33% 45% 47%

Table 3. Training time (hours:minutes:seconds) in all four environments (single run).

DDPG HER CHER DHER RDHER(ours)
FetchReach 00:50:24 00:46:55 01:45:13 00:11:27 00:11:16
FetchPush 03:35:59 03:30:32 06:43:20 04:10:14 03:53:16
FetchSlide 01:53:53 01:49:18 03:41:51 01:57:47 01:43:58

FetchPickAndPlace 03:34:50 03:28:32 07:50:02 04:06:21 03:50:06

6. Conclusion

In this paper, aiming at the hindsight bias caused by ran-
dom strategies in dynamic hindsight experience replay,
a reinforcement learning algorithm based on a weighted
hindsight experience replay structure is proposed. We use
numerically larger hindsight rewards to weaken the bias

and improve the sampling efficiency of the algorithm. Our
ablation experiments demonstrate that: (1) when the speci-
fied hindsight weights are opposite to the reward function
of the environment, the bias is amplified and the reward
is reduced; (2) learning exclusively from only hindsight
experiences decreases the performance of the algorithm; (3)

Journal of Applied Science and Engineering, Vol. 26, No 12, Page 1829-1841 1839

in addition, for benchmark comparison experiments, the
RDHER algorithm is more effective and advantageous in
four challenging robotic tasks compared to several previ-
ous baseline algorithms.

Acknowledgment

This work was supported in part by the National Natural
Science Foundation of China (Grant No. 61806004) and the
Anhui Provincial Natural Science Foundation (Grant No.
2208085MF168).

References

[1] V. François-Lavet, P. Henderson, R. Islam, M. G. Belle-
mare, and J. Pineau, (2018) “An introduction to deep
reinforcement learning" Foundations and Trends in
Machine Learning 11(3-4): 219–354. DOI: 10.1561/
2200000071.

[2] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst.
Reinforcement learning and dynamic programming using
function approximators. CRC press, 2017.

[3] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Si-
monyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver,
(2020) “Mastering Atari, Go, chess and shogi by planning
with a learned model" Nature 588(7839): 604–609. DOI:
10.1038/s41586-020-03051-4.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I.
Antonoglou, A. Huang, A. Guez, T. Hubert, L.
Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. Van Den Driessche, T. Graepel, and
D. Hassabis, (2017) “Mastering the game of Go without
human knowledge" Nature 550(7676): 354–359. DOI:
10.1038/nature24270.

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T.
Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis,
(2018) “A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play" Science
362(6419): 1140–1144. DOI: 10.1126/science.aar6404.

[6] C. Berner, G. Brockman, B. Chan, V. Cheung, P.
Dębiak, C. Dennison, D. Farhi, Q. Fischer, S. Hashme,
C. Hesse, et al., (2019) “Dota 2 with large scale deep rein-
forcement learning" arXiv preprint arXiv:1912.06680:

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.
Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, and D. Hassabis, (2015) “Human-
level control through deep reinforcement learning" Na-
ture 518(7540): 529–533. DOI: 10.1038/nature14236.

[8] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Math-
ieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T.
Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I.
Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M.
Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen,
V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L.
Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring,
D. Yogatama, D. Wünsch, K. McKinney, O. Smith,
T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis,
C. Apps, and D. Silver, (2019) “Grandmaster level in
StarCraft II using multi-agent reinforcement learning"
Nature 575(7782): 350–354. DOI: 10.1038/s41586-019-
1724-z.

[9] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz,
and D. Quillen, (2018) “Learning hand-eye coordi-
nation for robotic grasping with deep learning and
large-scale data collection" International Journal of
Robotics Research 37(4-5): 421–436. DOI: 10.1177/
0278364917710318.

[10] O. M. Andrychowicz, B. Baker, M. Chociej, R. Józe-
fowicz, B. McGrew, J. Pachocki, A. Petron, M. Plap-
pert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin,
P. Welinder, L. Weng, and W. Zaremba, (2020) “Learn-
ing dexterous in-hand manipulation" International
Journal of Robotics Research 39(1): 3–20. DOI: 10.
1177/0278364919887447.

[11] S. Gu, E. Holly, T. Lillicrap, and S. Levine. “Deep
reinforcement learning for robotic manipulation with
asynchronous off-policy updates”. In: Cited by: 777;
All Open Access, Green Open Access. 2017, 3389–
3396. DOI: 10.1109/ICRA.2017.7989385.

