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The gas content in the oil is used as the fault input characteristic for the power transformer. Still, the accuracy
of the diagnosis results is not ideal, and such a model is unstable. This research proposes a hybrid intelligent
fault diagnosis method based on the improved grey wolf algorithm and an optimized probabilistic neural
network. Firstly, a strategy of three nonlinear control factors is introduced to fit the grey wolves’ search process.
The weighted distance was modified to update the position information of grey wolf elements to avoid the
algorithm falling into the local optimum. Secondly, the performance of the improved grey wolf algorithm was
tested through six commonly used functions. The results show that the improved grey wolf algorithm has high
convergence accuracy and stability in both multimodal and unimodal functions. Finally, the improved grey wolf
algorithm and the probabilistic neural network were combined to diagnose the oil-immersed power transformer
through hybrid intelligent algorithms. As a result, the fault diagnosis model proved valid for transformer fault
diagnosis.

Keywords: transformer; fault diagnosis; control factor; weighted distance; grey wolf algorithm; probabilistic neural network
© The Author(’s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC
BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are cited.

http://dx.doi.org/10.6180/jase.202401_27(1).0002

1. Introduction

The oil-immersed transformer is one of the critical pieces
of equipment in the power system. Its operating status is
related to the reliable power supply of the grid. Therefore,
effectively improving the accuracy of transformer fault
diagnosis has an essential impact on the stable operation of
the power system. During the process of the transformer,
hydrocarbon gases such as hydrogen (H2), methane (CH4),
ethane (C2H6), ethylene (C2H4), and acetylene (C2H2)

will be produced. Early failure before the damage. Such
malfunctions can be diagnosed by dissolved gas analysis
(DGA) methods. Its main advantages are that it can reduce
downtime and bring expensive repair costs, convenient
measurement, etc. [1].

Methods based on dissolved gas analysis (DGA) detec-
tion include the following: extraction of oil samples from

transformer oil according to IEC-60567; measurement of
dissolved gases using hydrogen monitors and photoacous-
tic spectroscopy (PAS); faults are analyzed according to
the concentration of gas dissolved in the oil [2]. Prelimi-
nary explanatory theories for using hydrocarbon-dissolved
gases to detect early faults are given in the reference [3].
Subsequently, many DGA-based diagnostic methods have
emerged, such as the Rogers ratio, the Doernerburg ratio
[4], and the GIGRE [5]. Traditional DGA gas data as an
input quantity often requires the collection of gas diagnos-
tic data. The reference [6] recommended using the IEC
triple ratio method and collecting gas data from different
transformers as the input characteristic quantity. However,
DGA-based fault diagnosis techniques are based on expe-
rience, and these fault diagnosis techniques have certain
uncertainties, and significant diagnostic errors often occur
in practical applications.
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Using simulation software to analyze transformer wind-
ing is also one of the effective methods for transformer
early fault diagnosis. The primary method is frequency
response analysis (FRA), which is highly sensitive. In ref-
erence [7], the R diagram, X histogram, and S diagram
with eight tests are used for the first time to explain the
FRA results. The experimental results show that the clas-
sification accuracy is effectively improved. The reference
[8] calculates the frequency response in the current state
by simulating the mechanical and electrical faults in the
transformer windings to obtain the corresponding transfer
function and uses the cross-correlation method and cluster
analysis to explain the FRA results, which overcomes the
problem of the transformer in the FRA method. An expert
performs the detection task of the state. In [9], the combina-
tion of time series analysis and frequency response analysis
(FRA) was used to distinguish and classify transformer
windings’ mechanical and electrical faults, and good re-
sults were achieved. However, the interpretation of FRA
results in most of the previous literature still needs further
improvement.

