

The pipeline processing of NLP

B. B. Elov1*, Sh. M. Khamroeva1, and Z. Y. Xusainova1

1Tashkent State University of Uzbek Language and Literature named after A.Navai, 100100
Tashkent, Uzbekistan

Abstract. The problem of NLP should be divided into several small parts
and solved step by step. In this article, where NLP is necessary at every
stage of solving the problem, all forms of text processing are considered.
The step-by-step text processing is called a pipeline process in NLP. When
creating any NLP model, the pipeline process is a sequence of steps that
must be carried out. The planning and development of the text processing
is considered as the starting point for the creation of any NLP project. This
article discusses the steps involved in implementing a pipeline process and
their role in solving NLP tasks. This article analyzed the most common

preliminary processing steps on the NLP processing pipeline. All
processing stages are pre-trained in various NLP libraries, identified as
usable models. If necessary, additional, modified preprocessing steps can
be developed depending on the given problem condition. One can
determine how a particular initial processing stage serves a given NLP
problem by many experimentations.

1 Introduction

Typically, the problem of NLP should be divided into several small parts and solved step

by step. In this article, where NLP is necessary at every stage of solving the problem, all

forms of text processing are considered. The step-by-step text processing is called a

pipeline process in NLP [1-4]. When creating any NLP model, the pipeline process is a

sequence of steps that must be carried out. The planning and development of the text

processing is considered as the starting point for the creation of any NLP project. This

article discusses the steps involved in implementing a pipeline process and their role in

solving NLP tasks. Figure 1 below shows the main components of a common pipeline

processing for developing a modern NLP system [5].
The main stages of the pipeline processing are as follows:

1. Data collection.

2. Text cleaning.

3. Initial processing.

4. Development of features.

5. Modeling.

6. Evaluation

7. Implementation.

* Corresponding author: elov@navoiy-uni.uz

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

8. Monitoring and model updating.

2 Main part

The first step in the development of any NLP system is data collection relevant to the given

task. To develop a rule-based NLP system, it is necessary to have training (test) data to

design and examine the rules. The data we receive is rarely “clean", and in the next step, the

text cleaning procedure is performed. Once the text has been cleaned, the text data needs to

be converted to canonical form.

This action is performed at the stage of preliminary processing [6-10]. After that, it is

necessary to develop the necessary features to perform the NLP task. These features are

converted into a comprehensible format by modeling algorithms. In the next step, modeling
and evaluation are performed. In this step, one or more language models are created and

they are compared using the appropriate evaluation indicators (metrics). It is necessary to

implement this model after selecting the best one from among the developed models. And

finally, we constantly monitor the performance of the model and, if necessary, need to

improve its performance and update it. In the primary stages, a lot of time is spent on

feature development, modeling, and evaluation [6, 7, 11-15].

Primary stages

As mentioned above, NLP software typically analyzes text by segmenting it into words

(tokens) and sentences. Thus, any NLP pipeline processing needs to develop a system that

correctly performs the segmentation of text into sentences (sentence segmentation) and

subsequent segmentation of sentences into words (word tokenization).
Sentence segmentation

As a general rule, one can segment sentences by dividing text into sentences when

periods and question marks appear. But there can be abbreviations, address forms (sh.k -

according to, va b.-etc.) or ellipses (...) that can break the normal rule. The ability to distinct

sentences and words using standard methods in existing NLP libraries is provided in

Python. The following Python code shows how to use the sentence and word separator from

the Natural Language Tool Kit (NLTK) library:

from nltk.tokenize import sent_tokenize, word_tokenize

mytext = "Typically, an NLP problem should be solved step by step, breaking it down

into several small parts. This article examines all the forms of text processing required at

each step of solving an NLP problem."
my_sentences = sent_tokenize(mytext)

Word tokenization

The main unit of the language is its vocabulary ‒ lexicon. But what does the vocabulary

(lexicon) contain? The term "word" has a broad meaning, and it is necessary to clarify this

term in order to use it in a scientific manner. If we separate words from the text using

separators (spaces, some punctuation marks, etc.), many tokens are generated in the text

[16,17]. A token is any unit separated from the text by a boundary. There are 4 tokens in the

sentence “Daraxt bir yerda ko‘karadi”: daraxt, bir, yerda, ko‘karadi. There are 4 tokens in

the sentence “Halol mehnat yerda qolmas”: halol, mehnat, yerda, qolmas.

