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Abstract. The first step in building an early warning system using seismic signals is to automatically identify 
events of interest. Here, the first digit distribution of seismic signals generated by debris flows and other 
surface processes was calculated to validate compliance with Benford's law (BL). A detector model for 
debris flow events was introduced based on amplitude range and goodness of fit of BL. We show that seismic 
signals generated by debris flows, landslides, and bedload transport follow the BL. These events release 
more energy and last longer than rockfalls, which do not follow BL. In the test dataset with 1224 samples, 
the accuracy of the detector model in identifying debris flow events was 0.75. 

1 Introduction 

Debris flows are hazards that occur in channels (e.g., 
gullies, ravines, and valleys) with massive destructive 
power [1, 2]. Despite significant efforts to mitigate 
debris flow hazards through warning systems, risk 
assessment, and structural measures [3-5], extensive 
damage and casualties still cannot be prevented due to 
the complex geological conditions and dynamic 
processes governing debris flows [6]. Early warning is a 
promising approach to reducing debris flow hazards, 
which is becoming more precise and reliable as data 
acquisition and transmission improve. 

Debris flow warning systems could employ two 
types of sensors to collect data: measuring the indicating 
parameters and monitoring the flow dynamics [7]. 
Traditional rainfall data-driven systems belong to the 
former class and require locally tailored thresholds to 
trigger alarms [8]. However, obtaining rainfall data and 
maintaining monitoring devices is not straightforward 
for catchments with large elevation differences and 
multiple sediment supply areas [9]. In the case of 
Illgraben (Switzerland), where we conducted the present 
study, the locally convective short-duration storms are 
difficult to monitor but are sufficient to trigger debris 
flows [10]. Continuous seismic signals belong to the 
second sensor type offering a relatively new opportunity 
to monitor debris flows with high temporal resolution. 
Coviello et al. [11] proposed an early warning system 
based on an automatic debris flow detector using 
seismic waveforms and a short-term average to long-
term average ratio (STA/LTA) trigger algorithm. 
Chmiel et al. [12] combined the random forest algorithm 
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and seismic waveform features to detect debris flow 
fronts and identify when they pass over check dams. In 
addition, seismic networks can contribute to detecting 
and locating large mass movements on a regional scale 
[13]. However, a seismic station senses all ground 
shaking within its bandwidth and records the signals, 
blending events of interest with ambient noise. Only a 
small amount of seismic data corresponds to 
geomorphic processes, which makes labelling events a 
time-consuming work requiring expert knowledge. The 
present seismic-driven early warning methods require 
labelled data to train a detection model. Transferability 
of these models to other study sites where little or no 
training data exist is not guaranteed.  

Benford's law (BL) is a statistical phenomenon of the 
probability distribution of the first digit in a dataset. It 
originated from the observation that the first few pages 
of the logarithm tables were more worn out than others. 
Newcomb [14] declared that the probability of the first 
digit is such that the mantissae of their logarithms are 
equally probable. BL was rediscovered and tested with 
20 different data domains by physicist Frank Benford 
[15] and named after him. BL gives the probability of 
the first digit: 

  (1) 
where PD is the theoretical probability of the first non-
zero digit. D ranges from 1 to 9. For example, 0.01, 
100, -1 share the same first digit one with a probability 
of 0.301. 

A classical mathematical theory to explain why the 
first digit of a dataset appear in BL is that after a 
sufficiently long computation in floating-point 
arithmetic, the occurring mantissas have a nearly 

10 = log (1+1/ )DP D
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logarithmic distribution [16]. For more information, we 
refer to [17-18]. Even if BL is base and scale-invariant 
[19], not all collected datasets follow it. Durtschi et al. 
[20] summarized the guidelines on when data may 
conform to BL: (1) unrestricted (data from human height 
and weight is, e.g., restricted) and assigned data (e.g., 
check numbers and invoice numbers), and (2) large sets 
of data across several orders of magnitude (e.g. array 
from 1 to 107 with a sample size of 1.2×105). BL has 
been typically applied to examine data anomalies [21], 
and some researchers have adopted it to finance and 
sociology [22-23]. Recent work has applied BL to 
geoscience data, such as investigating natural hazard 
dataset homogeneity and anomalies [24-25]. It has been 
demonstrated that earthquakes and marsquakes are 
detectable with BL using seismic waveforms [26-27]. 

