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Abstract. This study aims to develop a potential system for real-time detection of debris flow motion using 
a deep convolutional neural network (CNN) and image processing techniques. A system consisting of a pre-
trained CNN model, NVIDIA Jetson Nano, and a camera was used to identify debris flow movement. The 
pre-trained CNN model was trained on an image dataset derived from 12 debris flow videos obtained from 
small flume tests, large flume tests, and several debris flow events. The application results of the proposed 
system on the flume test in the laboratory reached an F1 score of 72.6 to 100%. The real-time processing 
speed of the CNN model achieved from 2 to 21 frames per second (FPS) on the Jetson Nano. Both the 
accuracy and the processing speed of CNN model depend on the size of the video input and the input size 
of the model CNN. The CNN model of 320 × 320 pixels with a resolution of 800 × 480 pixels gives accuracy 
(F1 = 99.2%) and processing speed (FPS = 20) considered the optimal model when running the Jetson Nano 
device; thus, it can be applied for early detection and warning systems. 

1 Introduction 
Debris flow are a moving mixture of loose muds, soils, 
rocks, and water in a steep channel that moves 
downstream with a high destructive potential [1, 2]. An 
early debris flow detection system is essential.  To 
monitor and identify debris flow movement, several 
previous studies [3-9] employed sensor devices installed 
near torrents to measure ground vibration waves and 
infrasound waves.  
However, sensor alarm systems have not yet been 
widely used in many parts of the world owing to the high 
costs of installation, operation, and maintenance. 
Recording debris flow events using a camera may 
provide a potential approach to the debris flow detection 
and monitoring problem. With the strong development 
of technology, the Jetson Nano device is developed by 
NVIDIA and is widely applied in the field of artificial 
intelligence. Because of its advantages such as small, 
low cost, power-efficient and embedded Internet of 
things (IoT) applications. Therefore, it is very suitable 
for remotely monitoring of debris flow events occurring 
in mountainous areas. 
The objective of this study is to present a potential 
method to detect debris flow motion using recorded data 
from a camera and Jetson Nano. We built a CNN model 
based on the YOLO framework to detect and localize a 
debris flow in view of digital image recording devices. 
When debris flow occurs, digital cameras installed at 
monitoring stations record the images and transmit them 
to a program installed on the Jetson Nano device. This 
program will analyse the image and identify the 
appearance of debris flow on the image automatically. 
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The system will then give warning sounds or send 
messages through the integrated system on the IoT 
platform. With the help of new combined techniques of 
artificial intelligence and image processing, this study 
can contribute a new approach to real-time debris flow 
detection for early warning and monitoring systems. 

2 Methodology 
The proposed approach for debris flow detection in this 
study is illustrated in Figure 1. It consists of following 
steps: (1) Prepare dataset; (2) Build and train the CNN 
model to detect debris flow motion from the image 
dataset; (3) Evaluate the performance of model; and (4) 
Apply the trained model to real-time detection. 

 
Fig. 1. Overview of building pre-train CNN model. 

To adopt the proposed method for debris flow motion 
detection and its velocity calculation, some 
requirements must be met: (1) the proposed method 
must have a trained CNN model to detect debris flow; 
(2) a digital camera must be located in the front of the 
flow and connected to the Jetson Nano processor; and 
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(3) the proposed model only works in bright condition 
and cannot work at night.

2.1 Detection of debris flow motion using deep 
convolutional neural network

2.1.1 Architecture of YOLO model

To identify debris flow movement from camera views. 
In addition to the accuracy of debris flow detection, the 
computational speed of the proposed CNN model is 
considered a major priority. The desired model must be 
able to operate in real-time for monitoring and warming. 
After careful examination of many CNN algorithms, we 
selected YOLOv4 as a benchmark model [10]. Figure 2 
presents the used YOLOv4 network architecture and its 
detailed parameters of output features. The architecture 
of YOLOv4 is composed of a CSPDarknet53 backbone 
to extract features [11] and a detection layer to predict 
debris flow and bounding boxes.

Fig. 2. Structure of a You Only Look Once (YOLO) network.

2.1.2 Metrics  to evaluate the performance of real-
time system

Precision (Eq 1), recall (Eq 2), and F1 score (Eq 3) were 
selected in this study to evaluate the performance of the 
model [12, 13, 14].

TPPrecision=
TP+FP

(1)

TPRecall=
TP+FN

(2)

2×Precision×RecallF1score=
Precision+Recall

(3)

where true positive (TP) indicates the number of 
correctly detected debris flows. False positive (FP) 
indicates the number of incorrect detections. False 
negative (FN) indicates the number of missed detections 
The true negative (TN) case is not considered in the 
performance assessment because there is no ground true 
object in a particular region of the image.
The number of frames per second (FPS) is used to 
evaluate the speed at which the system can process.

2.2 Setup experiment

We design an experimental system as shown in Figure 3
to test the proposed system in real-time. This system 
consists of 04 main parts. A small flume to produce 
debris flow motion, a digital camera (normal camera or 
camera pi) with a resolution of 3640 × 2160 pixels is 
placed in front of the flume to record data, a program is 
written and installed on Jetson Nano to process images 
and finally, a monitor connects to Jetson Nano to display 
result.

Fig. 3. Modelling real-time monitoring system of debris flow 
in the laboratory.