To turn sentences into words, like sentence tokenization, one can start with a simple rule

of segmenting text into words based on the presence of punctuation marks. The NLTK

library allows one to do this:
for sentence in my_sentences:

print(sentence)

print(word_tokenize(sentence))

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

2

It should be remembered that most of the existing solutions (tokenizers) do not segment

the given text into 100% correct tokens, and these algorithms are not perfect. For example,

consider the following sentence:

“Sumbula sapchib o‘rnidan turdi-da: «Xayriyat, tushim ekan», ‒ dedi hansirab.”

If one proceed the above statement through the NLTK tokenizer, [o‘rnidan] [,] [turdi] [-

] [da] [:] are defined as separate tokens. Also, if one wants to tokenize tweets, the tokenizer

splits the hashtag into two tokens: the "#" sign and the sequence after it. In such cases, one

may need to use a customized tokenizer that one creates (by one selves) for one’s purpose.

Therefore, in the tokenizer, sometimes some elements of graphematic analysis must be

performed:

 sequence of letters;

 numbers;

 punctuation marks;

 hieroglyphs;

 separators;

 various graphic symbols.

Below is the tokenization process corresponding to 2 sentences in Uzbek and its version

in http://uznatcorpara.uz/uz/Tokenizer program:

Sumbula sapchib o‘rnidan turdi-da: «Xayriyat, tushim ekan», ‒ dedi hansirab - Sumbula

sprang to his feet and gasped: "Thank you, I'm having a dream."

English version tokenization process of sentences

Uzbek version tokenization process of sentences

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

3

http://uznatcorpara.uz/uz/Tokenizer

Fig. 1. An example of the tokenization process

Steps to be taken regularly. Let's take a look at the initial processing steps that are

performed regularly in the NLP pipeline processing. Let's say one developing software that

classifies an article on a news site as one of politics, sports, business, and other topics. Let

us have a program that divides a sentence into segments and tokens. In this case, one need

to start thinking about what kind of data is useful for developing a tool for separating news

into groups.

Some of the frequently used words in the Uzbek language, for example, albatta, ammo,

asosan, aynan, balki, barcha, bilan, biroq are not considered necessary for this task. Because

they don't mean anything by themselves to distinguish the four categories. Such words are

called non-essential words and are usually removed from further analysis. However, there

is no standard list of non-essential words for the Uzbek language. Some of the non-essential
words in the Uzbek language developed by the authors are presented in the following Table

1.

Table 1. Common non-essential words in Uzbek language

unfortunate

ly (afsuski)

Since (beri) The most

(eng)

With (Ila) My

(mening)

At the

back

(orqada)

shak-

shubha

siz

ustida

apparently

(aftidan)

With (bilan) While (esa)

Let god

(iloyim)

Like

(Misli)

To the

back

(orqaga)

shekilli ustidan

if(agar) According

to (binoan)

unfortunate

ly

(essiz)

I believe

(ishonaman

ki)

example

(misoli)

Through

(orqali)

shu ustiga

on the

contrary

(aksincha)

But (biroq) in return

(evaziga)

Let it be

(ishqilib)

during

(mobaynida

)

That

(o‘sha)

shubha

siz

va

of course

(albatta)

A bit (Biroz) only

(faqat)

In case of

(jihatdan)

mobodo Under

(ostida)

shunch

aki

vaqtda

already

(allaqacho

n)

We (Biz) If (gar) Permissible

(joiz)

On the

event

of(modomi

ki)

End (oxir) shunda

y

xayriy

at

in the end

(alqissa)

Our

(bizning)

though

(garchand)

Very (juda) Suitable

(mos)

Itself (o‘zi) shunga xo‘sh

but

(ammo)