Artificial intelligence (AI) technology has also recently
been used in fault diagnosis. This method has established
a complex nonlinear relationship between dissolved gas
analysis (DGA) gas content and transformer faults in many
studies. Support vector machines (SVM) [10], fuzzy logic
inference systems (FLIS) [11], Artificial neural networks
(ANN) [12], etc., have improved the accuracy of trans-
former fault diagnosis, but there are also certain limitations.
The Support vector machines (SVM) training algorithm
has problems such as high complexity and long calculation
time. The inference rules of the fuzzy logic inference sys-
tems (FLIS) rely heavily on experience. The Artificial neural
networks (ANN) network structure and weight are diffi-
cult to determine, and it is easy to fall into local optimum.
Other intelligent algorithms, such as Gray Cluster Analy-
sis (GCA), are also used to classify early failures of power
transformers. GCA does not need to design membership
functions, develop rules, and assign linguistic variables,
which is an advantage over fuzzy systems. Compared with
popular neural networks, only fewer training samples are
required [13]. However, this method is still in its infancy
and requires further research. Furthermore, In [14], a sys-
tematic review of Fault Detection and Diagnosis (FDD)
techniques and algorithms for power transformers from
1990 to 2020 from different aspects provides a comprehen-
sive background for future research.

The grey wolf algorithm is an algorithm that uses itera-
tive methods to continuously find its optimal value by sim-
ulating the wolf group hierarchy and predation process in

the natural environment [15]. Probabilistic neural networks
are suitable for classification and have strong generaliza-
tion ability. Therefore, this paper improves the grey wolf
algorithm and combines the improved grey wolf algorithm
with the probability neural network (Improved Grey Wolf
Optimize PNN, IGWO-PNN). And the improved hybrid
intelligent algorithm is used in transformer fault diagnosis,
and the four ratios are used as the input feature quantity of
the model. The results show that transformer fault diagno-
sis accuracy has significantly improved.

2. Grey wolf algorithm

Mirjalili Mirjalili et al. [15] In 2014 a swarm intelligence
optimization algorithm was proposed based on the hierar-
chy of grey wolf populations in nature and their collective
siege and hunting process. α is the wolf with the high-
est level in the wolf group, representing the optimal solu-
tion in the people; β is the second-level wolf in the wolf
pack, meaning the suboptimal solution of the people; δ is
the wolf with the third level, representing the third opti-
mal solution in the people; ω It is the ordinary gray wolf,
meaning the candidate solution. Assuming the number
of common grey wolves in the grey wolf population is K.
The search space has N dimensions. The position of the
i-th grey wolf in the N dimension can be represented as
Gi =

(
g1

i , g2
i , · · · , gN

i
)

, i = 1, 2 · · · , K. The grey wolf pack
gradually approaches and surrounds the prey through the
formula Eq. (1).

Gin(t + 1) = Gpn(t)− A ×
∣∣C × Gpn(t)− Gin(t)

∣∣ (1)

where t represent the current number of iterations.
Gpn(t) =

(
g1

p, g2
p, · · · , gN

p

)
Position for prey. A ×∣∣C × Gpn(t)− Gin(t)

∣∣ Enveloping step.
A and C are the coefficients, which can be defined as:

A = 2a × r1 − a (2)

C = 2 × r2 (3)

Where: r1 And r2 are random numbers between [0, 1]. a is
called the distance control factor, which decreases linearly
from 2 to 0 with the increase of the number of iterations, ie

a = 2 − 2t
tmax

(4)

Where: tmax represent the maximum number of iterations.
Other grey wolf individuals Gi in the pack update their
positions according to the places Gα, Gβ and Gδ of α, β and
δ.
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Gα

in(t + 1) = Gα
n(t)− A × |C × Gα

n(t)− Gin(t)|
Gβ

in(t + 1) = Xβ
n(t)− A ×

∣∣∣C × Gβ
n(t)− Gin(t)

∣∣∣
Gδ

in(t + 1) = Gδ
n(t)− A ×

∣∣∣C × Gδ
n(t)− Gin(t)

∣∣∣ (5)

Gin(t + 1) =
Gα

in(t) + Gβ
in(t) + Gδ

in(t)
3

(6)

Eq. (5) defines the step size and direction of individu-
als α heading towards β and δ, respectively, while Eq. (6)
defines the final position ω.

