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Abstract. We evaluated the ability of three debris-flow runout models (RAMMS, FLO2D and D-Claw) to 
predict the number of damaged buildings in simulations of the 9 January 2019 Montecito, California, debris-
flow event. Observations of building damage after the event were combined with OpenStreetMap building 
footprints to construct a database of all potentially impacted buildings. At the estimated event volume, all 
models overpredict the number of damaged buildings by a factor of 1.5–3. 

1 Introduction 
Debris flows pose a hazard to buildings located within 
the extent of inundated area [1]. The force exerted by a 
debris flow on a structure can result in damage ranging 
from slight (e.g., failure of non-load bearing 
components) to complete destruction (e.g., substantial 
structural damage, removed from foundation). A 
reliable method for forecasting building damage in an 
anticipated debris-flow runout zone would be useful for 
decision making activities such as evacuation planning.  

A fragility function provides the link between hazard 
intensity and the corresponding likelihood of damage. 
Hazard intensity refers to a physical characteristic of the 
hazard that can reliably predict the likelihood of 
damage, such as debris-flow depth [2], the ratio of 
debris-flow depth to building height [3], and the product 
of debris-flow depth and velocity squared [1].  

Presuming a reliable method to forecast hazard 
intensity, a fragility function may be used to provide a 
vulnerability assessment of one or more buildings. 
Accordingly, forensic evaluation of past events in which 
a group of buildings experienced damage provides an 
opportunity to evaluate the coupling of fragility 
functions to models used to forecast hazard intensity.  

We evaluated the ability of three runout models to 
predict building damage by coupling the output of each 
runout model to a previously defined fragility function. 
We were interested in the sensitivity of predicted 
building damage to runout model choice, event volume, 
and flow mobility. Consequently, we used runout model 
simulations initialized with a range of event volumes 
and mobility values. Because our results document the 
relative role of runout model, event volume, and flow 
mobility on predicting building damage, they inform 
which areas of study may be most fruitful for reducing 
uncertainty in forecasts of building damage.  

Our study was done in the context of the 9 January 
2018 Montecito, California, debris-flow event (hereafter 
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“Montecito event”) [4–6]. This event occurred after 
intense rain (5-minute intensity of 157 mm/hr) fell on 
the recently burned Santa Ynez Mountains. The event 
mobilized sediment from hillslopes and channels [7,8] 
into a boulder-laden slurry that ran out onto a ~4 km-
wide coalesced alluvial fan located between the Santa 
Ynez Mountains and the Pacific Ocean. The debris-flow 
runout inundated a combined area of 2.6 km2 and 
resulted in 23 fatalities, at least 167 injuries, and many 
damaged homes [4–6]. 

2 Methods and Data 
Fragility functions were fit by Kean et al. [4] for wood-
framed buildings using observed debris-flow depth, 
inferred momentum flux, and observed damage. For 
simplicity, and because it is most directly related to the 
observational data, here we only evaluated back-
calculated building damage based on maximum 
simulated debris-flow depth. For each of the simulations 
presented in Barnhart et al. [9], we extracted the 
maximum simulated debris-flow depth at every 
considered building and classified the building into a 
predicted damage state. Use of maximum simulated 
debris-flow depth as our measure of hazard intensity 
assumes that instantaneous depth is a reliable measure 
of the depth effective for damaging buildings. We 
evaluated model validity using the frequency bias, a 
standard metric in binary classification that is calculated 
as the ratio of the number of buildings with predicted 
damage and the number of buildings with observed 
damage. The frequency bias was chosen as an 
evaluation metric because it evaluates whether the 
correct number of damaged buildings was forecast.  
 Our analysis required a dataset of buildings, 
established fragility functions, and simulation results. 
Additionally, we interpreted the results in the context of 
estimated event size. 
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2.1  Building dataset 

After the event, building inspectors produced a database 
of damaged homes that was published by the U.S. 
Geological Survey [10]. For this event, the California 
Department of Forestry and Fire Protection (CAL FIRE) 
building inspectors classified impacted buildings into 
four ordinal damage state categories: 1%–9% damaged, 
10%–25% damaged, 51%–75% damaged, and 
destroyed. We supplemented this database with the 
location of all buildings in the considered simulation 
domains from OpenStreetMap (OSM, 
https://www.openstreetmap.org/, database accessed 
November 12, 2021) (Fig. 1). We de-duplicated the 
building dataset by removing OSM-sourced buildings 
with building footprints that overlapped with a building 
in the CAL FIRE dataset. The OSM-sourced buildings 
were categorized as unimpacted, yielding a total of five 
building damage categories. The final building dataset 
contained 4002 unimpacted buildings, 127 buildings 
with 1%–9% damage, 126 buildings with 10%–25% 
damage, 114 with buildings 51%–75% damage, and 162 
destroyed buildings.  

