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Abstract. This study used an inventory of debris flow triggered by a storm event in Colorado Front Range 
as an example to compare the capability of data-driven and physics-based approaches for regional-scale 
debris flow susceptibility mapping (LSM). Nine debris flow contributing factors were collected for the 
present study based on the availability of geophysical data in the study area. These contributing factors 
represent hillslope geometries, surface hydrology, and soil conditions. For the physics-based approach, the 
infinite slope model was used to directly determine the debris flow susceptibility for the study area by 
calculating the factor of safety (FS) based on parameters derived from geophysical data. For the data-driven 
approach, an artificial neural network (ANN) was developed to predict debris flow susceptibility for the 
study area by learning relationships from the contributing factors using the debris flow inventory. The results 
showed that both physics-based and data-driven models predicted debris flow susceptibility in the study area 
with relatively high accuracy; the data-driven approach outperformed the physics-based approach as it could 
extract complex features which the physics-based approach did not consider. 

1 Introduction 

Debris flows are common natural disasters around the 
globe. Understanding where these landslide hazards are 
likely to occur is essential for hazard mitigation and 
provides situational awareness for the public. 

Landslide susceptibility mapping (LSM) measures 
the spatial distribution of landslide risk given a 
combination of contributing factors [1]. Methods for 
LSM can be broadly classified into physics-based and 
data-driven methods. The physics-based methods rely 
on the physics understanding of slope failure in soil 
mechanics. For example, the infinite slope model has 
been widely used to evaluate landslide risk for rainfall-
induced shallow landslides on natural terrain (e.g., [2-
4]). However, accurate input parameters for physics-
based approaches, such as soil strength and hydrological 
parameters, are relatively difficult to obtain on a 
regional scale. In addition, the performance of physics-
based approaches may be limited due to simplified 
physical assumptions. On the other hand, data-driven 
approaches establish functional relationships between 
landslide risk and contributing factors based on 
observations of landslide occurrence (e.g., [5-8]). The 
research community has been currently focusing on 
data-driven methods due to the recent advances in 
remote sensing and machine learning (ML) techniques 
[9]. 

 In the present study, LSM was conducted for a 
debris flow-affected region in Colorado Front Range 
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using both physics-based and data-driven approaches. 
The debris flow inventory and study area are first 
described in the following sections, followed by 
descriptions of the debris flow contributing factors and 
methodologies. Last, the performance of developed 
LSM models using the two approaches was evaluated 
and compared, and debris flow susceptibility maps for 
the study area were produced. 

2 Study area and debris flow inventory 

The Colorado Front Range is a mountain range of the 
Southern Rocky Mountains of North America located in 
the central portion of the State of Colorado. It is formed 
by orogenic uplift related to regional compression 
during the Laramide orogeny in the Late Cretaceous to 
early Tertiary [10]. The Colorado Front Range has a 
broad elevation variation ranging between 1,500 m and 
4,300 m; it spans four major topographic elements and 
five ecosystem zones [11, 12]. The vegetation density, 
soil development, and regolith production are dependent 
on the slope aspect [13]. Boulder County in the 
Colorado Front Range area was selected as the study 
area, where 60% of the mapped debris flows were 
located in this County.  

The present study used a well-documented debris 
flow inventory to develop and evaluate the performance 
of LSM models. A storm event in September 2013 
triggered more than one thousand debrie flows across 
the Colorado Front Range. Detailed information for 
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these debris flows was recorded based on a 
reconnaissance through field survey and high-resolution 
orthorectified satellite imagery following the storm 
event. Specifically, 1,138 debris flows and 212 slides 
were identified and mapped [12]. Fig. 1 presents the 
location of Boulder County and the distribution of 
mapped debris flow locations.  

Fig. 1. Location of Boulder County and distribution of debris 
flow events triggered by the 2013 storm event. 

3 Collection of geophysical data 

In the present study, nine debris flow contributing 
factors were chosen based on the data availability and 
types of debris flow that occurred in the study area, 
including elevation, slope, aspect, topographic wetness 
index (TWI), normalized difference vegetation index 
(NDVI), sand content, clay content, bulk density, and 
field capacity. These contributing factors reflect the 
effects of hillslope geometries, hydrologic conditions, 
and soil properties. Fig. 2 shows a contour plot of these 
contributing factors in the study area. 

 

Fig. 2. Debris flow contributing factors for the study area: (a) 
elevation (m); (b) slope (deg); (c) aspect (deg); (d) TWI (-); (e) 
NDVI (-); (f) sand content (%); (g) clay content (%); (h) bulk 
density (10 kg/m3); and (i) field capacity (%). 
 

Among these contributing factors, the elevation is 
based on the digital elevation model (DEM) provided by 
the 3D Elevation Program (3DEP) with 10-m spatial 
resolution. The slope and aspect were calculated from 
the DEM, representing the slope geometries and facing 
directions. The TWI was also calculated from the DEM 
to represent topographic control on surface hydrology. 
The NDVI was calculated based on near-infrared and 
red bands from Landsat-8 satellite images and was used 
to represent vegetation coverage. The soil information 
was obtained from SoilGrids [14], which provides a 

global estimation of surface soil properties based on soil 
profiles and remote sensing data with a spatial resolution 
of 250 m. Fig. 2 shows a contour plot of these 
contributing factors in the study area. 

4 Methodologies 

The development of LSM models for the present study 
involves several key steps, including dataset 
preparation, LSM model development and evaluation, 
and generation of final landslide susceptibility map. Fig. 
3 illustrates the workflow for the present study. 

Fig. 3. Workflow for the present study. 

