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INTRODUCTION

Since the Industrial Revolution, the growth in 
modernisation, population, and industrialisation has 
also created growth in the emission of greenhouse 
gases (GHGs) [1]-[2]. The heat from the Sun’s radiation is 
trapped by GHGs in the Earth’s atmosphere contributing 
to global warming. CO2, N2O, and CH4 are included 

among these GHGs. According to Islam et al. [1],
Carbon dioxide (CO2) is the most prominent GHG as it is 
the longest-staying gas on the Earth, making it the most 
accountable when it comes to global warming. On top 
of the naturally produced CO2, serious consumption of 
fossil fuel and coal has resulted in excessive emission 
of CO2 into the environment [3]. Among all GHGs, 
CO2 proportion takes up over 70%. Furthermore, CO2 
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has the most sources of emissions, including power 
plants, transportation systems, industrial operations, 
production services, petroleum businesses, and 
others [1],[3]. 

With the increasing concern of global warming, 
some solutions were proposed to reduce CO2 
emissions. Greater attention was paid to CO2 capture 
to achieve the goal of carbon capture, utilisation, 
and storage (CCUS). The CO2 capture method by 
absorption with recoverable solvent is the most 
favoured and practicable strategy [4]. One of the 
popular methods is amine-based technologies, 
such as monoethanolamine (MEA). Amine-based 
technology for CO2 capture is currently practised due 
to the amine nature of high reactivity with CO2, high 
thermal stability, and high absorption capacity [3]. 
Nevertheless, there is still a downside to the amine-
based technologies. Constraints such as high demand 
for energy, solvent loss due to degradation of amine 
in flue gases, high absorbent make-up rate, and 
intense corrosion issue cause the method to be less 
desirable [5]-[6]. These constraints make amine-based 
technologies require large-high-quality equipment, 
which is very costly. Besides, serious impacts on the 
environment and human health can be caused by 
amine-based solvents.

Researchers are looking for a more efficient 
technological alternative for CO2 capture. Utilising 
greener solvents such as ionic liquids (ILs) will help 
for a more appropriate strategy. Ils have caught the 
attention of researchers for their characteristics of 
negligible vapour pressure, low melting point, and 
high stability chemically and thermally [6]. Ils can be 
adjusted according to the condition of CO2, the type 
of solutes, and their application by changing the 
chemical structure, making them friendlier solvents. 
Ils are considered auspicious competitors with amine-
based solvents [7]-[8].

Selecting the appropriate IL for CO2 capture requires 
a certain process. Many researchers employed the 
COSMO-RS method to screen ILs [1],[4],[9]. COSMO-RS 
is a conductor-liked. The screening model is deemed 
as a “property explorer” due to its advantage of 
predicting the properties of several ILs. The input of 
COSMO-RS only requires the chemical structure of 
IL molecules. However, this method still has some 
weaknesses regarding data availability [9]. Extensive 
work such as ranking, selection, synthesis, validation, 
and confirmation is still required after COSMO-RS 
screening, which takes up high labour intensity and 
time consumption [10]. Extensive work such as ranking, 
selection, synthesis, validation, and confirmation is 
still required after COSMO-RS screening, which takes 

   

Figure 1   Graphical abstract for screening ILs for CO2 Capture
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up high labour intensity and time consumption [10].
Therefore, to reduce the burden of screening ILs, 
robust and efficient correlations are needed to 
predict the CO2 solubility and allow rapid screening of 
fitting ILs for CO2 capture. In this study, data analytics 
techniques are used to develop a predictive model for 
screening of ILs for CO2 capture hence taking away 
the experimental approach, which is less reliable, 
tiresome, and costly.

CO2 Solubility

CO2 solubility is a significant property when 
screening ILs for CO2 capture. CO2 will be the outcome 
(dependent variable) in this study. The solubility of 
CO2 of ILs is highly influenced by the type of anion, 
followed by the type of cation [11]. ILs with the highest 
CO2 usually have fluorine as their anions. CO2 solubility 
increases when pressure increases and decreases 
when temperature increases. 

