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Abstract. Prime numbers are a special set of natural numbers that have 
captured the attention of mathematicians since ancient times. As prime 
numbers are a fundamental component in many areas of mathematics, they 
have naturally found wide applications in various fields of knowledge, 
such as cryptography. The goal of all researchers is to discover the 
distributional relationships within this infinite set of numbers or, at the 
very least, to create a mathematical model for predicting the next prime 
number in a diverging sequence. This article is dedicated to an attempt at 
solving this problem based on a deep learning model - Long Short-Term 

Memory (LSTM) neural network. 

1 Introduction  

Natural numbers that are different from one and have only two divisors - the number itself 
and one - are commonly referred to as prime numbers. The study of prime numbers dates 

back to ancient times, with the first mentions of them appearing as early as the Upper 

Paleolithic era [1]. 

However, despite the fact that scientists have been studying prime numbers for over five 

thousand years, it is important to note that a formula relating the numerical sequence and 

allowing the generation of the next prime number in the series has not yet been obtained. 

Given the fact that the sequence of prime numbers is infinite, the task of determining 

the next prime number in the sequence remains relevant and can be approached through 
two distinct methods: 

1. Deterministic primality tests: These tests aim to precisely determine whether a given 

number is prime or composite. By establishing the membership of a number in one of the 

two categories, these tests provide an exact result. 

2. Probabilistic primality tests: These tests estimate the probability of a number belonging 

to the prime number category and therefore cannot guarantee complete reliability. 

While the first category of tests allows for a definitive classification of numbers, it 

requires significant time and computational resources to execute the testing procedure. The 
second category reduces the time and computational requirements by providing a predictive 
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result at the cost of some reliability. To confirm or refute the prediction, an actual primality 

test must be performed in either case. 

The significant time investments required to compute the next prime number in an 

infinite sequence necessitate the development of a prediction algorithm that combines the 

speed of probabilistic primality tests with a level of reliability approaching that of 

deterministic primality tests. As one variation of such an approximation model, the authors 

of this article have devised a deep learning model based on the logic of Long Short-Term 

Memory (LSTM) neural networks. 

2 Materials and Methods 

The choice of Long Short-Term Memory (LSTM) models is not accidental but justified by 

a specific characteristic of the prime number sequence. To formalize this characteristic, a 

mathematical operation of taking the difference between each pair of adjacent elements in 

the numerical sequence should be performed. In other words, we obtain a sequence of 

differences between prime numbers that exhibits certain properties explicitly derived from 

the properties of the prime number sequence:  
1. The sequence of differences will be non-decreasing and composed of natural numbers; 

2. The sequence of differences is unbounded from above and bounded from below; 

3. The series of numbers will be infinite, indicating that the sequence itself is divergent. 

Having defined the properties of the data, we can now proceed to examine their 

peculiarities. Figure 1 illustrates a fragment of the prime number sequence. 

 

Fig. 1. Fragment of the prime number sequence 

Figure 2 depicts a fragment of the difference between adjacent elements in the first 

sequence. 
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Fig. 2. Fragment of the sequence of pairwise differences between prime numbers 

By comparing the figures, it can be observed that the second sequence contains repeated 
elements. Furthermore, all of these repetitions are even numbers (except for the first 

difference), and the frequency of occurrence of the difference repetitions can be calculated. 

The ranking of the differences was performed based on the increasing magnitude of the 

difference and computed for prime number values limited to the first million values (Figure 

3). 

 

Fig. 3. Distribution of frequencies of repeated differences for prime number values limited to the first 
million 

 

 

 

E3S Web of Conferences 413, 06009 (2023) https://doi.org/10.1051/e3sconf/202341306009
INTERAGROMASH 2023

3



The comparison of differences reveals an important characteristic in the data: values 

that are multiples of 6 exhibit a higher frequency of repetitions. 

To confirm this observation, let us consider the numerical sequence of differences 

between prime numbers based on the restriction of prime number series up to ten million 

values (Figure 4). If there is a change in the distribution trend, it will be reflected in the 

diagram itself. 

 

Fig. 4. The distribution of frequencies of repeated differences for prime numbers, limited to values 
exceeding ten million 

As evident from the provided diagram (Figure 4), when restricting the sequence of 

prime numbers to the first ten million values, a trend of the highest popularity of 

differences divisible by 6 is maintained. 

A similar distribution pattern is observed for differences between prime numbers up to 

one hundred million values (Figure 5). 

 

Fig. 5. The distribution of frequencies of repeated differences for prime numbers, limited to values 
exceeding one hundred million 
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This statement holds true for every "triplet" of difference values, thus playing a key role 

in deep learning models with a memory effect, with the long short-term memory (LSTM) 

neural network being a prominent example [2]. 

3 Results and discussion  

The task of predicting the next prime number in an infinite sequence can be reformulated as 

the problem of determining the next difference between the positions of adjacent prime 

numbers. By formulating the task in this way, the main idea is preserved: knowing the 
current prime number allows us to add the predicted difference to it, thus obtaining the next 

prime number. 

To implement a software solution, it is necessary to use a long short-term memory 

(LSTM) neural network. This is justified by the fact that the most frequently occurring 

differences, which are multiples of 6, can be more accurately predicted by a machine 

learning model if the algorithm learns the current distribution of these differences 

beforehand. 

Furthermore, the primary motivation behind LSTM networks is to remember the 
context of the information it explores for as long as possible. The network will have to 

"figure out" what context needs to be remembered on its own [2]. The overall configuration 

of the long short-term memory network is shown in Figure 6. 

 

Fig. 6. Generalized LSTM Architecture 

The presented structure (Figure 6) has an important feature necessary for solving the 

given task: at its core lies the forget gate (Figure 7), which autonomously determines which 
coordinates of the state vector need to be remembered [3]. 
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Fig. 7. The forget gate in the LSTM structure 

Furthermore, the input gate autonomously determines which weights in the model need 

to be updated (Figure 8). 

 

Fig. 8. The input gate in the LSTM architecture 

Another important element in the LSTM architecture is the new state, which is formed 

in the LSTM model as a composition of the old state, modified by the gate, and the vector 

of values for new weight "candidates" (Figure 9). 

 

Fig. 9. The new state gate in the LSTM structure 

The final element in the neural network structure is the output state gate (Figure 10). It 

allows for the formation of the output prediction, which represents the predicted difference 

between the current prime number and the next unknown prime number, located at the "+1" 

position relative to the considered number. 
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Fig. 10. The output state gate in the LSTM architecture 

The software implementation of the LSTM architecture (Figure 11) was based on 100 

training epochs. 

 

Fig. 11. Software implementation of the LSTM model for predicting the next difference between 
prime numbers in an infinite sequence 

The software algorithm allowed for accurate prediction of the next difference and 

determination of the prime number at the "+1" position relative to the considered number. 

For example, for the number "14081," the next prime number would be "14083," and thus, 

the difference between these numbers would be "2." The predictive model (Figure 12) 

yielded completely identical results. 
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Fig. 12. Correspondence of predictive results to the truth in the LSTM model for the next difference 
between prime numbers 

4 Conclusion 

From the obtained results of the machine learning model predictions, it can be concluded 
that determining the next difference between prime numbers is a solvable task from the 

perspective of approximation algorithms. 

In cases where an additional level of reliability is required, one can resort to verifying 

the predicted prime number using a primality test (factoring the number). This approach 

can increase the probability of classifying the predicted number as prime to unity (or reduce 

it to zero in the opposite case) and reduce the computational resources needed for 

exhaustive search through the entire sequence of natural numbers to find the next prime 

number. 
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