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In multi-goal reinforcement learning, an agent learns to achieve multiple goals using a goal-oriented policy,
obtaining rewards from positions that have been achieved. Dynamic hindsight experience replay method
improves the learning efficiency of the algorithm by matching the trajectories of past failed episodes and
creating successful experiences. But these experiences are sampled and replayed by a random strategy, without
considering the importance of the episode samples for learning. Therefore, not only bias is introduced as the
training process, but also suboptimal improvements in terms of sample efficiency are obtained. To address these
issues, this paper introduces a reward-weighted mechanism based on the dynamic hindsight experience replay
(RDHER). We extend dynamic hindsight experience replay with a trade-off to make rewards calculated for
hindsight experience numerically greater than actual rewards. Specifically, the hindsight rewards are multiplied
by a weighting factor to increase the Q-value of the hindsight state—action pair, which drives the update of
the policy to select the maximum action for the given hindsight transitions. Our experiments show that the
hindsight bias can be reduced in training using the proposed method. Further, we demonstrate RDHER is
effective in challenging robot manipulation tasks, and outperforms several other multi-goal baseline methods in
terms of success rate.
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1. Introduction

Reinforcement learning (RL) is the process by which an
agent learns to perform a task by interacting with an un-
known dynamic environment. In training, the learning
algorithm updates the policy parameters of the agent. The
goal of the learning algorithm is to find the best policy
to maximize the long-term rewards obtained during the
training task. Deep reinforcement learning [1] uses neural
networks as function approximators [2] for RL, and has
been shown in recent years to achieve human-level per-
formance in Go [3-5], video games [6-8], and challenging
robotic tasks [9-11].

In most of these tasks, the RL algorithm learns a pol-

icy to handle a single task for a specific goal. However,
learning from sparse reward signals [12] remains difficult
or even impossible to obtain successful policies. Because
rewards are only available at the end of completing a task,
resulting in too few successful experiences in the replay
buffer. Some studies have proposed designing dense re-
ward functions [13], but this approach requires manually
designing reward functions with domain-specific knowl-
edge, making it difficult to generalize to different envi-
ronments as well. One approach is to generalize RL from
single-goals to multi-goal [14] settings. In many real-world
applications where an agent needs to perform a set of tasks
with the same dynamics but different goals, even if each
task has few rewards, the agent will reason about the goals
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and the learning process will be easier. Multi-goal RL en-
ables the agent to find policies to achieve multiple goals by
extending typical RL to action-value functions and policies
under goal conditions, where the reward function of the
environment also depends on the goal.

In the reward function setting for multi-goal RL, the
reward is 0 when the distance between the achieved goal
and the desired goal is less than a certain threshold, and
negative one in all other cases. Thus, the agent receives
non-negative rewards only when it successfully achieve
the desired goal. In robotic arm tasks, due to the dynamic
complexity and lack of exploration, it is usually difficult to
achieve the desired goal by stochastic strategies. In order
to improve the learning efficiency of goal-oriented RL [15]
agents in sparse reward environments, hindsight experi-
ence replay (HER) [16] is based on the idea of off-policy
data replay, using hindsight goals that allow agents to learn
from failures. Specifically, the agent draws from the failed
experiences in the replay buffer that have been achieved to
replace the original goal as the desired goal in HER, allow-
ing the agent to learn faster and receive positive rewards.
The rewards are then recalculated and placed in the experi-
ence buffer for training. Since the experiences are sampled
and replayed in a random strategy that does not take into
account the degree of importance of the sample episodes
for learning, using HER not only introduces bias but also
decreases efficiency as training proceeds. To improve the
efficiency of HER, prioritizing the more valuable episodes
becomes the focus of research. Inspired by the working
energy principle of physics, HER with energy-based priori-
tisation (HEBP) [17] assumes that higher-energy trajectories
are more valuable to learn, it assigns higher probabilities
to trajectory goals with high energy, and then samples tran-
sitions uniformly. Bias-reduced HER with virtual goal pri-
oritization (BRHER) [18] then prioritizes the virtual goals
to learn more valuable information from the agents and
define them by heuristic metrics. It also improves learning
algorithm by filtering misleading samples, reducing exist-
ing biases in HER. Aggressive rewards to counter bias in
HER (ARCHER) [19] extends HER with a trade-off to make
rewards calculated for hindsight experiences numerically
greater than the real rewards. BHER [20], which handles
the hindsight bias by using the bias-corrected hindsight
reward in training. Curriculum-guided HER (CHER) [21]
samples trajectories uniformly, and then performs hybrid
sampling based on proximity to the desired goal and sam-
ple diversity.