Whole

(bo‘yi)

although

(garchi)

including

(jumladan)

Neither ..

nor …(na,

na)

Myself

(o‘zim)

shunin

g

uchun

xolos

but

(ammo-

lekin)

Depends

(bog‘liq)

as if

(go‘yo)

Such as

(Kabi)

Pity

(nachora)

Ourselves

(o‘zimiz)

shunin

gdek

xuddi

at least

(aqalli)

Due to

(bois)

supposedly

(go‘yoki)

need

(kerak)

Not only

(nafaqat)

Yourself

(o‘zingiz)

singari xullas

Be about to

(arafasida)

Other

(boshqa)

sometimes

(goh)

after

(keyin)

Person

(nafar)

Themselve

s (o‘zlari)

siz xususa

n

Inter (aro) This (bu) like that

(chunonchi

next

(keyingi)

As a result

(natijada)

Under

(pastda)

sizniki ya’ni

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

4

)

In fact

(aslida)

These

(bular)

Also (ham) Who (kim) The reason

why

(Negaki)

Under

(pastga)

sizning yana

Never

(aslo)

From this

(bundan)

Too

(hamda)

Somebody

(kimdir)

Whatever

(Nimagaki)

in the

beginning

(payida)

tabiiyki yanada

Mainly

(asosan)

like this

(bunday)

Every

(hamma)

Whome

(kimga)

Instead

(o‘rniga)

When

(qachonki)

tag‘in yaxshi

Main

(asosiy)

Whole

(butun)

All

(hammasi)

Many

(ko‘p)

Between

(o‘rtasida)

Till (qadar

)

tahmin

an

yaxshi

yam

First of all

(avvalamb

or)

Approximat

ely

(chamasi)

Really

(haqiqatda)

Most

(ko‘plab)

That (o‘sha) Looking at

(Qarab)

tashqar

i

yo

Previous

(avvalgi)

While

(chog‘i)

Really

(haqiqatda

n)

Much

(ko‘proq)

Self (o‘z) To (qarata) to‘g‘ris

i

yo‘qsa

Firstly

(avvalo)

Because

(chunki)

Every (har) according to

(ko‘ra)

Itself (o‘zi) To

(qaratilgan

)

toki yo‘q-

yo‘q

after all

(axir)

chunonchi Anyway

(har holda)

Much

(ko‘proq)

Myself

(o‘zim)

Again(qayt

a)

tomon yo‘sin

da

exactly

(aynan)

Indeed

(darhaqiqat)

Anyway

(har qalay)

But (lekin) Ourselves

(o‘zimiz)

Instead of

(qaytanga)

tufayli yoki

the same

(ayni)

Immediantly

(darhol)

Even

(hatto)

Must

(lozim)

Yourself

(o‘zingiz)

In short

(qisqasi)

turli yonida

Especially

(ayniqsa)

Must

(darkor)

Never

(hech)

known

(ma’lum)

Itself

(o‘zini)

Let it be

(qo‘yingki

)

u yonida

n

For

instance

(aytaylik)

First of all

(dastavval)

Etc

(hokazo)

Whether

(mabodo)

Themselves

(o‘zlari)

Following

(quyida)

uchun yoniga

By the way

(aytgancha

)

While

(davomida)

Only if

(holda)

Here

(mana)

Automatica

lly

(o‘zo‘zida

n)

Following

(quyidagi)

They

(ular)

yo‘q

By the way

(aytganday

)

Well

(demak)

Now

(hozir)

For

example

(masalan)

To be

honest

(ochig‘i)

In case

(ravishda)

Them

(ularni)

yoxud

Some

(ba’zi)

Almost

(deyarli)

At the

moment

(Hozirda)

Ok (mayli) Related to

(oid)

rostdan ularnin

g

yuqori

da

Maybe

(balki)

Let it be

(deylik)

ichida mazkur olaylik rosti unda yuqori

ga

At the

same time

(baravarida

)

Always

(doim)

ichidan mazmuni oldiga sana unga yuzasi

dan

All

(barcha)

On this

(doir)

ichiga men oldin sari uni zero

All

(barchasi)

Within

(doirasida)

ichkarida meni orasida sayin uning zeroki

Anyway

(baribir)

Probably

(ehtimol)

ichra To my mind

(menimcha)

Between

(orasiga)

you think

(seningcha

)

This

(ushbu)

zotan

Some NLP packages have lists of non-essential words (for some foreign languages),

which in many cases can vary depending on the given problem.

