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Abstract. We propose a methodology to estimate the spatial distribution of the probability of sediment 
deposition due to debris flow from rainfall data by combining the probability prediction of erosion volume 
based on an ordinal logistic regression and a sediment transport simulation. By using the Receiver Operating 
Characteristic (ROC) curve and Area Under Curve (AUC) we have selected the best combination of short- 
and long-term rainfall indices used as explanatory variables in the ordinal logistic model. The results showed 
that the regression model using 60-minute and 48-hour rainfall indices performed well and that the 
regression model using three events improved the predictability of local disasters in 2014. Furthermore, we 
performed Monte Carlo debris-flow simulations using rainfall data from 2014 using the model. We 
confirmed that the spatial distribution of disaster probability is consistent with the actual damage.

1 Backgrounds 

Generally, the prediction method of sediment-related 
disasters can be divided into real-time rainfall-based 
prediction (alerting) and affected-area prediction by 
using the empirical or physically-based method (hazard 
mapping). Both methods are already implemented in 
society. In Japan, sediment disaster alert estimated from 
SWI (soil water index) calculated by a tank model 
having three vertical tanks and 60 min rainfall[1]. The 
warning is mainly issued to the residents in the 
vulnerable area specified as the sediment disaster 
(special) precaution zone. However, the false alert rate 
is large because sediment movement does not take place 
in all warning areas when the warning is issued, and 
there are areas within an area where debris flows are 
relatively difficult to reach[2], resulting in differences in 
hazards.  

It is still difficult to accurately predict the sediment-
disaster occurrence and affected area from the rainfall 
observation because geological structure is complicated. 
However, the spatial distribution of the damage 
possibility can be valuable information to minimize the 
human damage and risk evaluation. This study proposes 
a methodology to quantify the damage possibility by 
combining the statistically-based yield volume 
prediction and sediment transport simulation based on 
the stony debris flow model. 

2 Statistic prediction of the erosion 
volume 
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2.1 Stochastic prediction of the debris-flow 
erosion volume by employing ordinal logistic 
regression 

We set the target area as Hiroshima prefecture, Japan, 
where two recent large-scale sediment disasters 
happened. The first one, which occurred in 2014, 
includes 107 debris flows and 59 shallow slides, which 
caused 44 injuries and 74 deaths [3]. The second one 
caused 624 sediment movements in a wider area in 
Hiroshima prefecture compared to the first event [4]. 

Total erosion volume is important in evaluating and 
simulating debris flow. This study selected it as the 
regression model's objective variable, as in the previous 
study [5]. The airborne lidar precisely measure the 
volume by comparing the surface elevation in two 
periods, usually before and after the debris flow 
occurrence. This study mainly uses the surface 
difference data for the 2018 event. This data was 
obtained by comparing the 1-m DEM taken before the 
event and taken two-three weeks after the event. Due to 
the few debris flows that occurred before the 2018 event 
and the lack of significant rainfall after the event until 
the measurement, the negative volumes in this 
differential data can be considered as the amount of 
erosion caused by debris flow. However, since data were 
unavailable for some traces of the 2018 event and all 
traces of the 2014 event, this study also used a method 
of estimating erosion volume using only trace data for 
the area where data were unavailable. In the method, the 
line at the 12 degrees of surface slope [6] divided the 
trace into erosion area and deposition area. We assumed 
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that the area whose slope is larger than 12 degrees has a 
1m erosion depth. To treat the erosion volumes and 
precipitation variables in same resolution, we 
summarized the erosion volume in the 250m-resolution 
cells which are same as the radar-based rainfall 
observation. 

The ordinal logistic regression is a regression 
method to predict the ordinal value. In this study, we 
categorized the erosion volume in the mesh system V 
into three ranks Y, small Y=1 (0<V<980 [m3]), medium 
Y=2 (980<V<2695 [m3]), and Y=3 large (V>2695 [m3]), 
which are the objective variables. The estimated 
categories for 2018 and 2014 events are shown in Fig. 1. 
The thresholds were set at the top 10% and 30% of the 
erosion volumes in the 2018 event.  

For the explanatory variables, we employed a mean 
slope gradient and two rainfall-related indexes, the 
short-term rainfall index (SRI) and the long-term 
rainfall index (LRI). In this study, we selected the 
maximum 10min, 30min, and 60 min rainfall as SRI, 
and 24 h, 48 h, and 72 h rainfall when the SRI reached 
the maximum as explanatory variables.   

In this study, 2018 data trained the logistic model, 
and 2014 data tested it. The regression employing nine 
sets of SRI and LRI yielded the nine ordinal logistic 
models. 

2.2 Evaluation of the regression model 

We applied the ROC (Receiver Operating 
Characteristic) curve and AUC (Area Under Curve) to 
evaluate the performance of the nine logistic models 
employing the multiple pair of SRI and LRI. ROC is the 
relationship curve between the sensitivity (True Positive 
Rate) and 1-specificity (False Positive Rate) in changing 
the threshold to divide the positive and negative states. 
The large AUC, the area under the ROC curve, indicates 
the high performance of the prediction model, which can 

accurately divide the positive and negative states. Fig.2 
shows the example of the ROC curve of the prediction 
model created by the 2018 disaster date and applied to 
the 2014 disaster, which adopts the 60-minute and 48-
hour rainfall as SRI and LRI, respectively.  

