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Abstract. Aircraft frame elements are highly responsible elements. They 
are subject to stringent requirements for strength, stability, resource. Often 
these requirements contradict each other, especially if it is necessary to 
ensure the minimum mass of the product. However, it is necessary to 
improve the characteristics of aircraft. Nevertheless, the optimization of the 
frame has almost exhausted itself. The power frame consists of 
longitudinal and transverse elements. It is possible to improve the 

characteristics of structural arrangement by using polymer composite 
materials based on glass and carbon fibers. This will improve the design 
characteristics due to high specific properties. In addition, one of the 
directions is the development of new bioinspired structural layout based on 
natural analogues. The work is devoted to the actual task of searching and 
choosing new structural arrangement for the aircraft tail. The paper 
considers five variants of structural layout, including the classical original 
design. The advantage of the bioinspired variant in terms of mass and 
displacement is shown.  

1 Introduction 

To develop a structural arrangement, it is necessary to take into account many factors [1-2]. 
A complex design problem is solved taking into account aerodynamics, stability, and 

strength [3]. The simultaneous consideration of a set of aggregate parameters is taken into 

account. The quantity, location, shape and material of the elements of the power circuit are 

selected [4-5]. Restrictions are also imposed by the methods of manufacturing parts. The 

development of additive technologies [6], in particular from polymer composite materials 

[7-8], makes it possible to manufacture products that were previously inaccessible [9]. Such 

structures include bioinspired structural arrangement based on natural analogs – the 

direction of installation, shape, quantity, orientation in space of power elements is similar to 

biological analogous objects, for example, insect wings [10]. In addition, the use of 

polymer composite materials [11-12] can significantly improve the specific characteristics 

of the part and the structure as a whole [13]. Structural arrangement with rectilinear load-

bearing elements, longitudinal and transverse directions of installation become possible to 
replace with new curvilinear schemes [14-15] and biosimilar structures [16]. Complex 
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layouts are created using parametric [17], topological optimization [18] methods and are 

made by 3D printing [19]. This makes it possible to reduce the weight of the product 

without loss in strength properties [20, 21]. The reinforcement schemes of the product, in 

turn, are adapted to the existing loads [22]. The developed structural layout with curvilinear 

bioinspired spars and ribs are optimized by various methods [23] for all possible loads in 

various flight modes [24]. Such layout can be used for a wide range of objects, such as 

wings, horizontal and vertical tail [25]. Methods for calculating and determining such 

structures are being developed [26]. Thus, it is logical to state that the use of fundamentally 

new structural layout to meet the ever-increasing requirements for polymer composite 

structures is an urgent task. 

2 Source data 

2.1 Subject of research 

The tail fin of the aircraft (Figure 1) with the parameters (Table 1) was considered as the 

object of study. 

Table 1. Main parameters of tail fin 

Parameter Value 

height 5,2 m 

root chord length 4 m 

end section chord 

length 
1,7 m 

sweep angle 40°; 

surface area 14,8 m2 

airfoil symmetric 

 

 

Fig. 1. The appearance of the tail fin 

The main structural materials are carbon fiber and fiberglass based on unidirectional 

tapes (Table 2). An aluminum alloy was also considered for comparison. 
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Table 2. Physical and mechanical characteristics of the materials 

Parameter Fiberglass Carbon  
Aluminiu

m 

Density, kg/m3 2000 1550 2700 

Elasticity modulus, GPa 
Along the fiber 37,2 50,6 

70 
Across the fiber 26,0 35,4 

Shear elasticity, GPa 21,7 29,7 27 

Tensile strength, MPa 
Along the fiber 352,6 483 

390 
Across the fiber 49,0 67,0 

Compressive strength, 

MPa 

Along the fiber 202 297 
390 

Across the fiber 78 107 

 

3 Loads on the structures 

The following loads were considered: 

- airload; 

- own weight of the unit and payload weight of 30 kg; 
- concentrated weight of rudder controls. 

The calculation of loads was carried out for a maneuver an aircraft at a speed of 218 m/s 

for a turn in an arc of 180 m, at an altitude of 6 km (turn). 

The calculation of the airload was carried out in the Ansys software package, in the 

CFX module, taking into account the flight parameters (speed, angle of attack) and 

atmosphere (Figure 2, 3). The calculations were carried out in a stationary mode with the 

accuracy of the solution 10-4. 

 

Fig. 2. Calculation model 
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Fig. 3. Distribution of aerodynamic pressure on the surface of the tail fin, Pa 

4 Structural layout of tail fin 

Five different structural arrangement of two types were designed and considered. 

As the initial design, a two-spar tail fin with twelve ribs located perpendicular to the 

front spar was considered (Figure 4). 

 

 

Fig. 4. The original structural layout of the tail fin 

Bioinspired structural layout are based on insect wings and honeycombs [27-29]. The 

main considered species were the wings of the Odonata, Hymenoptera, Anthophila, 

Coleoptera and Melolonthina, as well as honeycombs (Figure 5). 
 

a 

 

b 
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g 

 

h 

 
 

Fig. 5. Bioinspired structural layout (SL) of tail fin: (a) – Odonata wing; (b) – SLA based on Odonata; 
(с) – Anthophila wing; (d) – SL based on Anthophila; (e) – Melolonthina wing; (f) – SL based on 

Melolonthina; (g) – honeycomb;  

(h) – SL based on honeycomb; 

5 Calculation results 

For five variants of power circuits, the stress-strain state under the action of the load was 
determined. As a result, the mass, deformation, stresses in the structure were compared and 

analyzed. 
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The tensile strength of the material in all the considered structures is not exceeded. The 

safety factor is greater than 1.5, which indicates the possibility of further optimization of all 

schemes. An exception is the silt scheme based on honeycombs. Despite the smallest mass, 

the tensile strength is quite low and close to 1. This is due to the absence of a solid element 

along the entire span of the keel. 

Figure 6 shows the results of the distribution of options for two parameters (mass, 

deformation).  

 

Fig. 6. Variants distribution by mass and deformation in relative values from materials:  
♦ – aluminium,▲ – fiberglass, ● – carbon 

Show the distribution of options by groups. This is due to the density of materials. The 

closest to the ideal center are options and from carbon fiber. 

The optimal structural arrangement, from the obtained ones, can be determined both by 

introducing an additional parameter, for example, cost, and by choosing the shortest 
distance to the theoretical center (TC) according to the equation (1): 

 
   

1/2
2 2

2 2

TC i TC i

AM AM

m m d d
K

m d

  
  
  

 (1) 

where TCm , TCd — TC mass and deformation values, im , id — variant mass and 

deformation values, AMm , AMd  — arithmetic mean mass and deformation values. 

Of options 3.2 and 3.3 based on the wings of an Odonata and an Anthophila, 

respectively, the first one is closest to the TC. Its mass is 165.5 kg, which is two times less 

(53%) than the metal counterpart and 10% less than the carbon fiber keel. 

6 Conclusion 

The paper considers promising bioinspired variants of the structural arrangement of the tail 
fin, which make it possible to increase the specific design indicators. 

Curvilinear elements show better characteristics compared to straight ones in terms of 

achieving greater structural efficiency of the wing under the action of operational loads in 

various flight modes. 

It has been established that polymer composite bioinspired structural layout outperform 

classical metal structural layout by up to 50% by weight and can be further optimized. The 
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mass gain compared to the classical structural layout made of composite materials is about 

10%. 
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