Removing punctuation and/or numbers is a common step for many NLP problems such

as text classification, data mining, and social media analysis. The following program code

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

5

shows how to remove non-essential words, numbers, punctuation marks, and lowercase

letters from a given set of English text:

from uzcorpus import stopwords

From string import punctuation

def preprocess_corpus(texts):

 mystopwords = set(stopwords.words("uzbek"))

 def remove_stops_digits(tokens):

 return [token.lower() for token in tokens if token not in mystopwords

 not token.isdigit() and token not in punctuation]

 return [remove_stops_digits(word_tokenize(text)) for text in texts]

It should be noted that these four processes are not mandatory or required to be
followed sequentially for all NLP problems. The function above shows our NLP project

how to implement the text processing steps. Text data is primarily processed through this

function. Commonly performed primarily processing steps that take into account word-

level features are stemming and lemmatization.

3 Results

Stemming and lemmatization. In the process of stemming, suffixes are removed from the

word and the word is reduced to some basic form (making the word form without suffixes).

For each token, there is an initial (or normal) form of it (called a lemma). In speech

(text), this initial form is used in various grammatical forms (inflection may also occur).

The following picture shows the stemming stages of two sentences.

English version stemming process of sentences

Uzbek version stemming process of sentences

Fig. 2. Examples of the stemming process

At this point, we need to clarify the term word form. A word form is a form of lemma

(lexeme) used in speech. The lemma “Daraxt” can take various grammatical forms

belonging to the noun group and form many word forms:

 daraxt, daraxtni, daraxtning, daraxtga, daraxtdan;

 daraxtlar, daraxtlarni, daraxtlarning, daraxtlarga, daraxtlardan;

 daraxtim, daraxting, daraxti, daraxtimiz, daraxtingiz, daraxtlari.

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

6

In the same order, other lemmas also appear as a word form when they are used in

speech. The usual structure of the word structure in the Uzbek language is as follows:

"Stem + word-builder + lexical form + syntactic form"

The order and consistency of the placement of a grammatical device depends on its

meaning and grammatical features, and is formed in the following sequence:

1) forming a new lexical meaning;

2) influencing the lexical meaning;

3) a tool that does not affect the lexical meaning, but connects the word is added.

The standard position of the suffix is sometimes broken:

opa-lar-im / opa-m-lar, ayt-di-ng-lar / ayt-di-lar-ing.

In the Uzbek language, additional morphemes are added consecutively after the stem.
The rules of morphotactic determine the order in which morphemes and allomorphs are

arranged in the word form. Based on these, we observe the connection possibilities of some

morphemes in the Uzbek language in the table below:

TABLE 2. The morphemes set on the left side

morphemes left-hand positioning

feature (+/-)

Example in Uzbek Example

(translate to

english)

-lar + bola+lar+dan from

children

-man - bor+a+man I will go

-san - o‘qi+y+san you read

-miz - yoz+a+miz we write

-siz - ayt+ib+siz you say

-ing + kel+ing come

-im + kitob+im my book

-imiz + daftar+imiz our

notebook

-si + uka+si brother

-ni - ashula+ni sing

From the table above, it can be seen that suffixes such as -lar, -im, -ing, -imiz, -si, -ni

are added directly to the stem. It is added to the left side of another affix morpheme. The

suffixes -man, -san, -miz, -siz cannot be added directly to the stem. Because before them,

another morpheme (for example, a tense suffix) is added to the stem, and the next position

is occupied by this group of suffixes, which have the characteristic of being located on the

right side of affix morphemes. So, in the Uzbek language, the position of the stem and

suffixes is minimally as follows:

Fig. 3. position of the stem and suffixes

New words or word forms are formed by combining the smallest unit of language -

morphs. Morphs are divided into stems (word bases) and suffixes:

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

7

 prefix (word-builder);

 a word-builder added after a word;

 syntactic form builder;

lexical form-building adverbs.