Due to the linear attenuation of the control factor in
the late iteration, the GWO algorithm is prone to fall into
local optimization. The control factor was changed into
exponential form in literature [16, 17]. Local optimization
ability has improved. The exponential control factors are
shown in Eqs. (7) and (8).

a = 2 − 2 ×

(
e

t
tmax − 1

)
e − 1

(7)

a = 2 − 2 ×
(

t
tmax

)u
(8)

The above formula t is the current number of iterations,
tmax is the maximum number of iterations, and u is the
nonlinear coefficient. This paper proposes three nonlinear
control factors, adjusts the proportional weight accordingly,
and discusses the advantages and disadvantages of its per-
formance to reduce the probability of falling into the local
optimum.

The logarithmic control factor is

a =

[
2

(log tmax)

]
log (tmax − t) (9)

The index control factor 1 is

a = 2e−5t/tmax (10)

The index control factor 2 is

a = 2e−(
20
19 t)tmax (11)

The process of the control factor with the number of
iterations is shown in Fig. 1.

Inspired by the other statues of α, β, δ wolves in the wolf
pack, assigning the weights of α, β, δ4, 3, and 2 , respectively,
and the sum of the weights being equal to 9 , according to
the weighted average method, the expression is as follows:

Gin(t + 1) =
4Gα

in(t) + 3Gβ
in(t) + 2Gδ

in(t)
9

(12)

Fig. 1. Comparison of different control factors changes.

3. Algorithm testing and analysis

Six commonly used benchmark functions were selected
to test the improved algorithm. The improved grey wolf
algorithm is defined as GWOx(x = 1, 2, 3). There are
2 unimodal functions (F1, F2) , 3 multimodal functions
(F3, F4, F5), and 1 fixed-dimensional multimodal function
(F6). The details are shown in Table 1. Among them, uni-
modal functions can be used to test the local optimization
ability of the algorithm; Multimodal functions can be used
to test the algorithm’s convergence and global optimization
abilities. The four algorithms were tested and run 20 times,
respectively, and the mean, standard deviation, optimal
value, and worst value of the objective function were taken
in the test experiment.

3.1. Analysis of test experiment results

Under the same test conditions, through 20 repeated experi-
ments, the experimental results are shown in Table 2. From
the perspective of the average value, taking the function F1

as an example, the average value of the GWO1 algorithm
has increased by 10 orders of magnitude compared with
the traditional GWO algorithm. The average of the results
is better. According to the standard deviation, taking the
function F2 as an example, the standard deviation of the
GWO1 algorithm has increased by 5 orders of magnitude
compared with the traditional GWO algorithm. The stan-
dard deviation of the results is better. From the perspective
of the optimal value, taking the function F3 as an example,
the optimal value of the GWO1 algorithm is 0 . The GWO
algorithm is 3.6947 . The optimal value of the results is
better. Besides, the four indicators were combined to rank.
According to the comprehensive ranking, the (GWO1) al-
gorithm has a more robust convergence performance and
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Table 1. Standard test function table

Function Dimensionality Searching space Optimal value
F1(g) = ∑n

i=1 gn
i 30 [−100, 100] 0

F2(g) = ∑n
i=1 |gi|+ Πn

i=1 |gi| 30 [−10, 10] 0
F3(g) = ∑n

i=1
[
g2

1 − 10 cos (2πgi) + 10
]

30 [−5.12, 5.12] 0

F4 = −20 exp
(
−0.2

√
1
n ∑n

i=1 g2
i

)
− exp

(
1
n ∑n

i=1 cos (2πgi)
)
+ e + 20 30 [−32, 32] 0

F5(g) = 1
400 ∑n

i=1 g2
i − ∏n

i=1 cos
(

gi√
i

)
+ 1 30 [−600, 600]

F6(g) =
[
1 + (g1 + g2 + 1)2 (19 − 14g1 + 3g2

1

−14g2 + 6g1g2 + 3g2
2
)]

×
[
30 + (2g1 − 3g2)

2 2 [−2, 2] 3

×
(
18 − 32g1 + 12g2

1 + 48g2 − 36g1g2 + 27g2
2
)]

higher optimization accuracy.

