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Abstract. In this paper, the pipeline is modeled as a curved rod in contact 
with the Winkler medium. Linear oscillations of a curved viscoelastic rod 
lying on the Winkler base are considered. The general formulation of the 
problem of free oscillations of a spatially curved viscoelastic rod with 
variable parameters is reduced to a boundary value problem for a system of 
ordinary integro-differential equations of the 12th order with variable 
coefficients relative to eigenstates; it can be solved by the method of 
successive approximations. The relations allowing to present the solution 
of the boundary value problem for the rod in an analytical form are 
formulated. It is established that the dimensionless complex frequencies of 
natural oscillations of a spatially curved rod, while maintaining the 
elongation of the rod constant, do not depend on it. The Poisson's ratio has 
little effect on the dimensionless real and imaginary parts of the natural 
frequencies. 

1 Introduction 
In recent times, aeromechanics has become one of the developing applied areas in the field 
of mechanics, within which great attention is paid to the study of the strength of elements 
under vibration, shock and other types of external influences [1-2]. Biomechanical 
structures, in general, have a very complex structure and shape [3-4]. Their mechanical 
properties depend on the individual characteristics of the organism, age, functional state, 
external factors and are largely determined by the stress-strain state, since the 
biomechanical system adapts to external influences. An organism, as an object of 
mechanics, is a complex system in which a hierarchical organization is viewed [5]. 
Considering the general methods of studying complex systems, it can be argued that their 
mathematical modeling requires the compilation of models of elements of the lowest level 
of the hierarchy, that is, in relation to this case, bones, muscles and internal organs. From 
the given examples of structuring it follows that the elements of the skeleton, i.e. bones, 
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which are the main supporting elements of the structure of the organism, are an 
indispensable element of modeling [6]. In the vast majority of cases, bones can be 
represented as spatially curved rods of variable cross-section. In addition, the elements of 
the skeleton have pronounced viscoelastic properties [7-8], varying both along the axis and 
in cross-section.  

The method of modal analysis (modal decomposition) is currently used to solve 
problems on the dynamic behavior of viscoelastic bodies [9-10]. Its advantage is the 
possibility of using both analytical and discrete models, in which there is a weak 
dependence on the nature of external influence. To implement the method, the 
decomposition of the motion of a viscoelastic body according to the modes of vibrations - 
the functional basis – according to the forms of free vibrations of an elastic body is used. 
The convenience of this basis is that it is a complete orthogonal system of functions, which 
simplifies the decomposition technique [11-12]. 

Therefore, in this paper we consider the question of representing solutions to dynamic 
problems through combinations of elementary transcendental functions, which in the limit 
give strict solutions to a system of equations for forms of free oscillations. The complex 
eigenfrequencies are determined by the Muller-Gauss method. Also, when the curvilinear 
pipeline lying on the base of the Winkler oscillates, the present work is considered. 

2 Materials and methods 

2.1 Problem statement and solution methods 

To derive the differential equations of motion of a curved rod, we select the elementary part 
of the curved rod (Figure 1). Consider the element of a curved rod of length ds and all the 
acting internal and external forces, which is shown in Figure 1. In Figure 1, the following 
designations are adopted: 1 2 3Q Q t Q n Q b  

rr r r
 where Q1= N axial force Q2=Qn –

cutting force or normal force, Q3=Qb- shearing force or components of the shearing force 

vector by binormals; t n bM M t M n M b  
rr r r

-vector of internal moments, where - tM  torque 

moment, nM and bM  - bending moments; t n bq q t q n q b  
rrr r

-vector of external loads, 
, ,t n bq q q - components of the vector of external loads. 

 
Fig. 1. The element of the rod of infinitely small length. 
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The selected element is in equilibrium only when the sum of all forces and the sum of 
moments are equal to zero, which gives two vector equations: 
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0.I
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Here-

IM
r

 is the main moment of inertia forces. The system of equations (1) can be 
written in the following form  
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Here- t n bM M MdM ds ds ds

s s s
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  
  

r r rr  is the main moment arising in the sections of a 

curved rod; 
pdM

r -- the main factor of the forces of external loads. Taking into account the 

Frensay–Serre formula [13], it is possible to write through projections of tangent vectors t  
, normal n  and binormals b  in the form of a system of three differential equations: 
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(3) 

 
Now we write the second equation (3) in expanded form. To do this, we use the 

expression of moments through displacements: 
 

2 2 2

2 2 2( )t n b
I t n b

u u udM J t J n J b ds
t t t

  
  
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rr r  (4) 

 
Where , ,t n bJ J J are moments of inertia of the rod relative to the axes. 
To calculate the moments from the forces, we use the well-known ratio from vector 

analysis  
 

Q n b

t n b
dM dr Q N Q Q

u v w
  g

rr r
rr  

(5) 

 
If we use the Fresne trihedron [13], then we will have: 
 

 Q t n b
u v wdM t t n b Q t Q n Q b
s s s
             

r rr r rr r  
(6) 
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Vector multiplication (6) can be written through the components of vectors in scalar 
form. Now using equations (5) and (6) we obtain three more differential equations in scalar 
form: 
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(7) 

 
Thus, we obtained six differential equations with 12 unknowns: 

, , , , , , , , , , ,n b t n b t n bN Q Q M M M u v w u u u . 
 