The stem means the main lexical meaning of the word. Suffixes give additional meaning

to the word. Separating the word into morphemes is called morphemic analysis (Figure 5).

For example:

Fig. 4. morphemic analysis

In Figure 5 below, is presented the algorithm for determining the content of words:

Fig. 5. Algorithm for determining word structure in Uzbek language

Lemmatization is the process of comparing all the different word forms of a word to a

main word or lemma. Although this seems similar to the stemming process, they are

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

8

actually different. The lemmatization process is shown below: Sumbula sprang to his feet

and gasped: "Thank you, I'm having a dream."

Fig. 6. Examples of the lemmatization process

It should be noted that stemming and lemmatization should be distinguished. Because

often the results of stemming and lemmatization in the Uzbek language seem to be the

same, but they are completely different processes: stemming is the process of removing the

suffix from the stem, and lemmatization is the process of determining the dictionary

variation of the stem. Below are examples of the analysis of the stemming and

lemmatization process:

Fig. 7. The difference between stemming and lemmatization process.

Lemmatization requires more linguistic knowledge, because the modeling and

development of efficient lemmatizators for Uzbek language texts is still an open problem in

NLP research.

Since lemmatization involves a certain amount of linguistic analysis of the word and its

context, it is more time-consuming than the stemming process, and it is usually used only

when necessary. Which lemmatizator or stemmer to use for the initial processing stages of

the NLP pipeline processing is chosen according to the condition of the given problem.

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

9

Not all steps to remove non-essential words, numbers, punctuation, and lowercase

letters from a given text are always necessary. For example, if one removes numbers and

punctuation marks from text, the removal may not be very important at first. However, one

usually replaces uppercase letters with lowercase letters before performing the stemming

process on the text.

Fig. 8. Common primary processing steps for a text fragment

One does not remove lexemes and lowercase letters from the text before the

lemmatization process. Because in order to get the lemma, one needs to know the part of

speech, and this requires that all tokens in the sentence are intact. Once one have a clear
understanding of how to process data, it's a good idea to prepare a step-by-step list of

primary processing steps to be taken. Examples of the Uzbek language morphoanalyzer

developed by the authors (http://uznatcorpara.uz/) to tokenization, stemming and

lemmatization steps in the NLP pipeline processing and the ER model in the database are

presented below:

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

10

Fig. 9. NLP pipeline processing ER model

Fig. 10. Morphoanalyzer of the Uzbek language (http://uznatcorpara.uz/)

Additional stages of primary processing. A few common primary preprocessing steps in the
NLP pipeline processing have been covered above. Although the essence of the texts is not

clearly indicated, it is assumed to work with plain English text. Below are given some

additional primary processing steps.

Text normalization. Let's look at the issue of identifying news in social media posts.

Social media text is quite different from the language used in newspapers. Words can be

written in different ways, for example, in abbreviated forms, phone numbers can be written

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

11

http://uznatcorpara.uz/

in different formats, names are sometimes written in lowercase letters, etc. When

developing NLP tools to work with such data, we need to create a canonical form of the

text that covers all changes. This process is called text normalization. Some common steps

to normalize text are converting text to all lowercase or uppercase, converting numbers to

text (e.g. 9 to nine), expanding abbreviations, etc. A simple method of text normalization is

provided in the Spacy package.

Identifying the language. Most of the web content is written in languages other than

English. For example, let's say one was asked to collect all the reviews of product on the

internet. Analyzing various e-commerce websites, when one starts scanning product pages,

one come across a few non-English reviews. Since the main part of the NLP pipeline

processing is built with language-specific tools, is it necessary to make regular changes in
our NLP pipeline processing that is waiting for English text? In such cases, language

identification is performed as the first step in the NLP pipeline processing. One can use

NLP packages like Polyglot for language identification. After this operation, the next steps

of the NLP pipeline processing can be observed to be language specific.