3.2. Convergence curve analysis

Based on the unimodal test function convergence curves, as
shown in Fig. 2(F1) and (F2), and compared with the other
three algorithms, the (GWO1) algorithm has an ideal opti-
mization effect in the later stage of optimization. As shown
in the curve in the search process, the (GWO1) algorithm
can effectively avoid local convergence, mainly due to im-
proved control factors and weight ratios. Fig. 2( F3)− (F6)

show the convergence curves of the multimodal test func-
tions. At an early stage, the optimization ability of the four
algorithms is the same. However, the (GWO1) algorithm
can quickly jump out of the local optimal compared to
other algorithms. It is shown in the curve. The (GWO2)
algorithm stops searching when the optimal solution is
first found. In contrast, The (GWO1) algorithm continues
to improve and locks faster with better results. Based on
the above analysis, it can be seen that the GWO1 algorithm
has a good optimization ability.

4. Transformer fault diagnosis

Power transformer fault types can be divided into five
categories, including Partial discharge(PD), Low-energy
discharge(D1), High-energy discharge(D2), Thermal fault
of low and medium temperature(T1), and Thermal fault of
high temperature(T2). The data in this paper come from 117
sets of data from the International Electrotechnical Commis-
sion [6], 78 sets of data from Gansu Electric Power Research
Institute [18], and 456 sets of data from the doctoral disser-
tation of North China Electric Power University [19]. After
removing the unavailable data, the three sets of transformer
fault data are shown in Table 3.

The fault data of three sets of transform-
ers are converted into four groups of ratios (
CH4/H2, C2H6/CH4, C2H4/C2H6, and C2H2/C2H4),

Because there are a lot of data in sample 2, to reduce
the differences between the data, the data of sample 2 is
normalized. The normalization function is as follows:

Zi =
zi − zmin

zmax − zmin
(13)

The above equation zi represents the value before nor-
malization. zmin, zmax represent the minimum and maxi-
mum values before normalization.

4.1. Simulation test analysis

IEC TC 10 samples are brought into the GWO1-PNN model
to train the model. The sum of squared errors is shown in
Fig. 3.

As can be seen from Fig. 3, when the evolution reaches
8 generations, the sum of squared errors reaches the mini-
mum. Therefore, the optimized value of the 8th generation
is brought into the polar PNN model to predict the test sam-
ples. The diagnosis results are shown in Table 4. Table 4
shows that the correct rate for the test set is 92.59%.

Sample 1 was put into the GWO1-PNN model to train
the model. The diagnosis results of various transformer
faults by the GWO1-PNN model are shown in Fig. 4. Fig. 4
shows that the correct rate of the test set is 94.44%.

Similarly, we will bring sample 2 into the GWO1-PNN
model to train the model. Among them, 196 sets are used
as the training set, and 84 sets are used as the test set. There
are five types of faults in both the test and training sets.
The diagnostic results showed that the accuracy of the test
set was 85.1%.

4.2. Comparative analysis with other algorithms

To further verify the superiority of the proposed method in
power transformer fault diagnosis, three standard fault di-
agnosis methods are compared as follows: Optimization of
fault diagnosis model of extreme learning machine based
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Table 2. comparison results of GWOx algorithms

Result Function GWO GWO1 GWO2 GWO3
Average value 0.0442e − 9 0.0929e − 19 0.0285 0.0301e − 14

Standard deviation 0.0417e − 9 0.1247e − 19 0.0162 0.0301e − 14
Optimal value F1 0.0053e − 9 0.0008e − 19 0.0045 0.0004e − 14

Worst value 0.1880e − 9 0.4820e − 19 0.0657 0.1401e − 14
Ranking 3 1 4 2

Average value 0.0562e − 4 0.0282e − 9 0.7250 0.0490e − 7
Standard deviation 0.0276e − 4 0.0334e − 9 0.2911 0.0316e − 7