4.1 Dataset preparation 

For the present study, 803 mapped debris flow locations 
in the study area and their corresponded values of debris 
flow contributing factors were used as positive samples. 
An equal amount of non-debris flow locations were 
randomly sampled within the study area, excluding 
those debris flow locations. These non-debris flow 
points and their corresponding values of contributing 
factors were used as negative samples. 

4.2 Physics-based model 

The infinite slope model was selected as the physics-
based model for the present study, which is commonly 
used for predicting shallow landslides such as the debris 
flows in this study. The factor of safety (FS) is 
calculated as the ratio between the soil shear strength 
and the driving force: 
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where h is the height of the groundwater table; H is the 
soil layer thickness;  is the soil unit weight; w  is the 

unit weight of water; β is the slope angle; and   and c 
are the soil friction angle and cohesion, respectively. For 
simplicity, submerged slopes with seepage parallel to 
the slope were assumed when calculating FS (i.e., 
h H ). The input parameters for the infinite slope 
model were estimated based on the debris flow 
contributing factors. For example, β is based on the 
slope from DEM. H is estimated based on an elevation-
dependent relationship as [15]: 
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where H and Z are the local soil layer thickness and 
elevation, respectively; Hmin and Zmin are the minimum 
soil layer thickness and elevation, respectively; Hmax and 
Zmax are the maximum soil layer thickness and elevation, 
respectively. For the present study, min 5 cmH  and 

max 2 mH  .   is estimated using sand content and an 

empirical relationship from [16]. For estimating c, the 
soil itself is cohesionless [17]; however, root 
reinforcement in slope stability was considered. The 
values of c were obtained by applying a linear 
transformation to the full spectrum values of NDVI [18] 
by setting the minimum cohesion of value 0.0 kPa and 
the maximum at 15.0 kPa. 

4.3 Data-driven model 

From the data science perspective, the application of 
LSM can be considered a classification problem where 
features of debris flow contributing factors are extracted 
and grouped based on their relationships and 
contributions to the debris flow label. For the present 
study, an artificial neural network (ANN) with three 
hidden layers was used to represent a data-driven model, 
which is a commonly used model in ML. 

4.4 Performance evaluations 

The present study used the 5-fold cross-validation 
technique [19] for model performance evaluation, 
corresponding to an 80%/20% sample split. In cross-
validation, the dataset is divided into five folds, and the 
model is trained using four folds and validated using the 
remaining one fold. This process repeats five times to 
allow each fold to be served as a validation fold, and the 
final model performance is the average model 
performance for each validation fold. 

The performance of classification models is 
typically evaluated based on the confusion matrix and 
receiver operating characteristic (ROC) curve. The ROC 
curve is a 2D plot of false positive rate (FPR) vs. true 
positive rate (TPR) for all classification thresholds. The 
FPR and TPR can be calculated as: 
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The area under the ROC curve (AUC) can be 

calculated based on the ROC curve, which is often used 
as a single-value evaluation for classification models. It 
measures the model’s capability to distinguish two 
classes. The AUC score was used as the performance 
indicator for the present study. 

5 Results and discussion 

Table 1 presents the AUC scores for the infinite slope 
and the ANN models based on the same five-fold cross-
validation procedure. Typically, a classification model 
with AUC scores greater than 0.9 can be considered an 
excellent classifier. As shown in Table 1, both the 
infinite slope model and the ANN model achieved 
relatively high AUC scores, indicating that the two 
approaches can be successfully applied to predict the 
debris flow susceptibility in the study area. In addition, 
the ANN model yielded a higher AUC score than the 
infinite slope model, which can be attributed to the fact 
that the ANN model was able to directly extract complex 
features from data based on debris flow labels, including 
those hidden features the physics-based model fails to 
consider. 

Table 1. Cross-validation results for LSM models 

Models Avg. AUC 
Infinite slope model 0.894 
ANN model 0.930 

 
Furthermore, the developed LSM models based on 

the two approaches were subsequently used to predict 
debris flow risk for the study area. Figs. 4 and 5 present 
the debris flow susceptibility maps using the two 
approaches, where mapped debris flow locations are 
shown as black triangles. By comparing Figs. 4 and 5, it 
can be noted that the high debris flow risk areas 
predicted by both approaches generally agreed well with 
the mapped debris flow locations, and the areas with 
high susceptibility but were not mapped by the 
reconnaissance following the 2013 event can be 
considered debris flow-prone areas. In addition, it can 
be noted that the ANN model tends to over-estimate 
debris flow risks compared to the infinite slope model, 
especially in the west part of the study area, which can 
also attribute to the hidden features extracted by the 
ANN model. Additional study is recommended to 
investigate the generalization capabilities of data-driven 
models on LSM. 

 

 
Fig. 4. Debris flow susceptibility map for the study area based 
on the infinite slope model. 
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Fig. 5. Debris flow susceptibility map for the study area based 
on the ANN model. 

6 Conclusion 

Through a case study on debris flows triggered by a 
storm event in Colorado Front Range, this study 
compares the capabilities of physics-based and data-
driven approaches for LSM on a regional scale. Based 
on the cross-validation results, both approaches can be 
successfully used to predict debris flow risks across the 
study area with appropriately selected debris flow 
contributing factors, and the data-driven approach was 
able to outperform the physics-based approach in terms 
of the AUC score. However, it should be noted that the 
successful application of data-driven approaches 
requires high-quality debris flow inventory with a 
sufficient amount of debris flow records, which may not 
be available in certain applications. On the other hand, 
using domain knowledge, physics-based approaches can 
provide debris flow risk estimates in a label-free 
fashion. 
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