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Abstract. A key mechanism by which geophysical flows evolve is mass exchange with the underlying bed, 

either by entraining material from the bed, or by depositing material. Although it is known that some 

consequences of these mass exchange processes include changes in the volume, momentum and local 

rheology of the flow, the circumstances under which specific changes occur are not well-established. Given 

the enormous number of competing mechanisms present in geophysical flows, it is not surprising that the 

state of the art for modelling entrainment is essentially still empirical. In this study, we implement a 

Herschel-Bulkley (non-Newtonian) rheology into an existing open-source Smoothed Particle 

Hydrodynamics solver (DualSPHysics). This rheology can reasonably represent clay-rich flows, typical of 

those observed in the French Prealps. We hence undertake a highly-idealised, quantitative investigation of 

entrainment mechanisms for flows overriding non-fixed beds. For the beds, we vary the yield stress and the 

depth. Preliminary results reveal a rich variety of behaviours that can be obtained for different bed properties, 

including both acceleration and deceleration of the flow material. These mechanisms are reminiscent (but 

not identical) of observations from other studies where geo-materials were used.

1 Introduction 

There is an increasing risk due to geophysical flows 

across the globe, as a direct consequence of climate 

change, as well as a continued propensity for human 

developments in mountainous areas worldwide [1]. 

Ultimately, this means that engineers and scientists 

increasingly need to identify which areas are likely most 

at risk, and to develop countermeasures accordingly. 

 One key tool for doing so is explicit numerical 

modelling of potential flows, using approaches based on 

fluid mechanics. In general, numerical solvers 

implement expressions describing conservation of both 

mass and momentum, either using the full Navier-

Stokes equations, or the Saint-Venant (shallow 

water/depth-averaged) equations. Various constitutive 

models can then be implemented, for instance by 

modifying the stresses contributing to the resisting terms 

(e.g. the Voellmy model), or by including earth pressure 

coefficients for the pressure gradient terms [2, 3]. In 

principle, these models can predict both the trajectory of 

flows, as well as mass exchange mechanisms 

(entrainment and deposition) that are well-known to 

cause enormous changes in the flow volume [4-9].  

 Given that models based on the Saint-Venant 

equations run fastest – since they are depth-averaged, 

they are solving for one fewer dimension than the full 

Navier-Stokes equations – they are of high interest to 

practising engineers. Saint-Venant solvers can consider 

mass exchange between the flow and the underlying bed 

through the expression for the conservation of mass [2, 
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3, 10, 11]. Indeed, for a depth-averaged incompressible 

flow, we can write an expression for the conservation of 

mass that includes a term for mass exchange b. The sign 

of b distinguishes entrainment and deposition. 

 The crux of the matter rests on how we should be 

computing the term b. For earlier pioneering work using 

Saint-Venant solvers, b was set to have a constant value 

for the entire duration of flows [2, 10]. Whilst this was 

a fine starting point, solvers were essentially blind to the 

local underlying topography. More recently, the term b 

has been adapted to account for empirical entrainment 

relationships (see [12-14] for examples of such 

relationships, and [15] for an implementation). 

Although this represents a logical extension of earlier 

works, empirical relationships tend to be site-specific, 

and in any case rely on the availability of statistically-

significant and well-characterised datasets. It is worth 

noting that in principle, it should be possible to derive 

an expression for b from the rheologies of the flow and 

the bed, thus circumventing the need for ad-hoc 

relations. Nonetheless, such expressions for b would 

require evaluation against experimental or 

computational data for mass-exchange processes (the 

latter being explored in this Extended Abstract). 

 It is also worth noting that up until relatively 

recently, depth-averaged solvers have not accounted for 

the effects of mass exchange on expressions for 

conservation of momentum. This, as well as the state of 

the art for mass-exchange problems continuing to rely 

on empirical relationships, belies a fundamental lack of 

understanding of mass-exchange mechanisms. 
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 Authors such as Hu et al. [16], Song & Choi [17] 

and Bates & Ancey [18] have done sterling work to 

study mechanisms of entrainment using small-scale 

flume apparatus. In particular, [18] used Carbopol, 

which can be modelled using a Herschel-Bulkley (non-

Newtonian) rheology, to model both flows and non-

fixed beds. Non-Newtonian rheologies constitute a 

reasonable simplification of clay-rich flows and 

advantageously comprise relatively few parameters.  

Bates & Ancey studied a range of bed depths and 

lengths, and hence evaluated newly-proposed equations 

describing the evolution of both the flow and the bed.  

 In this study, we use results from Bates & Ancey 

[18] to evaluate a Smoothed Particle Hydrodynamics 

(SPH) model, into which we implemented a regularised 

Herschel-Bulkley rheology. The SPH model that we 

used solves the full 2D Navier-Stokes equations. We 

then perform a broad parametric study on the rheo-

logical parameters of the bed (including the yield stress), 

as well as the depth of the bed, thus extending the work 

of Bates & Ancey. The objectives of the parametric 

study are (i) to delineate regimes for different behaviour, 

and hence (ii) to provide a basis for developing/ 

evaluating physically-based expressions for b. 