In this work, we calculate the first digit distribution 
of seismic signals (generated by debris flows, floods, 
and other surface processes [28-29]) and validate the 
compliance with BL. Then, an event detector model 
based on seismic signals and BL is introduced with the 
example of debris flow. 

2 Study site and event catalog 

2.1 Study site 

The Illgraben catchment, located near the village of 
Leuk, in southwestern Switzerland (Fig 1), covers an 
area of about 9.5 km2 and ranges in elevation from the 
Rhône River at 610 m to Illhorn mountain at 2716 m 
[30]. In the upstream channel trunk, the limestones 
(north side) and quartzites (south side) are susceptible to 
erosion and weathering, which provides debris flow 
material [31]. The Illgraben covers less than 0.2% of the 
Rhone Valley, but it contributes more than 5% of the 
annual sediment to the Rhône basin [32]. The local 
annual rainfall is concentrated from May to October, 
and debris flows are mainly triggered by short-duration 
storms [10]. Three to five debris flows and several 
floods are observed at the Illgraben catchment each year. 

 
Fig. 1. Network of seismometers (red dot) in the Illgraben 
catchment. 

For monitoring the surface processes, such as 
rockfall, landslide, and debris flow, ten three component 
(N-S, W-E, vertical) seismic stations were installed 
around the Illgraben (IGB01-10) during the period 2012 
to 2014. The signal bandwidth and sampling frequency 
of these seismic stations are 1-100 Hz and 200 Hz, 

respectively. Considering seismogenesis is concentrated 
at the debris flow front [33], the greater the distance 
between the flow front and the seismic station, the more 
significant the proportion of noise in the recorded signal. 
Here, only station IGB02, which is closest to the channel 
and far from the nearby residential area of Leuk, was 
selected as the data provider. 

2.2 Event catalog 

From 2013 to 2014, 24 debris flow events (true positive 
event, TPE) were collected, and one may be a flood. Ten 
of these events were observed by the Swiss Federal 
Institute for Forest, Snow and Landscape Research 
warning systems (henceforth referred to as “WSL”). A 
debris flow example with a WSL label is shown in Fig. 
2. Based on amplitude durations in the waveform and 
spectral features between 1 and 50 Hz, the remaining 14 
debris flow events were manually labelled by us 
(henceforth referred to as “GFZ”). Unfortunately, no 
other data for these 14 events were available for cross-
validation. The statistics of the time accounted for by 
TPE (about 160 hours in total) and non-TPE has a ratio 
of 1:58. To create a true negative event (TNE) catalog 
(all non-debris flow events), we selected 1200 TNE (50 
times of TPE) events at random start times and random 
duration (from 20 minutes to 6 hours) outside the TPE 
period. Finally, a test dataset containing 1224 events was 
created. Besides, one rockfall event (rockfall1) were 
collected in Illgraben, outside the Illgraben catchment, 
one landslide in Iceland [28], one rockfall (rockfall2) in 
Germany [29], and one bedload transport in Taiwan 
(ROC) were collected to test for compliance with BL. 

 
Fig. 2. Waveforms and spectrograms of a debris flow with 
WSL label (12th July, 2014). The vertical black lines are 
manually labelled start and end times (14:40, 18:00). 