3 Dataset
The dataset was derived from 12 debris flow videos to 
prepare a dataset for training the CNN model. Five small 
flume tests [15], 3 large flume tests were selected from 
experiments by the United State Geological Survey [16], 
and 4 recorded debris flow events occurred in the 
Illgraben area, Switzerland [17, 18].

Fig. 4. Debris flow events occurred in the Illgraben area, 
Switzerland [17, 18]: (a) Illgraben area, (b-d) Debris flow 
front along the channel.

4 Result and discussion
After completing the training and validation of the CNN 
model, the weights of the CNN model were saved. To 
evaluate the detection capability and processing speed 
of the five proposed CNN models (with input size of 
model: Model 1: 288 × 288;  Model 2: 320 × 320; Model 
3: 416 × 416; Model 4: 512 × 512; Model 5: 608 × 608 
). The proposed CNN model was applied to three debris 
flow videos taken from small flume tests with 
resolutions of 3840 × 2160 pixels, 1920 × 1080 pixels, 
and 800 × 480 pixels. The model evaluation results of 

Predict 1 Predict 2 Predict 3

Convolutional layer

Residual

Conv2d 1×1

Convolutional set

Convolutional 1×1

Up sampling

Concatetenate

× 1

× 2

× 8

× 8

× 4

Input image 

416× 416×3

Darknet 53 Detection layer

Convolutional set
Convolutional 1×1 Convolutional 3×3 Convolutional 1×1 Convolutional 3×3 Convolutional 1×1

Residual
Convolutional 1×1 Convolutional 3×3

Scale 1
13×13×1

Scale 2
26×26×1

Scale 3
52×52×1

Debris flow Flume

Debris  flow 
detection

Camera Pi 

Processor
1

2

3

Jetson Nano

4

Flume test to 
procuce debris flow

(b)

(c)

(d)

  
https://doi.org/10.1051/e3sconf/202341503021, 03021 (2023)E3S Web of Conferences 415

DFHM8

2



accuracy and speed on three videos were shown in Table 
1 and Figure 5. Figure 6 presents examples of debris 
flow motion detection on the flume test. In test 1 (video 
1), the proposed CNN model achieved a precision of 
77.6 to 100%, recall ranged from 85.2 to 100%, F1  
ranged from 81.2 to 100% and processing speed ranged 
from 2 to 2.8 FPS. In test 2 (video 2), the CNN model 
achieved a precision of over 80.6%, recall of over 
88.5%, F1 ranged from 87.3 to 100% and processing 
speed ranged from 5 to 7.2 FPS. In test 3 (video 3), the 
CNN model achieved a precision of over 62.4%, recall 
of over 86.9%, F1 score of 72.6 to 100%, and processing 
speed ranged from 10 to 21 FPS.
The test results of three videos show that the real-time 
processing speed of the model depends on the size of the 
video input and input size of model CNN: The higher 
resolution, the slower to process. The higher size of the 
CNN model, the slower to process. 
According to the test results on 3 different camera 
resolutions and 5 different models of CNN. We see that 
the CNN model of 320 × 320 pixels with a resolution of 
800 × 480 pixels gives high accuracy (F1 = 99.2%) and 
a fast enough processing speed (FPS = 20). Therefore, 
this CNN model is considered the optimal model when 
using Jetson Nano device.

Table 1. The result of model accuracy and speed on 3 videos.

Input 
video

CNN 
Model Precision Recall F1 FPS

3640 
× 

2160

1 100 95.1 97.5 2.8

2 98.4 98.4 98.4 2.7

3 100 100 100 2.5

4 100 88.3 93.8 2.1

5 77.6 85.2 81.2 2

1920 
× 

1080

1 100 93.4 96.6 7.2

2 98.3 96.7 97.5 6.9

3 100 100 100 6.6

4 100 88.5 93.9 6

5 80.6 95.1 87.3 5

800 × 
480

1 100 95.1 97.5 21

2 100 98.4 99.2 20

3 100 98.4 99.2 18

4 100 86.9 93 15

5 62.4 86.9 72.6 10

(a)

(b)

(c)

Fig. 5. The result of model accuracy and speed on testing 
videos. (a) Video 1: 3840 × 2160 pixels; (b) video 2:1920 × 
1080 (c) video 3: 800 × 480.

Frame 1 Frame 2

Frame 3 Frame 4

Frame 5 Frame 6

Frame 7 Frame 8

Fig. 6. Examples of debris flow motion detection on small 
flume test.
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5 Conclusions
The goal of this study was to introduce a novel method 
for detecting debris flow motion. The main conclusions 
drawn are as follows: 
 The proposed CNN model successfully detected 
debris flow motion from camera view. The results 
indicated that detection model using CNN achieved an 
F1 score of 72.6 to 100% on the small flume test. The 
accuracy of the model depends on the size of the CNN 
model. 
 The real-time processing speed of the model 
achieved between 2 and 21 FPS on the Jetson Nano. The 
processing speed depends on the size of the video input 
and input size of model CNN: The higher resolution, the 
slower to process. The higher size of the CNN model, 
the slower to process. 
 The CNN model of 320 × 320 pixels with a 
resolution of 800 × 480 pixels gives accuracy (F1 = 
99.2%) and processing speed (FPS = 20) considered the 
optimal model when running the Jetson Nano device. 
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