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In this paper, we have studied the Einstein Field equation in Kaluza-Klein space-time in five dimension
with the metric dS2 = dt2 − A2 (dx2 + dy2 + dz2) − B2dψ2 under the assumption that B = αt, where α =

Constant and scale factor satisfying the relation R4 = A3B with perfect fluid having energy momentum tensor
Tij = (ρ + p)vivj − pgij

In this paper, we have assumed that G = 1
t and we have found the value of cosmological constant Λ is a

function time t in terms of hyper geometric function.
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1. Introduction

Kaluza and Klein consider extra dimension apart from
space and time in order to unify the gravitation and elec-
tromagnetism [1–3]. Many researchers of theoretical physi-
cist and mathematician tried to the unified theory of grav-
ity and electromagnetism before Kaluza and Klein [1–8].
Alan Chados and steven Detweiler in his paper where has
the fifth dimension gone? consider the five-dimensional
space-time model in vacuum [9]. Let t0 is the reference cos-
mological time. The Kasner solution in five-dimensional

space time is given by dS2 = −dt2 +
(

t
t0

) [
∑3

i=1

(
dxi

)2
]
+(

t0
t

) (
dx5)2. If t = t0 then one can observed that the uni-

verse is spatially flats and isotropic. If t ≪ t0 then the
value of

(
t
t0

)
goes nearer to zero and the value of

(
t0
t

)
goes aways from zero sufficiently. From this fact, we can ob-
serve that dS2 = −dt2 +

(
t0
t

) (
dx5)2 and as t approaches

to infinity then the cosmos has only one dimensions. If
t ≫ t0 then the value of

(
t
t0

)
goes away from zero and the

value of
(

t0
t

)
goes towards zero sufficiently. If we consider

0 ≤ xi ≤ L, where L is the length. Then the distance in fifth

dimensions shrunk to
√(

t0
t

)
L and the space dimensions

increase to
√(

t
t0

)
L. As the t approaches to infinity i.e. uni-

verse is sufficiently old, the fifth dimension not observe [6].
J.Demart &J.-L.Hanquin used the results of Fees G7G8 and
G11 Lie Algebra to study the homogeneous and anisotropic
cosmological models satisfying five dimension Einstein’s
field equations [7]. The above explanation motivates us to
study the five-dimensional cosmological model.

P.A.M Dirac in his letter Cosmological Constant in 1937,
study the behavior of cosmological constant. He observed
that the cosmological constant is depend on cosmological
time [10].

Sanjay oli studied the five-dimensional cosmological
model with variable cosmological constant and Gravita-
tional constant [11].

In [11], Sanjay oli considered the metric dS2 = −dt2 +

X2 (dx2 + dy2 + dz2)+ A2dΨ2 with the relation AX3 = U.
He found the value of Λ and G for U = c, U = t, U = tn
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and conclude that the value of Λ and G decreases and
increases with time respectively [11]. In [12], R.K. Tiwari
et.al studied the five-dimensional cosmological model with
the metric dS2 = dt2 − A2 (dx2 + dy2 + dz2)− B2dΨ2 with
relation R4 = A3B, where R is the scale factor. In their
investigation, they observed that G proportional to t−(1−ω),
where ω is term in equation of states p = ωρ with 0 ≤ ω ≤
1 [12].

In this paper, we have studied the Einstein Field equa-
tion in Kaluza-Klein space-time in five dimension with the
metric dS2 = dt2 − A2 (dx2 + dy2 + dz2) − B2dψ2 under
the assumption that B = αt, where α = Constant and scale
factor satisfying the relation R4 = A3B with perfect fluid
having energy momentum tensor Tij = (ρ + p)vivj − pgij

In this paper, we have assumed that G = 1
t and we have

found the value of cosmological constant Λ is a function
time t in terms of Hyper geometric function.

2. Five-dimensional einstein field equation

In Kaluza-Klein five-dimensional cosmological model, con-
sider the line element

dS2 = dt2 − A2
(

dx2 + dy2 + dz2
)
− B2dψ2 (1)

where A, B is the function of cosmological time t and the
spatial average scale factor R(t) satisfies the relation R4 =

A3B
Suppose universe contain perfect fluid with energy mo-

mentum tensor

Tij = (ρ + p)vivj − pgij (2)

Let assume that the matter satisfies the equation of states

p = ωρ, 0 ≤ ω ≤ 1 (3)

where p is the pressures and ρ is the energy density of
cosmic matters.

The five-dimensional Einstein Field equation which con-
tain Λ and G as a function of time is given as follows [12]:

Rij − 1
2

Rgij = −8πGTij − Λgij (4)

By using line element (1), one can express five-
dimensional Einstein Field equation (4) as

3Ȧ2 AB + 3ȦḂA2

R4 = 8πGρ + Λ (5)

2Ä
A

+
B
B
+

2ȦḂ
AB

+
Ȧ2

A2 = −8πGp + Λ (6)

3ÄA + 3Ȧ2

A2 = −8πGp + Λ (7)

By assuming the energy conservation in general rela-
tivity, the covariant derivative in Einstein Field equation
gives

ρ̇ + (ρ + p)
(

3ȦB + ḂA
AB

)
+

Ġ
G

ρ = − Λ
8πG

(8)

Equation (8) gives [13]

ρ̇ + (ρ + p)
(

3ȦB + ḂA
AB

)
= 0 (9)

and

Λ̇ = −8πρĠ (10)

3. General solution of five-dimensional einstein
field equation

Equation (3), (5)-(7) and (9) contain five independent equa-
tions with six unknowns , B, p, ρ, G, Λ. To find the solution,
we have assumed that

B = αt (11)

where α is the constant. From equation (6) and (7), we get

Ȧ
A

− B
B

=
k1

A3B
(12)

where k1 is the constant of integration.

A =

(
−k1 + e3k1ct3

) 1
3

α
1
3

(13)

From equation (11) and (12), we get following line ele-
ment

ds2 = dt2 −


(
−k1 + e3k1ct3

) 1
3

α
1
3

 (
dx2 + dy2 + dz2

)
− (αt)2dψ2

(14)
where c is the constant.

For the model (14), the spatial volume V, matter den-
sity ρ, pressure p, gravitational parameter G, cosmological
parameter Λ are given by

V =


(
−k1 + e3k1ct3

) 1
3

α
1
3


3

(αt) (15)

ρ = e
(1+ω)

(
log(t)− 1

3 α log
(
−k1+e3ck1 t3

))
α c1 (16)

p = ωe
(1+ω)(log(t)− 1

3 α log(−k1+e3ck1 t3))
α c1 (17)
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P.A.M Dirac say that G is proportional to t−1. Assume
that

G =
1
t

(18)

SR = Hypergeometric2 F1
[

1 + ω

3
,−1 + ω + α

3α
,

−1 + ω − 2α

3α
,

e3ck1t3

k1

] (19)

Λ =

c2 −
8πt−

1+ω+α
α

(
−k1 + e3ck1t3

) 1
3 (−1−w)

(
1 − e3ck1t3

k1

) 1+ω
3

αc1SR

1 + w
(20)

where c2, k1, c1 are constants.

4. Conclusion and discussion

P.A.M Dirac say that G is proportional to t−1. In this paper,
we can observe that when we consider five dimensional
Kaluza-Klein cosmological models, then we found that Λ
is not constant and it involve Hypergeometric function.
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