In this paper, we propose a method for reward-weighted
DHER mechanism learning for multi-goal RL (RDHER).
New experiences are first collected from the experience of

buffer failure, and combined into new goal trajectories to
enable the processing of dynamic goals and reduce sample
complexity. Then, a weighted trade-off between actual
and hindsight rewards is performed to counter the bias
introduced in HER and improve the sampling efficiency
of the samples. We evaluate RDHER for four challenging
robotic manipulation tasks. Experimentally, our proposed
method achieves higher success rates than previous work.

The rest of this paper is organized as follows. Section 2
introduces the preliminaries of RL, multi-goal RL and HER,
and deep deterministic policy gradient, Section 3 presents
other related works in recent years, Section 4 presents the
proposed method in detail, and in Section 5 we give some
comparative experiments to demonstrate the performance
of the proposed method. Finally, we summarize this paper
in Section 6.

2. Preliminaries

This section provides some preliminaries to help under-
standing, including RL, multi-goal RL and HER.

2.1. Reinforcement learning

RL explores the optimal policy for maximizing cumulative
rewards by an agent that learns from experiences and con-
tinuously optimizes the relationship between the mapping
of states and actions. The interaction process between an
agent and its environment can be represented by Markov
decision process (MDP) [22]. We denote the episode MDP
by the tuple (S, A, T,P,r), where S represents the set of
discrete spaces, A represents the set of discrete actions, P is
the unknown transition dynamics, T is the episode length,
and r is the reward function. In a periodic type task, the
MDP consists of a series of discrete time steps 0,1, 2, ..., t, ...,
T, where T then denotes the abort time step. At each time
step t, the agent observes the state of the environment s;
and then selects an action a; according to the existing policy
7 (ar | st). After executing the action, the MDP reaches the
next time step t 4+ 1. This action transfers the state a; of
the agent to the next state s; 1, and the environment gets a
new reward 7,1 for performing the action. The reward of
an episode T in the MDP is the discounted sum of rewards
received by the agent during that episode, defined as:

T
Ry = Z’Yiitri )

i=t
where 7 € [0,1] is the discount factor, which downplays
the influence of future rewards exponentially, effectively
reducing the variance of returns. The goal of the agent is
to maximize the expected reward by adjusting the policy
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over a trajectory of length T. The action-value function can
be denoted as Q (s, a¢) and defined by:

Q™ (s, at) == Ex [Ry] @

which represents the expected cumulative reward for tak-
ing the action a; starting from state s;, and following the
policy 7 until the end of the episode.

2.2. Multi-goal RL and HER

Under conditions of sparse rewards, a single-goal RL task
starts with an initialization strategy and requires contin-
uous exploration until a specified location is achieved in
order to obtain rewards. RL can be extended to a multi-goal
setting: the agent can obtain rewards from the positions
already achieved. We use the tuple (S, A, T, P,r,G) to de-
note the MDP of multi-goal RL. The tuple has an additional
goal space G, where the policy of the agent and the reward
function R (s¢, a¢) of the environment also depend on the
goal G. Each set starts with an original goal g° € G which
is randomly drawn from the goal space. A transition in
the environment is denoted as: (s¢,a;,17,s;+1,8°), and
at every time step t, the agent is also provided with the
currently achieved goal gf ;. The reward function r{ is
defined as:

r=r(gh,8") =1 {Hgltzﬂ _gOHE < E} -1 0

where € is the tolerance distance. The reward function is
defined as whether the state at the next time step reaches
the position of the specified goal, and a negative reward
will be given when the distance between the achieved goal
and the desired goal exceeds a certain threshold. This
binary reward setting makes it difficult for the agent to
obtain positive feedback and hinder the learning process.

To overcome this, HER is used to solve multi-goal RL
problems with binary rewards, which uses a hindsight goal
¢ sampled from the replay transition to substitute the
original goal, there:

g = Unif {gf 1,800 8% 1} @

where the Unif stands for discrete uniform distribution,
and then, the hindsight reward is calculated as:

r=r(ghag") =1 {th —thi < 6} -1.0

In HER, the original transform tuple is replaced with a new
hindsight transform tuple (S[, a, r?, St41, gh). Her uses the
hindsight goal g sampled from the replay transitions to re-
place the original goal, providing the agent with successful
experiences to learn.