2.2 Fragility functions 

Kean et al. [4] estimated the flow depth (ℎ, meters) at 
each damaged building within the CAL FIRE building 
damage dataset and fit a set of fragility functions for 
wood-framed buildings. These fragility functions have 
the form: 

               𝑃!(ℎ) = Φ '	 "
#!
ln	 +$

$%&&&
,-  (1) 

Where 𝑃! is the probability of reaching or exceeding 
damage state 𝑖, Φ is the standard normal cumulative 
distribution function, 𝛽! is a parameter indicating the 
uncertainty in the fragility function and was fit based on 
observation data, and ℎ%0  is the median observed debris-
flow depth in damage state 𝑖. Kean et al. [4] report 
fragility functions for both ℎ and momentum flux.  

We classify the value of simulated maximum debris-
flow depth at each building into predicted damage states 
by choosing the most probable damage state for a given 
debris-flow depth (Fig. 2). The values of ℎ%0  and 𝛽! fit 
from the Montecito event result in classification into 
only four categories: unimpacted, 1–9% damaged, 51–
75% damaged, and destroyed. This occurs because there 
is no value of ℎ for which the probability of 10–25% 
damage is the largest.  

2.3 Simulated flow depth 

We used simulation results from a prior study [9] that 
evaluated three different runout models (RAMMS [11], 
FLO2D [12], and D-Claw [13,14]) across three different 
domains of the Montecito event runout paths 

 
Fig. 1. Map of building damage incurred during the 9 January 2018, Montecito debris-flow event. All buildings from the California 
Department of Forestry and Fire Protection (CAL FIRE) database and OpenStreetMap located within the simulation domains are 
depicted as dots with color indicating damage state.  

 
Fig. 2. Probability of damage state as a function of inundation 
depth, ℎ. The 1–9% damage category is most probable for 
depths between 0.31 and 0.34 m (inset). 
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(Montecito, San Ysidro, and Romero domains depicted 
in Fig. 1). In the prior study, the authors used a Latin 
hypercube sampling study to simulate debris-flow 
runout at Montecito under a range of debris-flow 
volumes,	𝑉 (m3), and material properties. Each model 
uses a different set of governing equations and, thus, a 
different set of inputs that describe the mobility of 

debris-flow material. For a given model and domain, the 
number of simulations was determined as 100× the 
number of model free parameters, 𝑁',  (𝑁' = 3, 5, and 
4 for RAMMS, FLO2D, and D-Claw, respectively, as 
described by Barnhart et al. [9]). For each simulation, 
the maximum debris-flow depth was recorded at each 
grid cell (5-m cell sides).  

2.4 Observed event size and uncertainty 

Prior work estimated the total amount of sediment 
deposited in the event [4], eroded from the hillslopes [7], 
and eroded from the channels [8]. Barnhart et al. [9] 
combined the sediment volumes upstream from the 
three domains with an estimate of water volume based 
on rainfall-runoff analysis to produce an estimate of 
total event volumes for each domain: 531,000 m3 
(log10(V) = 5.73) for Montecito,  522,000 m3 (log10(V) = 
5.73) for San Ysidro, and 332,000 m3 (log10(V)=5.52) 
for Romero. Barnhart et al. [9] considered an arbitrary 
factor of two uncertainty estimate for the event volume 
(50%–200%). Because more recent work estimating the 
erosion from hillslopes and channels matches well with 
the estimates of deposit volume, here we consider a 
smaller, though still arbitrary, uncertainty range of 
70%–130% on event volume (depicted in Fig. 3). 

3 Results 
Our analysis results in a relation between frequency bias 
and simulated volume for each model and domain (Fig. 
3). The frequency bias is the ratio of the number of 
predicted and observed damaged buildings. Thus, the 
frequency bias reflects how well simulations are able to 
forecast the number of damaged buildings. It is equal to 
1.0 when the observed and predicted number of 
damaged buildings is the same; a value less than 1.0 
occurs when the predicted number of damaged buildings 
is smaller than observed; and a value greater than 1.0 
occurs when the predicted number of buildings is greater 
than observed.  
 For ease of interpreting the relative influence of 
runout model and event volume on performance, we 
calculated the conditional mean of the frequency bias as 
a function of volume—that is, for each site and model, 
we calculated the running mean as a function of the flow 
volume using a LOESS fit. Frequency bias increases 
with increasing volume for all models and all domains, 
reflecting a higher number of damaged buildings for 
larger event volumes. The relation between frequency 
bias and volume varies depending on model and 
domain. Models are in closer agreement, except at the 
highest volumes, in the Montecito domain. Models have 
the least agreement for the San Ysidro domain. Scatter 
is considerable in the frequency bias predicted at most 
volumes, and this scatter reflects simulations with 
similar volumes but different flow mobility input 
parameters. Scatter is generally higher for larger 
volumes. 