CO2 solubility also decreases when Henry’s constant 
increases. All of these variations are significantly 
influenced by the type of anion of the IL [12]. The 
molality of ILs may change their ability to absorb 
CO2 and the created solution’s physical and chemical 
properties. Wang et al. [13] studied the effect of 
molality on some ILs’ absorption of CO2 capability. 
The researchers found that CO2 solubility increased 
with increasing molality until to a point where the 
solubility has maintained. The authors also found 
that the nature of cations and anions is a key factor 
in deciding the absorption ability. Another study by 
Li et al. [14]researched the relationship between the 
molality of ILs and their viscosity and CO2 solubility. 
The researchers concluded that the viscosity of IL 
increases as molality increases, while CO2 solubility 
fluctuated, initially increased, then decreased with 
molality increment. The researchers assigned this 
trend to the difference in the solubility of CO2 in ILs. 
Besides, Dong et al. [15] studied the effect of the 
molality of ILs on their CO2 solubility. Their research 
has concluded that CO2 solubility increases as molality 
increases; however, it plateaued at higher molalities. 

They also discovered that the molality of ILs influences 
the regeneration efficiency of the solvent, with higher 
molalities creating lower regeneration efficiency. The 
molality of ILs can affect their physical and chemical 
properties and their behaviour in various applications. 
The molality of an IL depends on its nature of cation 
and anion, with the possibility of effects from other 
materials such as water. 

The CO2 activity coefficient is an important property 
that describes the interaction between CO2 and ILs. 
Zeng [16] stated that the activity coefficient decreases 
with increasing temperature and vice versa. The 
activity coefficient shows the deviation from ideality 
in a solution. Usually, high activity coefficients indicate 
high CO2 solubility. The nature of cation and anion of 
ILs are key in determining the CO2 activity coefficient. 
Zhang et al. [17] also stated that the CO2 activity 
coefficient positively relates to CO2 solubility. The 
authors also agreed that the properties of cations and 
anions of ILs play a big role in determining the activity 
coefficient. The CO2 activity coefficient is affected by 
factors such as pressure, temperature, and the nature 
of components of the IL compounds. 

Data Analytics

With the development of technologies, data analytics 
has made it easier to develop prediction models 
with the existence of machine learning. Machine 
learning is defined with 3Vs; ‘volume’ indicates the 
huge number of data that can be processed and 
stored, ‘velocity’ indicates that data is generated at 
a faster rate than conventional methods, ‘variety’ 
indicates the various sources of data and the 
nature of it being structured and unstructured [18]. 
More recent studies have added ‘veracity’ into the 
definition, referring to the usefulness of data quality 
[18]-[19]. Support vector machine (SVM) is a branch of 
machine learning. It is a supervised learning model 
with a programmed learning algorithm that analyses 
regression and classification data. Recent studies still 
employ SVM to predict CO2 solubility from ILs [20]-
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[21]. Another branch of machine learning is Artificial 
Neural Networks (ANNs), which are modelled after 
the human brain. Like biological neurons, ANNs have 
nodes that are linked to each other with different 
layers of networks [22]. Balchandani and Dey [7], 
Daryayehsalameh et al. [24] and Mirarab et al. [25] 
agreed that feed-forward neural networks (FFNNs) 
have the highest accuracy among other types of 
ANNs when it comes to screening ILs for CO2 capture. 
Besides, Gaussian process regression (GPR) is also 
another branch of machine learning that can be used 
to analyse data. GPR is a common modelling method to 
establish a non-linear relationship between a system’s 
inputs and outputs [26]. To date, no research has been 
using GPR to predict the CO2 solubility of ILs. However, 
in recent research, GPR was employed to predict IL 
properties and solubilities of hydrogen sulfide and 
sulfur dioxide in ILs [27]-[29]. To summarise, several 
prediction models are available for predicting IL’s 
capability of absorbing CO2. Data analytics and group 
contribution methods were developed to predict the 
CO2 absorption of ILs. These models are beneficial to 
identify the most suitable IL for specific CO2 capture 
applications.

Figure 2   COSMO-RS interface for data collection

Number of data points

ILs Number of data 
Pressure

Temperature (K) Molecular Weight 
(gram/mol)

Molality CO2 activity
coefficient

Table 1   Summary of IL data



5PLATFORM   VOLUME 7  NO 2  2023  e-ISSN: 26369877

PLATFORM - A Journal of Engineering

METHODOLOGY

Data Gathering

Data on the properties of ILs are collected from 
COSMO-RS software and kept in an Excel spreadsheet. 
Then, a data management process was carried out 
to check data quality. This means that any missing 
data or data with loopholes will be discarded for 
better-quality data. CO2 solubility of ionic liquid 
(mol fraction) will be the dependent variable, while 
temperature (K), pressure (bar), molecular weight, 
molality (mol/kg), and COSMO CO2 activity coefficient 
will be the independent variable. All the properties 
were collected for 1-50 bar pressure 298.15-333.15 K 
and temperature. A summary of the datasets is shown 
in Table 1. Figure 2 shows the COSMO-RS Interface for 
Data Collection.