Optimal value F2 0.0139e − 4 0.0053e − 9 0.3263 0.0160e − 7
Worst value 0.127le − 4 0.1842e − 9 1.4421 0.1468e − 7

Ranking 3 1 4 2
Average value 17.6980 2.3308 71.3417 20.3857

Standard deviation 6.8414 4.4814 20.7534 13.0065
Optimal value F3 3.6947 0.0000 41.7085 0.0000

Worst value 34.6044 14.9898 151.2595 47.9688
Ranking 2 1 4 3

Average value 20.9249 20.8338 20.9810 20.9043
Standard deviation 0.0652 0.0970 0.0677 0.0508

Optimal value F4 20.7688 20.5880 20.8218 20.8173
Worst value 21.0367 20.9747 21.1022 21.0508

Ranking 3 1 4 2
Average value 0.0074 0.0045 0.0300 0.0075

Standard deviation 0.0099 0.0096 0.0211 0.0149
Optimal value F5 0.0000 0.0000 0.0008 0.0000

Worst value 0.0319 0.0324 0.0604 0.0567
Ranking 3 1 4 2

Average value 3.0000 3.0000 6.6004 5.7003
Standard deviation 0.0002 0.0001 15.4263 14.7901

Optimal value F6 3.0000 3.0000 3.0000 3.0000
Worst value 3.0011 3.0003 84.0000 84.0087

Ranking 2 1 4 3

Table 3. Fault samples of transformers

Fault type PD D1 D2 T1 T2
IEC TC 10 fault samples 6 24 45 15 17

fault samples 1 7 7 12 23 13
fault samples 2 19 64 66 44 87

on grey wolf algorithm. Fault diagnosis model of a proba-
bilistic neural network optimized by grey wolf algorithm.
Fault diagnosis model of probabilistic neural network. The
IEC TC, 10 fault samples, were inputted into the four mod-
els, and the experiments were repeated 10 times each. The
results with the highest accuracy were selected, as shown
in Fig. 5. As can be seen from Fig. 5, the fault diagnosis and
recognition rate based on GWO1-PNN is higher, which is
better than the other three algorithms. The test set fault
accuracy of GWO-PNN is 81.48%, the test set fault accuracy
of GWO1-PNN is 92.59%, and the accuracy of the improved
hybrid intelligent algorithm is improved by 11.11%.

Based on the above analysis, GWO1-PNN has high ac-
curacy and stability for transformer fault diagnosis.

5. Conclusion

The swarm intelligent optimization algorithms have short-
comings, such as incompatibility of global and local search
capabilities. The control factor and position update for-
mula limit global and regional search performance in the
GWO algorithm. This paper analyzes and compares four
control factors and finally uses a logarithmic control factor
instead of a linear control factor to improve the position
update formula further. The improved GWO1 is combined
with PNN for transformer fault diagnosis, proving it has
good fault diagnosis performance. The conclusions are as
follows:

1. Given the problem that the traditional GWO algorithm
quickly falls into local optimal, the GWO1 algorithm
in this paper, by improving the control factor and ad-
justing the corresponding weight, uses the weighted
sum to update the position. It finds that the GWO1
algorithm has better optimization ability; by reducing
this possibility, the algorithm can more quickly find
the optimal global solution and reduce the probability
that it will fall into the optimal local solution.
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Table 4. Diagnosis results for GWO1-PNN

Type GWO1-PNN
training/group test/group wrong / group accuracy rate/%

1 5 1 0 100
2 19 5 0 100
3 36 9 0 100
4 10 7 1 80
5 10 7 1 85.71

sum 80 27 2 92.59

2. Through six standard function test experiments, it is
concluded that compared with the traditional grey
Wolf algorithm. The GWO1 algorithm has better opti-
mization accuracy and a more substantial convergence
effect, which verifies the effectiveness of the improved
strategy proposed in this paper.

3. The GWO1-PNN algorithm has a better fault identifi-
cation rate than the GWO-ELM, GWO-PNN, and PNN
algorithms. The input of feature parameters into the
GWO1-PNN model can achieve an accurate diagnosis
of transformer faults.
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