To obtain a closed system of equations, additional geometric and physical equations are 

needed. Normal stresses at any point of the rod, taking into account the viscoelastic 
properties of the rod material, are represented by Hooke's law [14-16]: 

 

0 0
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( , ) ( ) ( , )
t

s n s E sE t s R t s d     
 
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 


 

(8) 

 
Where E0n   is instantaneous values of the modulus of elasticity,  0ER t   - the 

relaxation core of the material, 
s - the tension of the rod along the axial line. Deformations 

along the axis: 
 

b n
s

u uy z
s s

   
  

 
 (9) 

 
Here-  is deformation of the rod axis; bu  is movement of the rod particle along the 

binormal; 
nu  is movement of the rod particle along the normal. The deformations of the 

axis of the rod are determined by (9) and takes the following form: 
 

u k    (10) 
 
If we use Hooke's law (8), then for internal points we get known formulas of power 

factors: 
 

2

, ( ) ,

( ) , .

s s

s s

s n s
F F

t
b s t

F F

N dF M dF z

uM dF y M G R dF
s s

 



 


 

 

 

 %

 
(11) 
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, ( )t - an arbitrary function of 

time. The force factors (11) can be brought into a form convenient for calculation using the 
above ratios (8)- (10): 
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moment of inertia of the section. 
If we use (1), (7) and (12), then we get the following system of integro-differential 
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Boundary and initial conditions must be applied to the system of integro- differential 

equations (13). Six conditions are placed on each end of the rod. Initial conditions are set 
for displacements and velocities at t=0. 

Assume that the binormal and normal vectors are directed along the central axes of 
inertia of the cross-section of a curved rod. Then the static moments and the centrifugal 
moment of the cross-section of the curved rod are zero. 

Then the system of integro-differential equations (13) is simplified and takes the 
following form 
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Boundary and initial conditions are set to solve the problem. 
Boundary (boundary) conditions. The possible boundary conditions for solving the 
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3 Results and Discussion 
As an example, consider the natural oscillations of a curved rod, shown in Figure 2. To do 
this, 6 boundary conditions are placed at the two ends of the rod.  The above equations (15) 
consist of 12 equations. To solve the system (15), the freezing method is first applied. Then 
we get a system of differential equations with variable coefficients. With natural 
oscillations, equations (15) in matrix form take the following form 

 

 
Fig. 2. Elementary part of a curved rod. 
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As an example of a viscoelastic material , we take the three – parametric Koltunov - 
Rzhanitsyn relaxation kernel:   1

0 /к кt
Е кR t A e t    with parameters 0,048; 0,05; 0,1к к кA     . 

Geometric and physico-mechanical parameters take the following values: 
T 3

1 1 0,9 ; 0,127 ; 210 ; 7800 / .L L м R м E ГПа кг м     o solve the problem, the methods of 
freezing, orthogonal running, the Muller method, the Gauss method and the method of 
complex amplitudes are used. The results of calculations of the first four complex natural 
frequencies, for cantilever rods, are shown in Figure 2 and in Table 1.  

The second line shows the results of the frequencies of viscoelastic curved rods 
obtained by the proposed method. In the larger and fourth lines, the results of De Jong [15], 
Wu J.H. [16] and [17-20] for elastic curvilinear rods. It has been established that taking into 
account the viscosity properties of the material of medium frequency frequencies up to 
15%. 
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Table 1. Comparision of the first four  natural frequencies. 

 Fashion Number 1 2 3 4 

2 Proposed 
methodology 31.5243+i0.2315 68.2819+i0.8942 405.4442+i7.8864 501.3458+i9.7194 

3 De Jong [15] 28.4581 62.1266 375.1074 480.4582 
4 Wu J.H.[16] 30.2065 65.1195 387.1324 496.5243 

4 Conclusion 
Thus, the paper has developed a solution technique and an algorithm for studying the 
natural oscillations of curved deformable rods. With the growth of its own motion, the 
attenuation decrements increase in the presence of the viscosity of the rod and decrease in 
the presence of the external viscosity of the Winkler base.  Moreover, with an increase in 
intensive dissipation, aperiodic modes (purely imaginary eigenvalues) arise, starting with 
the highest eigenforms, in the case of taking into account the viscosity of the rod. By taking 
into account energy dissipation, the viscoelastic rod model makes it possible to study forced 
steady-state oscillations at resonances. 
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