Model Development

Machine learning in prediction modelling allows 
a model to modify to reduce the error to as low as 
possible, ensuring the most accurate output. This 
study used the Regression Learner application in 
MATLAB R2022b. The input into this application is 
the dataset of ILs’ pressure, temperature, molecular 
weight, molality, CO2 activity coefficient, and CO2 
solubility. Within this application, several models can 
be used to develop prediction models. In this study, 
Support Vector Machines (SVM), Neural Networks 
(NN), and Gaussian Process Regression (GPR) are being 
used. The types of each model are included in Table 2.

For all models, all datasets were distributed randomly 
into training and testing datasets at the 80/20 division. 
80% of the data will be used to train the model, while 
the remaining 20% will be used to test the model for 
testing. This split is selected for sufficient training data. 
The training set must be large enough to provide the 
model with diverse examples and patterns to learn 
from. Allocating 80% of the data for training allows the 
model to capture a significant amount of information 
and build a reasonably accurate representation of the 
problem. 

Each model was evaluated automatically to check for 
its accuracy and error. Quantitative evaluation was 
done immediately to all SVM, NN, and GPR models, 
then compared to be analysed. R-squared was 
measured to evaluate the accuracy of each model. As 
the value of R-squared gets closer to 1, the model is 
then more accurate. Meanwhile, RMSE will evaluate 
how much error each model presents, as it estimates 
the deviation of the actual value of CO2 solubility from 
the predicted ones. The formula for R-squared and 
RMSE are provided as: 

where RSS is the sum of squares of residuals, TSS 
is the total sum of squares, and N is the number of 
observations.

Table 2   Types of models

Support Vector Machine (SVM) Neural Network (NN) Gaussian Process Regression (GPR)

Linear SVM

Quadratic SVM

Cubic SVM

Fine Gaussian SVM

Medium Gaussian SVM

Coarse Gaussian SVM

Narrow NN

Medium NN

Wide NN

Bilayered NN

Trilayered NN

Rational Quadratic GPR

Squared Exponential GPR

Matern 5/2 GPR

Exponential GPR
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Figure 3   Accuracy plot of Cubic SVM model

0.30

0.30 0.40 0.50 0.60 0.70

0.40

0.50

0.60

0.70

Figure 4   Accuracy plot of Medium Gaussian SVM model
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Figure 5   Accuracy plot of Coarse Gaussian SVM model
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Figure 6   Accuracy plot of Squared Exponential GPR model
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Figure 10   Accuracy plot of Trilayered NN modelFigure 9   Accuracy plot of Wide NN model
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Figure 7   Accuracy plot of Rational Quadratic GPR model
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Figure 8   Accuracy plot of Matern 5/2 GPR model
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RESULTS AND DISCUSSION

The accuracy plot of predicted against actual values 
was plotted for all fifteen models. Figures 3 to 11 show 
the accuracy plot of the three best models from each 
machine learning cluster.

After each model is tested, the values of RMSE and 
R-Squared are determined, as shown in Tables 3 and 4.
Overall, GPR has the lowest RMSE values, with three 
out of four of its models having a value of below 0.001. 
The graphical representation of RMSE for all models 
is shown in Figure 12. GPR models are also the most 
accurate, as their R-squared values are close to one.

Table 4   Training and Testing R-Squared of prediction models

Model Type R-Squared 
(Train) 

R-Squared 
(Test) 

Linear SVM 0.854 0.833

Quadratic SVM 0.969 0.970

Cubic SVM 0.981 0.982

Fine Gaussian SVM 0.918 0.934

Medium Gaussian SVM 0.985 0.985

Coarse Gaussian SVM 0.970 0.970

Narrow NN 0.999 1.000

Medium NN 1.000 1.000

Wide NN 1.000  1.000

Bilayered NN 1.000 1.000

Trilayered NN 1.000 1.000

Rational Quadratic GPR 1.000 1.000

Squared Exponential GPR 1.000 1.000

Matern 5/2 GPR 1.000 1.000

Exponential GPR 0.999 0.999

Figure 11   Accuracy plot of Bilayered NN model

Rational Quadratic GPR is a non-parametric 
regression method that widens the standard of GPR 
by incorporating a rational quadratic covariance 
function. A covariance function or kernel function 
plays an important role in deciding the shape of the 
predicted function. The GPR model in MATLAB is 
constructed by the mathematical equation shown as:

where P indicates a probabilistic function, y is the 
predicted values, x is the independent variables, f(x) 
is the function of the Gaussian Process with kernel 
function, β is the coefficient estimated from the data, 
and σ2 is the error variance.