3. Related work

The need for a large number of samples is more evident
when RL are introduced into deep neural networks. If
the learning is performed directly using sparse samples
sometimes not only fails to enhance the policy, but also
leads to the training divergence of the neural network. At
present, the research for solving the sparse reward problem
mainly contains reward design and learning, experience
replay mechanism, exploration and exploitation, multi-goal
learning and auxiliary tasks. In this work, we focus on
multi-goal RL algorithms that concern the generalization of
tasks with the same MDP but different goals. The research
covers a broad field of RL methods for robotics control
[23, 24] and cybernetics [25]. Methods based on multi-goal
RL are expected to be applied to practical applications,
including aerial manipulators [26] and humanoid robots
[27].

Multi-goal learning algorithms have also been exten-
sively studied in previous work. UVFA [28] extended value
functions to multiple goals, while TDM [29] extended them
to different time horizons. [30] investigated the effect of size
of the replay buffer on performance and proposed Com-
bined Experience Replay (CER) to alleviate the liability of
a large replay buffer. [16] proposed HER method based on
the goal value function, which has the ability to generalize
in the goal space to train the policies of RL algorithms in a
sparse and binary reward environment, thus avoiding the
need for complex reward engineering. HER can be com-
bined with any off-policy algorithm, e.g., DQN [31], DDPG
[32]. Although HER shows good results in multi-goal RL,
it does not consider the bias caused by hindsight goals.
[33] extended HER to dynamic goals for processing tasks
with dynamic goals in the presence of sparse rewards. Sam-
pling rate decay [34] came up with a sampling rate decay
strategy that can reduce the number of training hindsight
experiences. [35] combined the HER with the policy gradi-
ent method, using importance sampling for bias correction,
and extending the multi-goal mechanism to the policy al-
gorithm. [36] extended the HER to the task of representing
states as images, using variational autoencoder [37] to ob-
tain hidden variable representations of states and goals.
Goal replacement and training under the hidden space
further extends the application of the multi-goal algorithm.

Hindsight methods can also be considered as an explo-
ration method [38] in solving sparse-reward tasks. [39]
introduced a competition between two agents for better
exploration. Entropy regularization HER [40] presented
a new multi-goal RL based on weighted entropy that en-
courages agents to maximize expected returns and achieve
diverse goals. Multi-goal RL can also be combined with
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multitask learning [41], imitation learning [42], multiagent
learning [43], and planning [44] to solve complex tasks.

4. Proposed method

In this section, we formally describe the two main compo-
nents of our method, RDHER: (1) dynamic goal-based goal
matching and combination module (Fig. 1). New experi-
ences are collected from buffer failures and combined into
new goal trajectories to enable the processing of dynamic
goals and reduce sample complexity (see Section 4.1); (2)
reward-weighted mechanism module for overestimating
probability bias based on hindsight experiences (Fig. 2). We
introduce a weighted trade-off between the actual reward
and the hindsight reward to counter the bias introduced
in HER to improve the sampling efficiency of the samples
(see Section 4.2).

Failed episodes

’ A Desired goal

T
i Q = Matched

(/ Ei Achieved goal N \‘::‘\
@ o - *
Achieved goal
= / ®
= <
p O i

~ 7

Desired goal

Fig. 1. Dynamic goal-based goal matching and
combination module.

4.1. Dynamic goal-based goal matching and combination

To solve the reward sparsity problem, a hindsight expe-
rience replay method is proposed, which is a simple and
effective method that can operate the replay buffer used
for RL algorithms. However, the application of HER al-
gorithm is limited, and with the increasing complexity of
the environment, it becomes difficult to achieve changing
the position of goal in different time steps within a cycle
when the goal is constantly changing. To overcome this
limitation, we consider reassembling failed experiences
into new episodes for training through cutting and splicing
operations.