At the event volume estimated for each domain 
(vertical dashed line in Fig. 3), the local mean of the 
frequency bias is larger than 1.0 for all models and all 

 
Fig. 3. Frequency bias as a function of the log10 of volume, 𝑉. 
Rows indicate different model domains, and color indicates 
model used. The vertical dashed line indicates the estimate of 
observed volume for that domain [9], and the horizontal solid 
line indicates a value of frequency bias equal to 1, or perfect 
prediction. Gray vertical rectangles depict an arbitrary 70%–
130% range. Each simulation is depicted as a dot and the solid 
line reflects the conditional mean for each model. 
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domains (Table 1). For each domain, D-Claw has the 
lowest frequency bias at most volumes. Above ~106 m3, 
RAMMS has the lowest frequency bias. For the 
Montecito domain, all models produce a frequency bias 
of 1.0 when the simulated volume is on the lower end of 
the event size uncertainty range. The simulated volume 
needed to produce a frequency bias of 1.0 ranges from 
30%–76% of the estimated volume (Table 2).  

4 Discussion and conclusions 
At the estimated event volume, all models overpredict 
the number of damaged buildings by 1.5–3. This result 
indicates that even if the volume of the event had been 
known in advance, use of a runout model and debris-
flow depth-based fragility functions would have 
overestimated the total number of damaged buildings.  

The fragility functions indicate a 0.32-m maximum 
flow depth for the transition between an undamaged and 
damaged wood frame buildings (Fig. 2). For events 
impacting building types with different strength 
properties than wood-framed construction, the relevant 
flow depth threshold may be different.  

Coupling the runout models with the fragility 
functions and evaluating model performance based on 
the number of damaged buildings is essentially a test of 
whether the runout model can correctly predict the aerial 
extent impacted by depths thicker this threshold. 
However, many runout models struggle to reliably 
simulate the extent impacted by flows in this depth 
range—likely because of the absence of a mechanism to 
create levees. A standard practice to address the 
overprediction of debris-flow extent is to use a threshold 
ranging between 0.1 and 0.5 m to extract debris-flow 
extent from simulated maximum flow depth [9,15,16]. 
The similar magnitude of the fragility function threshold 
(0.3 m) and the threshold commonly used to interpret 
debris-flow extent from simulated maximum flow depth 
indicates that improving representation of flow edges in 
runout models may have the largest effect on improving 
building damage forecasts.  

Pre-event estimates of post-fire debris-flow volume 
are themselves uncertain [17]. The best-studied relation 
between rainfall intensity and mobilized debris-flow 
sediment comes from southern California and caries an 
order of magnitude prediction uncertainty range. 
Interpretation of pre-event vulnerability assessment for 
building damage consequently must reflect the 
uncertainty in forecast rainfall, debris-flow runout 
conditional on rainfall, and building damage conditional 
on runout.   

In the context of post-fire debris flows, where 
evacuation fatigue is a concern (residents in areas 
susceptible to post-fire debris flows may have only 

recently returned to their homes after evacuation during 
a fire), downsides to overprediction of building damage 
may be substantial. Discussion and communication with 
the local emergency management community may 
elucidate whether a 1.5–3 estimate is usable or if more 
accurate forecasts of building damage are needed.  

Any use of trade, firm, or product names is for 
descriptive purposes only and does not imply 
endorsement by the U.S. Government. Comments from 
Jacob Woodard, Kishor Jaiswal, Rex Baum, Brian 
Shiro, Janet Carter, and two anonymous reviewers 
improved the content and clarity of the manuscript. 
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Table 2. Proportion of observed volume required to produce a 
frequency bias of 1.0. 

 Montecito San Ysidro Romero 
RAMMS 0.54 0.30 0.43 
FLO2D 0.55 0.35 0.55 
D-Claw 0.76 0.57 0.64 

 

Table 1. Conditional mean of frequency bias for each model 
and domain at the observed event volume. 

 Montecito San Ysidro Romero 

RAMMS 1.5 2.4 2.6 
FLO2D 1.6 2.7 2.4 
D-Claw 1.4 1.9 2.0 
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