[12] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J.
Degrave, T. Van De Wiele, V. Mnih, N. Heess, and T.
Springenberg. “Learning by playing - Solving sparse
reward tasks from scratch”. In: 10. Cited by: 45. 2018,
6910–6919.

[13] J. Xie, Z. Shao, Y. Li, Y. Guan, and J. Tan, (2019) “Deep
Reinforcement Learning with Optimized Reward Func-
tions for Robotic Trajectory Planning" IEEE Access 7:
105669–105679. DOI: 10.1109/ACCESS.2019.2932257.

https://doi.org/10.1561/2200000071
https://doi.org/10.1561/2200000071
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/nature24270
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.1109/ACCESS.2019.2932257

1840 Xueyu Wei et al.

[14] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew,
B. Baker, G. Powell, J. Schneider, J. Tobin, M. Chociej,
P. Welinder, et al., (2018) “Multi-goal reinforcement
learning: Challenging robotics environments and request
for research" arXiv preprint arXiv:1802.09464:

[15] J. Tarbouriech, E. Garcelon, M. Valko, M. Pirotta, and
A. Lazaric. “No-regret exploration in goal-oriented
reinforcement learning”. In: PartF168147-13. Cited
by: 5. 2020, 9370–9379.

[16] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider,
R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel,
and W. Zaremba. “Hindsight experience replay”. In:
2017-December. Cited by: 616. 2017, 5049–5059.

[17] R. Zhao and V. Tresp. “Energy-based hindsight expe-
rience prioritization”. In: Conference on Robot Learning.
PMLR. 2018, 113–122.

[18] B. Manela and A. Biess, (2021) “Bias-reduced hindsight
experience replay with virtual goal prioritization" Neu-
rocomputing 451: 305–315. DOI: 10.1016/j.neucom.
2021.02.090.

[19] S. Lanka and T. Wu, (2018) “Archer: Aggressive rewards
to counter bias in hindsight experience replay" arXiv
preprint arXiv:1809.02070:

[20] C. Bai, L. Wang, Y. Wang, Z. Wang, R. Zhao, C. Bai,
and P. Liu, (2023) “Addressing Hindsight Bias in Multi-
goal Reinforcement Learning" IEEE Transactions on
Cybernetics 53(1): 392–405. DOI: 10.1109/TCYB.2021.
3107202.

[21] M. Fang, T. Zhou, Y. Du, L. Han, and Z. Zhang.
“Curriculum-guided hindsight experience replay”.
In: 32. Cited by: 43. 2019.

[22] M. L. Puterman. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

[23] Y. Wen, J. Si, A. Brandt, X. Gao, and H. H. Huang,
(2020) “Online Reinforcement Learning Control for the
Personalization of a Robotic Knee Prosthesis" IEEE Trans-
actions on Cybernetics 50(6): 2346–2356. DOI: 10 .
1109/TCYB.2019.2890974.

[24] S. B. Niku. Introduction to robotics: analysis, control,
applications. John Wiley & Sons, 2020.

[25] X. Wang, L. Ke, Z. Qiao, and X. Chai, (2021) “Large-
Scale Traffic Signal Control Using a Novel Multiagent
Reinforcement Learning" IEEE Transactions on Cy-
bernetics 51(1): 174–187. DOI: 10.1109/TCYB.2020.
3015811.

[26] Y.-C. Liu and C.-Y. Huang, (2022) “DDPG-Based Adap-
tive Robust Tracking Control for Aerial Manipulators
With Decoupling Approach" IEEE Transactions on Cy-
bernetics 52(8): 8258–8271. DOI: 10.1109/TCYB.2021.
3049555.

[27] M. Patacchiola and A. Cangelosi, (2022) “A Develop-
mental Cognitive Architecture for Trust and Theory of
Mind in Humanoid Robots" IEEE Transactions on Cy-
bernetics 52(3): 1947–1959. DOI: 10.1109/TCYB.2020.
3002892.

[28] T. Schaul, D. Horgan, K. Gregor, and D. Silver. “Uni-
versal value function approximators”. In: 2. Cited by:
364. 2015, 1312–1320.