Table 3   Training and Testing RMSE of prediction models

Model Type RMSE (Train) RMSE(Test) 

Linear SVM 0.062 0.065

Quadratic SVM 0.028 0.028

Cubic SVM 0.022 0.021 

Fine Gaussian SVM 0.047 0.041 

Medium Gaussian SVM 0.020 0.019 

Coarse Gaussian SVM 0.028 0.027 

Narrow NN 0.005 0.001 

Medium NN 0.001 0.001 

Wide NN 0.001 0.001 

Bilayered NN 0.001 0.001

Trilayered NN 0.001 0.001 

Rational Quadratic GPR 0.0002 0.0002 

Squared Exponential GPR 0.0002 0.0002 

Matern 5/2 GPR 0.0004 0.0004

Exponential GPR 0.0061 0.005 
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The kernel function explains the similarity between 
any two points in the input space and manages the 
sleekness and complexity of the prediction model. 
The rational quadratic covariance function can model 
the complex and non-stationary relationship between 
predictors. The kernel function for Rational Quadratic 
GPR is defined as:

One of the benefits of Rational Quadratic GPR is that 
it can improve the model’s ability to capture long-
range dependency between predictors and response, 
creating a better prediction. 

The rational Quadratic GPR model has the lowest 
RMSE values, with 0.00020 and 0.00016 for training 
and testing, respectively, showing that the model 
performs very well. The close difference between both 
values shows that the model is not too complex. A 
too complex model may cause overfitting of the data 
as it considers the noise of the data rather than the 
actual patterns. As a result, the overfitted prediction 
model may cause new, unseen data to be predicted 

inaccurately. In this study, the low and close difference 
RMSE values for both training and testing datasets 
prove that the model can be used for future screening 
of IL for CO2 capture.

Furthermore, Rational Quadratic GPR also has the 
closest R-squared values to one for both training and 
testing datasets. The R-squared value is a measure 
that indicates the proportion of the variance in the 
response (dependent variable) that is explained by 
the predictors (independent variables) in a prediction 
model. R-squared values of 0.999 shows that the 
predictors strongly explain a huge proportion of the 
variance in the response. Generally, this indication 
means that Rational Quadratic GPR is a good fit for 
the data.
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Figure 12    RMSE of GPR Models
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CONCLUSION

In conclusion, temperature and pressure are the 
CO2 absorption parameters relevant to CO2 capture. 
Meanwhile, the properties of IL with the highest 
relevance to CO2 capture are molecular weight, 
molality, and CO2 activity coefficient. 15 models from 
three machine learning methods were developed to 
predict the CO2 absorption potential of ionic liquids. 
The rational Quadratic GPR model is the most accurate 
prediction model to screen IL for CO2 capture. The 
training and testing RMSE for this model is 0.0002, 
indicating that the model is performing credibly. In 
addition, the R-squared values for training and testing 
models are 0.999, close to 1. Rational Quadratic GPR 
is capable of being used to screen IL for CO2 capture. 
This study is important to reduce the extensive work 
of screening IL for CO2 capture. IL with the most 
appropriate CO2 absorption potential can be chosen 
easily and faster, contributing to the effort of reducing 
CO2 emission to the environment. Indirectly, this study 
can help mitigate global warming with the rapid 
industrialisation that is currently happening. 

NOMENCLATURE

bhea Bis(2-hydroxyethyl)ammonium
bmim 1-butyl-3-methylimidazolium
CO2 Carbon Dioxide
DBU 1, 8-diazabicyclo[5.4.0]undec-7-ene
emim 1-ethyl-3-methulimidazolium
he 2-hydroxyethanaminium
IL Ionic Liquid
MLR Multiple Linear Regression
N4111 Trimethyl-butylammonium
NTf2 Bis (trifluoromethyl sulfonyl amide
omim 1-octyl-3-methylimidazolium
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