Many people around the world speak more than one language in their daily lives. Thus,

they use several languages in their posts on social networks. As an example of code mixing,

we can see the phrase Singlish (Singapore slang + English language) in LDC in Figure 5.

One phrase contains words from Tamil, English, Malay and three Chinese languages. Code

mixing refers to this phenomenon of switching between languages. When people use more

than one language in their writing, they often write words in those languages in Latin script,

with English spelling. So, along with the English text, words in other languages are also

written. This process is known as transliteration. Both of these phenomena are common in
multilingual communities and should be taken into account during the primary text

processing.

Fig. 11. Post in Singlish

The general primary processing steps have been discussed above. Although this

list is not complete, we hope it gives one an idea of the different primary processing

methods that may be required depending on the nature of the data set.

4 Extended processing

We will consider the issue of developing a system for identifying the names of individuals

and organizations in a collection of one million documents in the company. The common

steps of text processing that we have discussed earlier may not be appropriate in this

context. Identifying names requires us to implement POS tags. Because identifying the

appropriate proper nouns can be useful in determining the names of individuals and

organizations. How do we do POS tags during the primary processing stage of the project?

Primary-trained and easy-to-use POS taggers are used in NLP libraries like NLTK, spaCy,

and Parsey McParseface Tagger. One typically don't need to develop its own POS tagging

solutions. It is important to note that for the same primary processing step, there may be
differences between the results from different NLP libraries.

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

12

Fig. 12. Extended processing steps for a text fragment

This is due to differences in implementation and algorithms between different libraries.

Which library (or libraries) to use in an NLP project depends on the context of the given

problem. Let's look at a slightly different problem: in addition to identifying the names of

individuals and organizations in our company's collection of millions of documents, we are

also asked to determine whether a particular individual and organization are somehow

related. To do this, we need to develop a method for identifying patterns that indicate the

"relationship" between two persons in a sentence. This requires us to have some form of

syntactic representation of the sentence.

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

13

Fig. 13. An example of POS tagging and sentence structure in the NLP pipeline processing

In addition, we need to outline a method to define and bind multiple references to an object.

5 Conclusion

This article analyzed the most common primary processing steps in the NLP pipeline

processing. All processing steps are defined as primary-trained, usable models in various

NLP libraries. If necessary, additional, customized primary processing steps can be

developed depending on the given problem condition. One can determine how a particular
initial processing stage serves a given NLP problem by many experimentations. In the

morphoanalyzer of the Uzbek language developed by the scientists of Tashkent State

University of Uzbek Language and Literature named after Alisher Navoi, tokenization,

stemming and lemmatization stages of the NLP pipeline processing were developed and

implemented.

References

1. M. A. Saloot, D. N. Pham, Real-time Text Stream Processing: A Dynamic and

Distributed NLP Pipeline, ACM International Conference Proceeding Series (2021)

https://doi.org/10.1145/3459104.3459198

2. G. Becquin, End-to-end NLP Pipelines in Rust (2020)

https://doi.org/10.18653/v1/2020.nlposs-1.4

3. N. Peng, F. Ferraro, M. Yu, N. Andrews, J. DeYoung, M. Thomas, M. R. Gormley, T.

Wolfe, C. Harman, B. van Durme, M. Dredze, A concrete Chinese NLP pipeline.

NAACL-HLT 2015 - 2015 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

Demonstrations, Proceedings (2015) https://doi.org/10.3115/v1/n15-3018

4. H. Noji, Y. Miyao, Jigg: A framework for an easy natural language processing

pipeline. 54th Annual Meeting of the Association for Computational Linguistics, ACL

2016 System Demonstrations (2016) https://doi.org/10.18653/v1/p16-4018

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

14

https://doi.org/10.1145/3459104.3459198
https://doi.org/10.18653/v1/2020.nlposs-1.4
https://doi.org/10.3115/v1/n15-3018
https://doi.org/10.18653/v1/p16-4018

5. S. Vajjala, B. Majumder, A. Gupta, H. Surana, Practical Natural Language Processing.

A Comprehensive Guide to Building Real-World NLP Systems, 455 (2020)