[29] V. Pong, S. Gu, M. Dalal, and S. Levine, (2018) “Tem-
poral difference models: Model-free deep rl for model-based
control" arXiv preprint arXiv:1802.09081:

[30] S. Zhang and R. S. Sutton, (2017) “A deeper look at
experience replay" arXiv preprint arXiv:1712.01275:

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller, (2013)
“Playing atari with deep reinforcement learning" arXiv
preprint arXiv:1312.5602:

[32] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, (2015) “Contin-
uous control with deep reinforcement learning" arXiv
preprint arXiv:1509.02971:

[33] M. Fang, C. Zhou, B. Shi, B. Gong, J. Xu, and T.
Zhang. “Dher: Hindsight experience replay for dy-
namic goals”. In: Cited by: 21. 2019.

[34] L. F. Vecchietti, M. Seo, and D. Har, (2022) “Sampling
Rate Decay in Hindsight Experience Replay for Robot Con-
trol" IEEE Transactions on Cybernetics 52(3): 1515–
1526. DOI: 10.1109/TCYB.2020.2990722.

[35] P. Rauber, A. Ummadisingu, F. Mutz, and J. Schmid-
huber, (2017) “Hindsight policy gradients" arXiv
preprint arXiv:1711.06006:

[36] A. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S.
Levine. “Visual reinforcement learning with imag-
ined goals”. In: 2018-December. Cited by: 137. 2018,
9191–9200.

[37] D. P. Kingma and M. Welling, (2013) “Auto-encoding
variational bayes" arXiv preprint arXiv:1312.6114:

[38] C. Bai, L. Wang, L. Han, J. Hao, A. Garg, P. Liu, and
Z. Wang. “Principled exploration via optimistic boot-
strapping and backward induction”. In: International
Conference on Machine Learning. PMLR. 2021, 577–587.

https://doi.org/10.1016/j.neucom.2021.02.090
https://doi.org/10.1016/j.neucom.2021.02.090
https://doi.org/10.1109/TCYB.2021.3107202
https://doi.org/10.1109/TCYB.2021.3107202
https://doi.org/10.1109/TCYB.2019.2890974
https://doi.org/10.1109/TCYB.2019.2890974
https://doi.org/10.1109/TCYB.2020.3015811
https://doi.org/10.1109/TCYB.2020.3015811
https://doi.org/10.1109/TCYB.2021.3049555
https://doi.org/10.1109/TCYB.2021.3049555
https://doi.org/10.1109/TCYB.2020.3002892
https://doi.org/10.1109/TCYB.2020.3002892
https://doi.org/10.1109/TCYB.2020.2990722

Journal of Applied Science and Engineering, Vol. 26, No 12, Page 1829-1841 1841

[39] H. Liu, A. Trott, R. Socher, and C. Xiong,
(2019) “Competitive experience replay" arXiv preprint
arXiv:1902.00528:

[40] R. Zhao, X. Sun, and V. Tresp. “Maximum entropy-
regularized multi-goal reinforcement learning”. In:
2019-June. Cited by: 8. 2019, 13022–13035.

[41] C. Colas, P. Founder, O. Sigaud, M. Chetouani,
and P.-Y. Oudeyer. “CURIOUS: Intrinsically moti-
vated modular multi-goal reinforcement learning”.
In: 2019-June. Cited by: 9. 2019, 2372–2387.

[42] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel.
“Goal-conditioned imitation learning”. In: 32. Cited
by: 43. 2019.

[43] J. Yang, A. Nakhaei, D. Isele, K. Fujimura, and H.
Zha, (2018) “Cm3: Cooperative multi-goal multi-stage
multi-agent reinforcement learning" arXiv preprint
arXiv:1809.05188:

[44] S. Nasiriany, V. H. Pong, S. Lin, and S. Levine. “Plan-
ning with goal-conditioned policies”. In: 32. Cited
by: 38. 2019.

[45] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics
engine for model-based control”. In: Cited by: 1643.
2012, 5026–5033. DOI: 10.1109/IROS.2012.6386109.

https://doi.org/10.1109/IROS.2012.6386109

	Introduction
	Preliminaries
	Reinforcement learning
	Multi-goal RL and HER

	Related work
	Proposed method
	Dynamic goal-based goal matching and combination
	Goal matching
	Goal combination

	Reward-weighted mechanism module for hindsight bias

	Experiment
	Experimental settings
	Simulation environments
	Training parameters

	Ablation studies
	Benchmark results

	Conclusion