4.1.1. Goal matching

We create successful trajectory rewards for the agents by
efficiently using the failed experiences in the experience
replay buffer {Eg, E1, Ep, - - - }. For the achieved goal tra-
jectory, we try to find a matching desired goal trajectory
from other episodes. First, we search for two episodes of

failures E; and E; (i # j), where 31i,/,p,q, s.t. gf; = g}ifq.
8i ; denotes the goal achieved by the agent at time step p of
the episode i, and g]'fl’eq denotes the desired goal of the agent

at time step g of the episode j.

4.1.2. Goal combination

Next, the achieved goal trajectories are combined into new
episodes by matching the achieved goal trajectories with
the found desired goal trajectories. It should be known
that in a multi-goal RL setup, the state consists of three
parts: observation o, desired goal gtde and achieved goal
g7¢, define as s; = <ot, gic, g >, where g{¢ indicates goals
that the agent has achieved and g7¢ denotes the desired goal
atmoment ¢. If we find two such failed episodes in 4.1.1, we
combine the two experience by replacing the desired goals
in E; by g;-i,‘;, where j indicates E; and t < min{p,q}. On
this basis, the new combined goal trajectory is represented
as { g;-if), ey g;ii} But the problem that arises from doing
this is that not all experiences deserve the same degree of
learning, and HER introduces significant bias in the replay
buffer.

state Sip_msr, ACHON @y, reward rl"

RL algorithm Reward-weighted
"= Ay X T (Sipomie Aip-mre Jee1") | Mechanism
policy mg ‘ l A8 Replay Buffer
action a, (-,/ ]
Policy g 5 s
ek
state s; action a, /
o
Y
Environment 1= A X7(Se, A, Ger1) I Reward-weighted

Mechanism
state s¢, reward 1y

Fig. 2. Reward-weighted mechanism module.

4.2. Reward-weighted mechanism module for hindsight
bias

To use HER more effectively, we consider the degree of
importance of the episode samples for learning. Applying
a reward-weighted mechanism, two real-valued scalar mul-
tipliers A, and Ay, are introduced to differentiate between
actual rewards r; and hindsight rewards r?, as is shown in
Egs. (6) and (7):

re = Ay X 1 (St,0,§41) (6)

h h
e =ApXxr (Si,pfert/ Aj,p—m-+ts gt+1> (7)

where r(-) denotes the given reward function for the task.
Matching the true probability of hindsight experience with
the probability of its bias drives the current policy to be
consistent with the hindsight experience data in the replay
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buffer. We use more aggressive hindsight experience replay
rewards to increase the Q-value of hindsight state-action
pairs to indirectly drive policy updates and improve the
sampling efficiency of RL.

It is worth noting that the Vanilla HER is a special case
where A, and A, are equal to 1. We require that ri’ > 1,
which yields:

Ap X r <st,at,gh> > Ay X1 (St,a1,8) (8)

however, if the agent is in the domain of functions with
negative rewards, i.e. r(-) < 0, there is A, > Aj;. Con-
versely, if in the domain of functions with positive rewards,
ie. r(-) > 0, the formula A, < Aj can be obtained. Us-
ing trade-off, the definition of the goal values for actual
experience and hindsight experience can take the form of:

vi = At 0Q (siallgn’ (sialg:0r):6%)  ©

Y= Ayt Q' (5i+1||gh/ W <Si+1 th;f’”I) ;9QI) (10)

where the Q' function is the target action-value network
parameterized by 09’

The pseudocode of the proposed method is described
in Algorithm 1. Note that since RDHER has to search for
all failed experiences, in our experiments we use two hash
tables to store the trajectories of achieved goals and desired
goals, respectively.

5. Experiment

In this section, we first present the experimental setup and
simulation environments in order to evaluate the effective-
ness of the proposed RDHER method. And also compared
with current state-of-the-art HER-based algorithms to solve
several challenging robot manipulation tasks for Gym that
use the MuJoCo [45] physics simulator. In addition, we
perform some sensitivity analyses on the weighting param-
eters in the experiments.

5.1. Experimental settings

In terms of the experimental settings, we give a brief intro-
duction to the environment and the experimental parame-
ter setting.

5.1.1. Simulation environments

The environment used for the experiments consists of
four different tasks, which are FetchReach-v1 (Fig. 3a),
FetchPush-vl (Fig. 3b), FetchSlide-vl (Fig. 3c) and
FetchPickAndPlace-v1 (Fig. 3d).