2 Numerical model 

2.1 Rheological model 

We used a Herschel-Bulkley model [19], to match the 

rheology of the Carbopol used by Bates & Ancey [18]. 

In tensor form, the shear stresses τ can be written as: 

𝛾̇ = 0                               if |𝜏| < 𝜏0

𝜏 = (
𝜏0

|𝛾̇|
+ 𝑘|𝛾̇|𝑛−1) 𝛾̇ if |𝜏| ≥ 𝜏0

} (1) 

where τ0 is the yield stress [Pa];  k is the consistency 

[Pa⋅sn], 𝛾̇ is the shear rate [s-1], and n represents the flow 

index [-]. Eqn. (1) represents a viscoplastic material – 

below the τ0, the material behaves as though it is a rigid 

solid (i.e. “infinitely” viscous), and above τ0, viscous 

flow can occur. Note that below τ0, the equation is 

indeterminate, and specific techniques are needed to 

produce a solution. Furthermore, note that values of 

n < 1 correspond to shear-thinning liquids.  

For the flow, we set τ0 = 58 Pa, k = 35 Pa⋅sn and 

n = 0.33 to match the parameters used in [18]. For the 

bed, we used the same values of k and n, but varied τ0 in 

the range 10 < τ0 < 1000 Pa, covering beds initially near 

the solid-fluid transition, to those which are rigid.  

2.2 Numerical solver 

We use a weakly-compressible Smoothed Particle 

Hydrodynamics (SPH) solver [20], given its ability for 

dealing efficiently and intuitively with (i) large 

deformations and (ii) interactions between multiple 

phases. We specifically adopted the GPU-parallelised 

open-source SPH solver DualSPHysics [21].  

The main underlying equations for the SPH are the 

Navier-Stokes equations. For our case, conservation of 

mass and momentum can be expressed as: 

𝜕𝜌

𝜕𝑡
= −𝜌∇ ∙ 𝑈 

𝜕𝑈

𝜕𝑡
=

1

𝜌
(−∇𝑃 + ∇ ∙ τ) + 𝑔 

 

(2) 

 

(3) 

where ρ is density, P is pressure, τ is the extra-stress  

tensor and g is acceleration due to gravity.  

To implement the Herschel-Bulkley rheology, we 

used the well-established technique of regularisation 

[22], wherein we compute an equivalent viscosity µeff 

which can be capped arbitrarily at a threshold µmax. (We 

set µmax = 10 kPa, following a sensitivity study.) The 

expression for the rheology can thus be re-cast as: 
𝜇eff = 𝜇max                if 𝜇eff ≥ 𝜇max

𝜇eff =
𝜏0

|𝛾̇|
+ 𝑘|𝛾̇|𝑛−1 if 𝜇eff < 𝜇max

} (4) 

The advantages of this approach are twofold: it 

means that µeff is determinate everywhere, and the 

minimum timestep required to solve the simulation can 

be limited (since the timestep is inversely related to 

viscosity terms). However, a limitation of the approach 

is that true unyielded zones cannot be resolved. In other 

words, even material where µeff = µmax can continuously 

yield. The rate of this yielding is determined by µmax, 

and should ideally be as low as possible, to approximate 

“true” unyielded material.  

2.3 Numerical setup 

The numerical setup for our study is modelled on 

that of [18]. The dam-break technique was used, 

wherein material is placed initially in the storage area at 

the top of the flume. A non-fixed bed was included at a 

certain distance downstream from the gate. For all of the 

simulations presented in this Extended Abstract, the 

length of the bed was set at a constant 300 mm.  

The simulations were split up into two distinct 

simulations: (i) dam-break; and (ii) mass exchange 

between the flow and the bed. The single simulation for 

dam-break was recycled for all of the mass-exchange 

simulations. This approach had two advantages: it 

greatly reduced the amount of time required for each 

simulation, and it also reduced the chances of numerical 

instabilities manifesting. 

Fig. 1a shows the starting condition for the dam-

break simulation. We stopped this simulation before the 

flow material reached the non-fixed bed. Each of the 

mass-exchange simulations started by regenerating the 

flow material according to the flow bounds, as well as 

its bulk velocity (see Fig. 1b).  

 The density of the flow material was set at 1000 

kg/m3, but this value could vary slightly given that we 

were using a slightly-compressible formulation. The 

channel inclination was fixed at 20°. 