3 Methods 

3.1 Validate natural hazard's conformity to BL 

The vertical component of raw waveform data, without 
instrument response deconvolution, demeaning, 
detrending, filtering, or tapering, is utilized to validate 
the event conformity to BL. To this end, the first digits 
are counted with a 60s sliding window. The raw 
amplitude equal to zero for each moving window will be 
discarded. To compare the observed first digit 
distribution with the theoretical BL distribution 
(Equations in 2-3), we refer to  the goodness of fit (Ф) 
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[26] and introduce the Shannon entropy (H) [34] to 
assist the assessment and detection: 

  
(2) 

  (3) 
where Pd and pd are the theoretical and observed 
probabilities of first digits; H(D) is the Shannon entropy 
H, D={1, 2, …, 8, 9}. When b=2, the unit of H(D) is bits 
or shannons. Parameter H describes the relationship 
between information and uncertainty. The higher the 
occurrence probability, the less information an event 
carries. In our case, noise dominates most of the year, so 
H is expected to increase from a true negative event to a 
true positive event. The theoretical maximum of H is 
3.17 when the first digit (1-9) is a uniform distribution 
with a probability of 1/9. 

3.2 Detector with BL method 

There are two indicators to design a debris flow detector 
with BL, the amplitude range ar and goodness of fit Ф 
of BL (Fig. 3a). The ar is more concentrated during the 
TNE (noise) (Fig. 3b), ranging only by 1-2 orders of 
magnitude, while the amplitude could cross several 
orders during the TPE (event). ar is defined as: 

  (4) 
where Q is the amplitude value from smallest to largest 
value within the sliding window, Q1 and Q100 are the 
average within largest and smallest one percentage. 

 
Fig. 3. Amplitude range ar over time (a) and amplitude 
probability distribution (b) of the 12th July, 2014 debris flow. 

A sliding window (Fig. 3a) will scan ar and Ф at 60s 
intervals. If ar at the time i is greater than the threshold 
start (5000 bits), a potential event will be recorded until 
ar at time j is less than the threshold off (1500 bits). 
When the potential event duration (tj-ti) is greater than 
20 and Ф is greater than a given threshold g, the 
potential event will be marked as predicted positive. If 
the above conditions are not met within the entire event, 
the test event will be marked as predicted negative. The 
1224 events in the test dataset will be extracted one by 
one for model testing. The range of ar, Ф is set as 
[3×103, 1×105], [0, 80], and the interval is 104 and 20, 

respectively. We combine the ar and Ф orthogonally, 
then feed them into the model for testing. 

We use a confusion matrix to assess our detector 
performance. The detector outputs were divided into 
four categories (Fig. 4). We employed positive ratio 
TPR and false positive ratio FPR to evaluate the detector 
model performance. 

 
Fig. 4. The confusion matrix for evaluating detector model 
performance. TP, FP is True positive and False positive number. 
P, N is the Positive and Negative number. 

4 Preliminary results and concluding 
remarks 

Our preliminary results show that the first digit 
distribution of seismic signals generated by debris flows, 
landslides, and bedload transport follow BL, while our 
two rockfall cases do not conform to BL (Fig 5). 
Moreover, one flood case does not allow for rigorous 
conclusions to be drawn. When Ф is less than 0, and SH 
is close to 0, the event cannot be considered a high-
energy mass movements like debris flows and landslides. 
The detector model has an optimal TPR of 0.75 and FPR 
of 0.01, and it could be improved by more parameter 
sensitivity analysis in the future. 

 
Fig. 5. The first digit distribution of different events. The 
bedload event is recorded by an acoustic sensor. 

The seismic signals from long-duration and high-energy 
mass movements (e.g., debris flow and landslide) 
conform to BL (e.g., when the event starts in Fig. 2). 
This phenomenon provides a new potential approach for 
rapid and relatively accurate filtering events from 
seismic signals. In future work, we will explore why BL 
appears in seismic signals generated by some processes 
but not in others. Understanding conformity with BL 
will provide important insights into the performance of 
seismic mass movement monitoring. Furthermore, the 
debris flow detector is not yet efficient and reliable 
enough. It will be necessary to boost and compare our 
detector model to other approaches, such as the short-
term average to long-term average ratio (STA/LTA) and 
random forest model in the future. 
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