The Fetch environment is based on the 7-DoF (degrees
of freedom) Fetch robotics arm with a two-fingered parallel
gripper. In the Fetch environments, the state s; contains

Cartesian positions, rotations, and velocities of joints and
positions of objects. The state is a 10-dimensional vector
in FetchReach and a 25-dimensional vector in the other
Fetch tasks. Each action a; is a 4-dimensional vector, where
the 3-dimensional vector specifies the desired movement
of the gripper in Cartesian coordinates and the gripper
keeps closing during the process of reaching a certain target
location. The desired goal is where the goal wants to be,
while the achieved goal is where the goal has been achieved.
Each episode is of length T = 50. The reward function of
the agent is sparse and binary: the agent receives a reward
of zero if the goal has been achieved (within the tolerances
of certain tasks) and negative one otherwise.

¢ FetchReach-v1: FetchReach is the simplest task in all
Fetch environments. The task is to make the Fetch
move its gripper to the desired goal position.

¢ FetchPush-v1: The goal of the task is that the robot
need to learn how to shift its gripper towards the de-
sired goal.

e FetchSlide-v1: FetchSlide is the most difficult task in
all Fetch environments. The robot has to hit the slider
across a long table so that it slides off and stops on the
desired goal.

¢ FetchPickAndPlace-v1: This is even harder, the robot
has to grab a box from a table using its fingers and
move it to a desired goal above the table as well as in
the air.

5.1.2. Training parameters

We train different episodes for each agent in different en-
vironments. The basic hyperparameters in RDHER are
the same as in the HER, and we summarize the relevant
hyperparameters in the experiments in Table 1.

5.2. Ablation studies

We perform the following experiments to demonstrate the
extent to which the study reward-weighted mechanism
affects different environments. For each experiment, we
carefully chose trade-off parameters to deeply fit the rela-
tive reward optimization between dynamic hindsight and
standard experience replay. We set several sets of ratios
between hindsight and actual reward weights respectively,
and then evaluate our approach by comparing the suc-
cess rate of the learned policy with the number of cycles
required to achieve that performance.

* Ar, Ay € {1,2}: The weight of the hindsight experience
reward function is two times or one-half of the actual
reward function. Weset A, = 1, A;, =2 and A, = 2,
Ay, = 1 separately in our experiments.
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Algorithm 1: RDHER method

Given:
e an off-policy RL algorithm A > e.g. DON, DDPG, NAF, SDQN
e a strategy S for sampling goals for replay >e.g. S(sp,...,s57) =m(sT)

e a reward function r, real reward weight A,, hingsight reward weight A, and replay buffer R

forepisode=1,2,---, M do

Sample an initial goal g, and an initial state s,
fort=0,---,T—1do
Sample an action a; using the behavioral policy from A:
ar < 70 (st | gt)
Execute the action 4; and observe a new state s; | and a new goal g;11
end for
fort=0,---,T—1do
rei=Ar X 1 (St, 8¢, §141)
Store the transitions (s¢ |, at, 1t, St4+1] §t+1) in R (Standard experience replay)
end for
Collected failed episodes to €
forE; € £ do
Search another E;(i # j) € £ where g?,; = gfz
if E; # @ then

Clone a goal trajectory {g’(}, gt }m:min {p,q} in which g/ = gf’;imﬂ from E;
fort={0,--- ,m—1} do
T? =Apxr Si,p7m+t/ai,pfm+tlg?+1>
Store the transition (si,p,mﬂ ‘gi’,ai,p,mﬂ, ri‘, Si,p—m+t+1 ‘ gi’H) in R
end for
end if
end for
fort=0,---,Ndo
Sample a minibatch B from the replay buffer R
Optimize A using the minibatch B
end for
end for
Table 1. Hyperparameters for RDHER.
Hyperparameters ~ Value Description
optimizer Adam Adam optimizer is used for training.
layers 3 Number of layers in the critic/actor networks.
hidden 256 Number of neurons in each hidden layers.
learning rate 0.001 The learning rate for both the actor and the critic.
buffer_size int(1E6)  For experience replay.
polyak factor 0.95 Polyak averaging coefficient.
rollout_batch_size 2 Per mpi thread.
n_batches 40 Training batches per cycle.
batch_size 256 Per mpi thread, measured in transitions and reduced to even multiple of chunk_length.
n_test_rollouts 10 Number of test rollouts per epoch, each consists of rollout_batch_size rollouts.
random_eps 0.3 Percentage of time a random action is taken.
noise_eps 0.2 Std of gaussian noise added to not-completely-random actions as a percentage of max_u.
norm_eps 0.01 Epsilon used for observation normalization.
norm_clip 5 Normalized observations are cropped to this values.
* A, Ay € {1,4}: The weight of the hindsight experi- the actual reward function. We set A, = 0.5, A, = 4

ence reward function is four times or one-fourth of the

actual reward function. We set A, = 1, Aj, = 4 and

Ay =4, Aj, = 1 separately in our experiments.