The AUC value is listed in table 1. According to this 
table, the pair of 60-minute and 48-hour rainfall showed 
the best score among all pairs predicting medium and 
large-scale sediment yield. Therefore, we selected this 
pair to generate the debris-flow simulation input. Note 
that the precipitation area in 2014 is limited in the target 
area, thus the FPR can be small with large sensitivity, 
resulting high AUC value. Also, the all precipitation 
indexes (i.e. 10 min, 30 min, 60 min, 24 hour, 48 hour, 
and 72 hour rainfall) around the damaged area were 
larger than the indexes in the other area. This is the 
reason why all AUC values exceed 0.94. 

Fig. 1. Estimated erosion volume levels.  

Table 1. AUC value predicting the 2014 event’s erosion volume magnitudes. 

Magnitude 
AUC for "short-term RI" - "long-term RI" 

10m-24h 10m-48h 10m-72h 30m-24h 30m-48h 30m-72h 60m-24h 60m-48h 60m-72h 

Small 0.9875 0.9852 0.9844 0.9625 0.9854 0.9846 0.9482 0.9616 0.9553 
Medium 0.9873 0.9857 0.9851 0.9815 0.9865 0.986 0.9866 0.9876 0.9871 

Large 0.9947 0.994 0.9936 0.9895 0.9948 0.9945 0.9967 0.9967 0.9966 

 

 

Fig .2. ROC curve for 2014 event by using logistic model 
employing 60-min and 48-hour rainfall. 
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Fig. 3. Estimated occurrence probability of the small (a), medium (b), and large (c) scale of erosion in the 2014 event employing 60 
min and 48-hour rainfall. 

 

 
Fig. 4. Examples of the debris flow simulation input and outputs, generated initial debris flow mass (a), calculated maximum water 
level (b), and deposition depth (c). (d) and (d') are the preliminary hazard as a relative frequency for the area larger than 0.01 m 
deposition. (e) is the current practical hazard map for reference. 

(a) (b) 

(c) 
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3 Monte-Carlo debris flow runout 
simulation inputting the predicted 
erosion volume 

Using the observed rainfall in 2014, the regression 
model yielded the probability of occurrence of three-
scale erosion, as shown in fig. 3. Although the higher 
area of the small-scale probability is much broader than 
the occurred area, as shown in fig.1, the area with the 
higher probability of large-scale erosion is consistent 
with it.  

We converted the probability distribution into the 
debris flow mass by comparing the pseudo-random 
numbers generated for each grid and three probabilities 
calculated by the logistic model. Assuming the mass 
accumulates in the center of the grid, the mass volume 
was translated into the depth, shown in Fig.4. (a) as an 
example. Inputting the depth as the initial condition, we 
performed the debris-flow simulation [7] based on 
Takahashi's stony debris flow model [8]. The simulation 
calculated the maximum water (and sediment) level (b) 
and deposition depth (c). Since the generated volume 
includes the erosion volume in the stream channels, we 
neglected the erosion process in the transportation. Note 
that the logistic model evaluates the possibility in 
generating the mass from rainfall and topographical 
indexes neglecting the land use. Therefore, the strange-
shaped debris mass was also generated in the city area 
as a result. On the contrary, the water level and 
deposition depth around the mountainous valley outlet, 
where the actual damage was observed, seems 
consistent with the actual phenomena. 

We iterated the mass generation 100 times and 
conducted a 100-case Monte-Carlo runout simulation, 
producing 100 patterns of the deposition depth and 
water level maps. Although there is no convinced 
method to determine the degree of hazard from 
predicted variables such as deposition depth and water 
level, this study regard the area whose deposition depth 
is greater than the representative grain size (0.01m), 
which is the input parameter, as the affected area of 
debris flow. Thus, we organized the 100 patterns into the 
relative frequency for the deposition depth greater than 
0.01 m. The frequency distribution is shown in fig. 4 (d) 
and (d'). Assuming that there is no other uncertainty than 
the location and volume of the initial debris-flow mass, 
and the 0.01m deposition can be a hazard to the 
population or buildings, this frequency is equivalent to 
the hazard possibility. This method can estimate the 
distribution of the quantitative hazard possibility (i.e. 
preliminary hazard) inside the practical hazard area, as 
shown in fig.4 (e). Additionally, since this methodology 
can be applied by employing real-time rainfall 
observation, such information can be expected to greatly 
enhance the existing evaluation system, for example, 
when selecting evacuation shelters. 

4 Conclusions  

In this study, we developed an ordinal logistic model to 
estimate the probability distribution for the sediment 
yield (erosion) scale by changing the pair of SRI and 

LRI using the 2018 disaster data. The ROC curve and 
AUC in the 2014 disaster prediction evaluated the 
models' performances. The regression model using 60-
minute and 48-hour rainfall recorded relatively higher 
performance than the other models. We generated 100 
patterns of sediment production (debris flow mass) data 
in the 2014 event condition to execute a Monte Carlo 
debris flow simulation. As a result, the relative 
frequency of deposition area, which is regarded as the 
hazard possibility with several assumptions, was 
obtained. Real time execution of this method estimates 
the hazard probability in the practical hazard area at any 
time, contributing to advancing the warning and 
evacuation systems.  
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