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Abstract. During the last three decades, a significant amount of research has been directed to 

developing predictive tools for assessing the stability of the Castlegate Sandstone escarpment, travel 

distances for the debris and the need for any control measures in Central Utah.  The cliff-forming 

Castlegate Sandstone is 60 m thick at the study mine in Utah and lies approximately 250 m above 

multiple-seam coal reserves. To assess escarpment stability, the authors used multiple regression 

analysis and extensive data on geology, mining, and escarpment stability collected over many years.  

The volume of failed rocks was used as the response variable. Mine layout options were developed to 

minimize cliff instability and frequency of mining-induced surface fractures.  Geologic and geometric 

variables were obtained along 3.7 km of escarpment exposure at 180 study locations.  A regression 

analysis of data from 29 study locations showed that surface topography plays a critical role in 

influencing escarpment stability. With additional data collected over the next longwall block, important 

variables were identified including canyon slope, thickness of Castlegate Sandstone and mining 

influence angle.  Finally, the model was used for prediction of escarpment stability in area 3.  In remote 

mining areas of Utah, warning signs were posted at the study areas.  

1. Introduction 

This paper presents progress being made in developing 

a predictive statistical model as a tool for assessing the 

stability of escarpments in the vicinity of Energy 

West’s longwall operations near Huntington, Utah.  

Such models are ideal for probabilistic risk analysis so 

that the economic benefits of extracting coal reserves 

can be compared to the likelihood of escarpment 

instability. There are two methods routinely used by 

engineers and researchers to help predict what 

conditions will be in the future : statistical and 

computational.  Starfield and Cundall [1] identify rock 

mechanics problems as data-limited, that is, one 

seldom knows enough about a rock mass to use 

computational methods unambiguously.  These 

methods, however, are extremely useful for studying 

failure mechanisms and testing different hypotheses 

on the cause of the failure.  Statistical methods, on the 

other hand, are uniquely capable of being applied 

where there are good data, but a limited understanding 

of certain phenomena, such as the mechanism of 

                                                 
Corresponding author: maleki.tech@yahoo.com 

escarpment failure (toppling, pure translation, or a 

combination of these and other mechanisms). 

Various investigators from both the U.S. 

government and universities have used computational 

techniques for analyzing surface subsidence and 

escarpment failure mechanisms.    The results are in 

general agreement with studies in the Sydney Basin of 

Australia [2].  U.S. studies used a combination of two-

dimensional, boundary-element [3], finite-element 

[4], and discrete- element formulations.  To overcome 

the limitations of using small strain, continuum, 

elastic-plastic code, finite-element deformation was 

imposed on a detailed discrete-element model of the 

escarpment and the mudstone foundation and 

incorporated both horizontal slip planes and vertical 

joints [5].  The USBM [6] also completed a few 

preliminary three-dimensional, finite-element 

modeling studies. While successful in analyzing 

failure patterns and mechanisms, these studies have 

clearly identified the limitations of numerical 

modeling techniques in matching measured surface 

deformation because of data-limited nature of these 

modeling efforts among other factors. 
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Statistical and semi-analytical techniques have 

alternatively been used in many rock mechanics 

problems where there is good data but limited 

understanding of some natural phenomena such as 

rock bursts [7], creep [8] and ground support [9], [10].  

Other data analyses techniques have also been used by 

Australian researchers [11] using the results of  

comprehensive field investigations to identify the 

influence of individual factors (such as horizontal 

movements, and cliff  heights) on cliff stability.   

Multivariate statistical evaluation of results is pending 

additional investigations. 

The technical approach for this study consists of a 

multiphase project in which data collected over many 

years on geology, mining, and escarpment stability in 

several mining areas have been digitized for 

incorporation into a statistical model.  This model is 

has been used by mine personnel for routine 

assessment of escarpment stability in new mining 

areas while incorporating new data to enhance model 

predictions.  Model input consists of geologic and 

mining conditions, including escarpment geometry, 

orientation of joints with respect to the escarpment, 

joint density, joint continuity, and mining influence 

angle. 