* ANy € {0.

ence reward function is eight times or one-eighth of

above different weighting factors in different environments

5,4}: The weight of the hindsight experi-

and A, = 4, A, = 0.5 separately in our experiments.
We train the policy by using one CPU core and set the

to train the policy of the agent. Fig. 4 shows the perfor-
mance plots in the four Fetch environments. From these
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(a) FetchReach-v1

(b) FetchPush-v1

(c) FetchSlide-v1

(d) FetchPickAndPlace-v1

Fig. 3. Robot Fetch environments.

figures, we observe that the overall blue line part is superior
to the red line, which means we can learn and enhance the
performance proportionally from hindsight and actual ex-
perience. Since the reward function is binary negative -1/0,
when A, > Ay, it corresponds to increasing the Q-value of
the hindsight transition state-action pair. Following this,
the effective influence of the reward-weighted mechanism
on the agent’s search for the optimal policy.

Figs. 5 to 8 show the comparative effects of these differ-
ent weighting factors and Vanilla HER. In the FetchReach
environment, we can observe that the final results of the
RDHER are better than the baseline Vanilla HER regardless
of the ratio set by A, and Ay,. Of course, when A, is 2, 4, 8
times Ay, is always better than Ay, is 2, 4, 8 times A,. In the
FetchPush environment, the algorithm works best when
Ay is set to 8 times Ay, but the variance is larger, and when
Ar, Ay € {1,4}, the effect is not as good as the baseline
Vanilla HER, and when A, is set to 2 times Ay, the effect
is not only better than the baseline but also the variance

is smaller. In the FetchSlide environment, similar to the
FetchReach environment, the final result of the algorithm is
better than the baseline Vanilla HER regardless of the ratio
of A, and Ay, settings. When A, A, € {1,4}, the algorithm
is comparable, and when A, is set to 2 and 8 times of Ay,
both are stronger than when Ay, is greater than A,. In the
FetchPickAndPlace environment, the training effect of the
algorithm is not only comparable when A, A;, € {0.5,4},
but also comparable to the Vanilla HER. The effect is better
than the baseline when A, A, € {1,4} and is best when
Ay is four times A,. When Ay, Ay, € {1,2}, the curves are
on the upper and lower sides of the baseline algorithm
respectively, and the best results are obtained when A, is
two times of Ay,.

5.3. Benchmark results

Our evaluation of different methods is based on DDPG.
We use different methods to sample hindsight experiences
to replay and train policies on the environments issuing
sparse rewards. We compared the following baselines in



1836

Median Success Rate

0.2

FetchReach-v1
1.0
0.8
8
T
<
0
206
S
3
7]
c
8
T04
=
0.2
0 10 20 30
Epoch
(a) FetchReach-v1
FetchSlide-vl
Ar=2,Ap=1
0.4

Median Success Rate
o
[N)

e
-

0.0
0 20 40

Epoch

60

(c) FetchSlide-v1

FetchReach-v1

Epoch

(@) A, Ay € {1,2}

— A=1M=2
— A=2M=1

—— Vanilla HER

40

50

40

80

Xueyu Wei et al.

07 — A =2,Ay=1
Ar=4,Ap=1
— Ar=4,Ap=0.5
0.6
Ar=1,Ap=2

805
5
o
'
4
204
8
S
3
&
So3
g
Ar=2,Ap=1 =
02
Ar=8,M=0.5
A=LAn=2
Ar=LAn=4 01
Ar=0.5,An=4
50 0 25
Ar=2,Ap=1
04 Ar=4,Ap=1
203
o
'n
N
o
8
8
S
w
202
3
s
9
=
0.1
100 0 25

50

50

FetchPush-v1

75 100 125 150 175
Epoch
(b) FetchPush-v1

FetchPickAndPlace-vl

75

(d) FetchPickAndPlace-v1

Fig. 4. Robot Fetch environments.