6. E. B. Botir, X. I. Axmedova, Business Process Modeling That Distinguishes

Homonymy Within Three Parts of Speechs in Uzbek Language, International

conference on information science and communications technologies application,

trends and opportunities (IEEE - UBMK - VII. Uluslararası Bilgisayar Bilimleri ve
Mühendisliği Konferansı), Ankara (2022)

7. B. Elov, Sh. Hamraeva, X. Axmedova, Methods for creating a morphological analyse,

14th International Conference on Intellegent Human Computer Interaction. 19-23

October, Tashkent (2022)

8. B. Elov, Sh. Hamroyeva, D. Elova, Morfologik analizatorni yaratish usullari, O

‘zbekiston: til va madaniyat. Amaliy filologiya masalalari, 5(1), 67-87 (2022)

9. B. R. Menliev, Sh. M. Khamroeva, Structure and units of the morphoanalyzer of the

Uzbek language, Computer linguistics and vychislitelnye ontologii. Vypusk 5 (Trudy

XXIV Mejdunarodnoy ob'edinennoy nauchchestsii "Internet i sovremennoe

obshchestvo", IMS-2021, Sbornik nauchnyx trudov), Saint-Petersburg, University

ITMO, 82 (2021)

10. B. B. Elov, Text generation in Uzbek using N-gram language models, Computational

linguistics: problems, solutions and perspectives, Collection of international scientific

and practical conference. Electronic publication, ebook, Tashkent (2022)

11. E. Soysal, J. Wang, M. Jiang, Y. Wu, S. Pakhomov, H. Liu, H. Xu, CLAMP - a toolkit

for efficiently building customized clinical natural language processing pipelines,

Journal of the American Medical Informatics Association, 25(3) (2018)
https://doi.org/10.1093/jamia/ocx132

12. I. Tenney, D. Das, E. Pavlick, BERT rediscovers the classical NLP pipeline. ACL 2019

- 57th Annual Meeting of the Association for Computational Linguistics, Proceedings

of the Conference (2020) https://doi.org/10.18653/v1/p19-1452

13. G. Attardi, DeepNL: A deep learning NLP pipeline. 1st Workshop on Vector Space

Modeling for Natural Language Processing, VS 2015 at the Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, NAACL-HLT (2015) https://doi.org/10.3115/v1/w15-1515

14. S. Koeva, N. Obreshkov, M. Yalamov, Natural language processing pipeline to

annotate bulgarian legislative data. LREC 2020 - 12th International Conference on

Language Resources and Evaluation, Conference Proceedings (2020)

15. W. de Vries, A. van Cranenburgh, M. Nissim, What’s so special about BERT’s layers?

A closer look at the NLP pipeline in monolingual and multilingual models, Findings of

the Association for Computational Linguistics Findings of ACL: EMNLP (2020)

https://doi.org/10.18653/v1/2020.findings-emnlp.389

16. B. Elov, Tabiiy tilni qayta ishlash (nlp)da spacy modulidan foydalanish. Science and

innovative development, Tashkent, 4, 41-55 (2022)

17. Z. Y. Xusainova, NLP: tokenizatsiya, stemming, lemmatizatsiya va nutq qismlarini

teglash. O‘zbek amaliy filologiyasi istiqbollari, Respublika ilmiy-amaliy konferensiya

to‘plami. Elektron nashr, Toshkent: ToshDOʻTAU, 159-163 (2022)

E3S Web of Conferences 413, 03011 (2023) https://doi.org/10.1051/e3sconf/202341303011
INTERAGROMASH 2023

15

https://doi.org/10.1093/jamia/ocx132
https://doi.org/10.18653/v1/p19-1452
https://doi.org/10.3115/v1/w15-1515
https://doi.org/10.18653/v1/2020.findings-emnlp.389

	1 Introduction
	2 Main part
	Table 1. Common non-essential words in Uzbek language

	3 Results
	Fig. 2. Examples of the stemming process

	4 Extended processing
	5 Conclusion
	References