The authors implemented the first phase of the 

study during 1997 collecting detailed geologic and 

mining factors at 29 study locations, each 30-m-wide.  

In this Corncob Wash study area 1 (primary focus of 

this paper, figure 1), the 1,000-m-long escarpment 

exposure provided the opportunity to observe surface 

effects and evaluate factors that contributed to 

escarpment instability after mining had been 

completed followed by study areas 2 and 3.  During 

the second phase of the project, post mining conditions 

have been characterized along 1,200 m long 

escarpment exposure (41 study locations, Area 2) in 

South Newberry study area.  Phase 2 results are 

incorporated in this paper as well. In Rilda Canyon 

study area 3, premining conditions in the 3,000-m-

long study area have been characterized in detail, and 

postmining conditions surveyed as both the Blind 

Canyon and the Hiawatha seams were mined in the 

early 2,000’s. This conference has provided the first 

chance to validate the model by using monitoring data 

in area 3. 

2. Characterization of geologic, 
mining and response variables 

The first step in developing predictive statistical 

models was to create suitable numerical values that 

express geologic and mining conditions in the study 

area (figure 1).  The second step was to reduce the 

number of independent variables by combining some 

existing variables into new categories and identify 

highly correlated independent variables.  Reducing the 

number of variables is needed when there are too many 

variables to relate to the number of data points.  The 

presence of highly correlatable variables influences 

what procedures are selected for multiple regression 

analyses.  The third step was to develop a multivariate 

regression model and identify significant factors that 

contribute to escarpment stability. 

The study areas were partitioned into cells 

approximately 30 m wide.  This resulted in 29 cells for 

the Corncob Wash study area, 41 cells in the South 

Newberry area, and 110 cells in the Rilda area.  The 

authors estimated geologic, mining, and response 

variables for individual cells based on field mapping, 

examination of borehole logs, and aerial photographs 

obtained before and after mining. Data statistics are 

excluded from this paper due to limitation of space. 

Most variables are self explanatory.  Below is a 

brief description of some of the variables (identified in 

italics). 

      Joint sets 1 and 2 are the primary and 

secondary persistent joint sets mapped in 

each area.  

      The angle between joint sets and an 

escarpment can possibly influence 

escarpment stability, a hypothesis  based on 

observations of subsidence-related fracturing 

in the western United States [12].  Using this 

hypothesis, an escarpment may have a higher 

probability of failure where the angle 

between joints and the escarpment (or mining 

boundaries) is small (0 to 30 degrees).  

      The excavation width-to-depth ratio is 

similar to a subsidence engineering term 

(NCB[13]) that relates the total width of an 

excavation to the average depth of cover over 

the panel of interest.  This ratio measures 

changes in subsidence mode as excavations 

are widened during mining of successive 

panels.  As the ratio approaches 1.4, a 

supercritical subsidence stage is reached. 

      Based on a review of mining maps and 

experience in Newberry Canyon [4-5]), 

escarpment shape (convex or concave) 

appears to influence escarpment stability and 

thus is included as a geologic variable.  

Observations in the Newberry Canyon by 

researchers from the University of Utah 

indicate that virtually all of the failures 

occurred in a concave portion of the 

escarpment.  A hypothesis was that natural 

erosion of the escarpment took place at a 

faster rate at these locations as a result of 

higher premining structural density [5]. 

 The influence angle is defined as the angle 

from a horizontal plane and a line from the 

mining limit to the base of the Castlegate 

escarpment (figure 2).  This angle is 90 
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degree where the escarpment is directly 

above the mining limit and over 90 degree in 

areas outside the mining limit.   

Several indexes were created to combine joint data 

from various data sets into a single variable ;    

 The joint set i and escarpment index (or 

INJSiE) took values 0 to 4 depending on the 

amount of deviation between a joint set and 

the escarpment (figure 3).  

 The joint set i and face index (or INJSiF) took 

values 0 to 4 depending on the amount of 

deviation between a joint set and longwall 

face. 

 The joint set i index is a cumulative measure 

of  joint orientation and block size, as 

follows. 