FetchReach-v1

)
>

Median Success Rate

o
=

< — A=4M=1
0.2 Za\ — A=LA=4
— Vanilla HER

o 10 20 30 40 50
Epoch

(b)A,, A, € {1,4}

Median Success Rate

FetchReach-v1

0 10

Epoch

(©) A, Ay, € {0.5,4}
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our experiments.

* DDPG [32]: which is a model-free RL algorithm
for continuous control that simultaneously learns Q-

* HER [16]: which uses hindsight goals to obtain hind-
sight rewards without adjustment to the bias.

e CHER [21]:

which

controls

the

— A=4,1,=05

A=05M,=4

— Vanilla HER

40

50

explo-

ration—-exploitation trade-off in HER by the difficulty

functions and policies. It learns a deterministic policy

by using a stochastic counterpart to explore in the

training.

experience selection.

sparse rewards and dynamic goals.

and diversity of hindsight goals via hindsight

e DHER [33]: which is able to address the tasks with

We sequentially selected the curves with the best weight
fits for the different baseline algorithms in the ablation
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experiments (Section 5.2), where the parameters selected in
the FetchReach and FetchPickAndPlace environments were
Ar=2, Aj=1, the parameters selected in the FetchPush and
FetchSlide environments were A,=4, A= 0.5. Fig. 9 depicts
the median test success rates of the RDHER method and
baseline methods on the four Fetch tasks. We use the best-
learned policy for evaluation and test it in the environment.
The testing results are the mean success rates. The best
trained success rate of each algorithm in the set number of
episodes is shown in Table 2, and the time spent in a single
run is shown in Table 3. In the FetchReach and FetchSlide
environments, RDHER method takes the least training time

under the premise of ensuring the success rate. In the other
two environments, although it is not as time-consuming
as DDPG and HER, it is still slightly less time-consuming
than DHER. Compared to all other methods, our method
learns relatively faster and has a higher success rate. In
particular, without using HER, DDPG is almost unable to
solve any task other than FetchReach.

In summary, we fit different weighting factors to dif-
ferent environments to train the algorithm, and derive the
optimal ratio of hindsight rewards to actual rewards in
different environments by ablation studies.
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Fig. 9. Shows the training curves for the five algorithms. To make a fair comparison for each algorithm, we repeated the
experiment five times for each algorithm in all tasks to exclude the effect of randomness on the comparison results. The
reward curves for the algorithms are plotted after taking the sliding average of the five experiments.

Table 2. Comparison of mean success rate over seeds of the best policy. Bold scores signify the best score out of all methods.

DDPG HER CHER DHER RDHER(ours)
FetchReach 100% 88% 89% 100% 100%
FetchPush 15% 39% 14% 21% 58%
FetchSlide 2% 24% 17% 41% 50%
FetchPickAndPlace 8% 25% 33% 45% 47%

Table 3. Training time (hours:minutes:seconds) in all four environments (single run).

DDPG HER CHER DHER  RDHER(ours)
FetchReach 00:50:24 00:46:55 01:45:13 00:11:27 00:11:16
FetchPush 03:35:59 03:30:32 06:43:20 04:10:14 03:53:16
FetchSlide 01:53:53 01:49:18 03:41:51 01:57:47 01:43:58
FetchPickAndPlace 03:34:50 03:28:32 07:50:02 04:06:21 03:50:06

6. Conclusion

In this paper, aiming at the hindsight bias caused by ran-
dom strategies in dynamic hindsight experience replay,
a reinforcement learning algorithm based on a weighted
hindsight experience replay structure is proposed. We use
numerically larger hindsight rewards to weaken the bias

and improve the sampling efficiency of the algorithm. Our

ablation experiments demonstrate that: (1) when the speci-
fied hindsight weights are opposite to the reward function
of the environment, the bias is amplified and the reward

is reduced; (2) learning exclusively from only hindsight
experiences decreases the performance of the algorithm; (3)



Journal of Applied Science and Engineering, Vol. 26, No 12, Page 1829-1841

in addition, for benchmark comparison experiments, the

RDHER algorithm is more effective and advantageous in

four challenging robotic tasks compared to several previ-

ous baseline algorithms.
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