2.4 Boundary conditions 

The conditions for the fixed boundaries were tricky to 

implement, as non-Newtonian flows feature an approx-

imate no-slip condition at the base, particularly as the 

flows undergo creeping motion. To approximate a no-

slip condition, approximating the ‘stickiness’ between 

the flowing boundary layer and the rigid boundary, we 
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Fig. 1. Numerical setup: (a) shows the initial setup for the 

very first (dam-break) simulation; (b) shows qualitatively 

how the flow was frozen just before reaching the non-fixed 

bed, so as to enable mass-exchange simulations to be 

undertaken with varying rheological parameters for the bed.  

generated the boundaries using several layers of SPH 

material points, and ascribed a very high yield stress to 

them (with τ0 of around 1000 Pa, determined from a 

sensitivity study). This method is not ideal, because the 

timestep for the simulations then becomes governed by 

the boundaries. However, at the time of undertaking the 

simulations, we were not aware of alternative/more 

efficient numerical methods for simulating a no-slip 

condition within DualSPHysics. 

3 Preliminary results 

Figs. 2 to 4 show the kinematics of flows on a variety of 

beds. Each screenshot shows the flow highlighted by (i) 

the different phases and (ii) the local velocity. Snapshots 

at t = 2 and t = 8 s are shown for each case.  

 Fig. 2 shows a flow on a ‘fixed’ bed, i.e. where the 

yield stress of the bed was set to be around 1 kPa. The 

velocity of the flow does not change substantially from 

when the flow front arrives at t = 2 s, compared to further 

on at t = 8 s. The velocity stays around 4 cm/s.  

Fig. 3 shows a flow with identical starting conditions 

to the one in Fig. 2. This time, the flow is passing over 

a bed with a yield stress τ0 equal to that of the flow. At 

t = 2 s, just after the flow has arrived on the bed, it can 

already be seen that some deceleration is taking place, 

with the frontal moving at under 3 cm/s. Further 

deceleration is apparent at t = 8 s, with the plug moving 

at less than 2 cm/s. Notably, the screenshot at t = 8 s 

seems to show the material originally from the bed being 

pushed and behaving as a mobile dam. 

Fig. 4 shows another flow, this time passing over a 

bed where the yield stress has been set low enough that 

it is on the point of yielding under its own weight. In 

other words: 
𝜏0

𝜌𝑔ℎ sin 𝜃
≈ 1 (5) 

Here we see that the initial velocity remains at or 

near 4 cm/s at t = 2 s. At t = 8 s, we see that the flow has 

 

 
Fig. 2. Snapshots of a flow on a fixed bed.   

 

 

 

 
Fig. 3. Snapshots of a flow on a bed with depth 6 mm and 

yield stress of 58 Pa (i.e. the same as the flow). 

 

already reached the far end of the numerical domain 

(with a velocity that is in excess of 4 cm/s). There is a 

“lubrication” effect caused by the underlying bed having 

a low yield stress (see also [23]). The arrival of the flow 

kick-starts it; the rheology being shear-thinning, it 

means that the bed can then start to flow very rapidly, 

even though it was initially at rest. This layer of material 

with a low yield stress enables the flow material to lose 

less energy, as compared to interfacing directly with the 

no-slip base (see Fig. 2). 

Fig. 5 summarises the link between the bed yield 

stress  and the “flow reach”. The “flow reach” is defined 

as the frontmost point of the material that originally 

constituted the flow (i.e. material belonging originally 

to the bed is always ignored). Data for a single timestep 

is shown, i.e. t = 7.5 s. The grey region corresponds to 

the mobile bed. The non-linearity of the mass-exchange 

processes is revealed even by the very simple metric of 
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Fig. 4. Snapshots of a flow on bed with depth 6 mm and yield 

stress of 18 Pa (i.e. almost yielding under its own weight). 

 

 
Fig. 5. Position of the flow (as defined by phase) for a variety 

of bed depths and bed yield stresses.  

 

 “flow reach”: at the low end of τ0 for the bed, the flow 

is almost at the end of the bed, due to the aforementioned 

lubrication effect; the flow reach is minimum for around 

τ0 = 80 Pa, due to the strong transfer of momentum into 

the bed for this value; and the flow reach starts to 

increase again for higher values of τ0, since 

progressively less momentum is being lost into the bed. 

A similar trend is shown for all of the bed depths plotted; 

this is reminiscent of (but not identical to) findings from 

[17], albeit where unsaturated geo-materials were used. 

Other types of non-linearity are present as well. 

Specifically, the minimum flow reach on the deeper 

beds (D = 18 or 30 mm) is less than the shallower beds 

(D = 6 or 12 mm). This is related to the distance that the 

flow material is able to fall on the deeper beds, which is 

a function of both the yield stress and depth of the bed.  

4 Conclusions 

In this study, we implemented a regularised Herschel-

Bulkley model into the open-source SPH solver 

DualSPHysics. We showed results for flows overriding 

mobile  beds, wherein various types of mass-exchange 

processes were observed. Several regimes are possible, 

even for highly idealised flows and beds. Future work is 

needed to to convert the phenomena identified in this 

study into quantitative relationships that can be 

implemented into depth-averaged solvers.  
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