INJSiE + INJSiF + horizontal continuity * vertical 

continuity / spacing 

where INJSiE = the joint set i and escarpment index 

and INJSiF = the joint set i and face index 

 The erosion under escarpment index equals 

values of 1 and 0, depending whether the area 

under the escarpment at the particular cell is 

eroded or not. 

 The escarpment shape index equals values of 

1 and 0 for concave and convex escarpment 

geometries. 

 The failure index equals values of 0, 1, and 2, 

depending on the estimated volume of failed 

material within the cell of interest.  The 

failure index was selected from among other 

response variables, including tensile cracking 

and vertical and horizontal movement on the 

surface, because it best describes the stability 

of the escarpment and can be estimated for 

each cell.  The failure index is used as a 

dependent variable in regression analyses. 

 

 

3. Results 

Because there are many variables that could influence 

the stability of the escarpment, it is important to study 

trends in the data and use prudent statistical 

procedures that take into account the interrelationships 

among independent variables.  To study these 

relationships, a bivariate correlation matrix was 

constructed to measure the linear correlation among 

geologic, mining, and response variables.  The 

correlation matrix includes correlation coefficient, 

number of data points, and two-tailed significance 

tests.   The correlation coefficient (r) indicates the 

strength of linear relationships between any pair of 

variables. 

Based on a review of the correlation matrix, the 

authors found fair correlation between the failure 

index variable and several independent variables, as 

well as among some independent variables.  For 

example, the correlation coefficients between the 

failure index variable and the escarpment shape and 

influence angle variable are 0.58 and -0.48, 

respectively.  However, escarpment shape and 

influence angle happen to have fair correlation as well 

(correlation coefficient equals -0.48).  Thus, there is an 

interrelationship among the independent variables that 

can be taken into account using step-wise inclusion of 

these independent variables while conducting multiple 

regression analyses [7]. 

To identify important factors that contribute to 

escarpment stability, a multiple regression analysis 

was used.  Escarpment stability was estimated using 

the failure index as the dependent variable.   The 

multilinear regression procedure consisted of entering 

independent variables one at a time into the equation 

using a forward selection method (SPSS [14]).  In this 

method, a variable is entered into the equation using 

the largest correlation with the dependant variable.  If 

a variable fails to meet entry requirements, it is not 

included in the equation.  If the first variable meets the 

criteria, the second variable with the highest partial 

correlation is then selected and tested for entering into 

the equation.  This procedure is very good when there 

are hidden relationships among the variables.  The 

multiple correlation coefficient, R, which is a measure 

of goodness-of-fit, for the last step is 0.68. 

Based on an examination of standardized 

regression coefficients for the first 29 cells  (which 

were fully undermined in 1997, Figure 1) it was shown 

that surface topography plays a critical role in 

influencing escarpment stability. With additional data 

collected over the next longwall block (40 more cells), 

important variables were identified including canyon 

slope, thickness of Castlegate Sandstone and mining 

influence angle.   

The model was recently verified using monitoring 

results in area 3 (figure 4). Model predictions are in 

fair-good agreement with the actual experience after 

the extraction of both seams. Predicted unstable areas, 

shown in magenta, correspond mostly with oberved 

failure zones shown in red. Additional analysis is 

planned to improve on predictive capabilities of the 

model. 

Measurement of debris travel distances are in 

agreement with initial projections using the Colorado 

Rock Fall Simulation Program (330-m). In remote 

mining areas of Utah, warning signs were posted at the 

study areas. At other locations in Colorado, trap 

systems (trenches and berms) are reported to be 

effective for control of large blocks/debris [15]. Some 

spalling blocks are in the range of 10 to 800 tons. 
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Fig. 1. Mining and escarpment geometry, Study area 1. 

 

 

Fig. 2. Escarpment and mining geometry. 

 

 

 

Fig. 3. Escarpment geometry and geological 

discontinuities. 

 

 

Fig. 4. Study area 3, subsidence contours, cell locations and 

escarpment failure zones shown in red (top), observed 

failure pattern (bottom). 
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