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Abstract.This paper presents a comparative study of the rigid-body inverse dynamics of a spatial redundantly
actuated parallel mechanism constrained by two point contact higher kinematic pairs (HKPs). Firstly, its
constrained motions are analysed comprehensively, then four different models are formulated by the generalized
momentum approach and the Lagrange-D’Alembert formulation to explore its inverse dynamics. In each
method, the first model is built by employing the method directly to the mechanism. In the second model, the
dynamic model of its non-redundantly actuated counterpart free of HKPs is built by this approach first, then the
constraints from HKPs are modelled, to finally reach the model of the redundantly actuated parallel mechanism
(RAPM) where that of its counterpart is utilised as the core. The four models give rise to equivalent numerical
results, and the second model in both methods of the RAPM can alleviate the strong coupling between the
parasitic motion variables and degrees of freedom (DOFs), boosting the computational speed as fast as that of its
non-redundantly actuated counterpart without simplification or loss of accuracy. The comparisons between the
mechanism and its counterpart validate that the HKP constraints greatly increase the computational
complexity, and the torques required by the parasitic motions of the end effector are significantly smaller than
those by the corresponding DOFs.
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1 Introduction

In the food industry, there is a great interest in evaluating
the time-varying dynamics of newly developed food
textures during the chewing process. To this end, a
machine that can accurately replicate the human-like
chewing behaviours in a biomimetic fashion can come into
play a significant role in terms of the three-dimensional
(3D) chewing motions and bite forces. Inspired by the
masticatory system of human beings, a spatial redundantly
actuated parallel mechanism (RAPM) constrained by two
point contact higher kinematic pairs (HKPs) has been
developed [1,2]: the base is the skull, the six RSS (revolute-
spherical-spherical) kinematic chains are the primary
chewing muscles, the end effector is the mandible, and
che943@sina.com
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the two point contact HKPs are the left and right
temporomandibular joints (TMJs), respectively. The
underlined letter means the joint is active in the chain.
At the early stage of our study in the bio-inspired
masticatory robot, the six RSS kinematic chains were
designed to play the role of primary chewing muscles in the
human’s masticatory system, as in Chapter 4 of [3].
However, during the motions of the lower mandible, it is
not only driven by chewing muscles, but also guided at
TMJs at its left and right condyles. In this regard, to better
replicate the chewing system and produce human-like
chewing behaviours, TMJs were modelled using two HKPs
as in [1,2]. Readers interested in the human masticatory
system and chewing robotics can refer to [3] for a
comprehensive description.

Before the applications of the RAPM in practice,
developing a precise and computationally efficient inverse
dynamic model is a prime requirement. In fact, in our
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previous work [2], an initial attempt at the rigid-body
inverse dynamics of the RAPM of interest has been made
via the hybrid of the Newton-Euler’s law and the
Lagrangian equations. However, due to the complicated
constraints from HKPs at the end effector in the RAPM,
the model was quite sophisticated and error-prone. For
instance, the forces at HKPs without friction effects are
ideal constraints on the end effector which cannot be
included in the Lagrangian formulation, whilst they must
be considered in the Newton-Euler’s law. Meanwhile, the
Lagrange formulation introduces many unknown Lagrange
multipliers, greatly increasing the number of variables in
the equations of motion (EOMs). In these regards, finding
efficient solutions to its inverse dynamics is a strong
motivation for the study in this paper.

From the literature review, the conventional method-
ologies in dynamics of serial mechanisms and PMs without
redundant actuation have been successfully applied in a
wide range of RAPMs. For instance, the Newton-Euler’s
law was used in a planar 3-DOF RAPM to find its
maximum dynamic load-carrying capacity and the impact
of actuation redundancy [4]. The Euler’s equation was
applied in a 4RRR planar RAPM to achieve its shaking
force/moment balancing [5]. In [6], this law was employed
to solve the inverse dynamics of the spatial RAPM with
parallelograms inside a serial-parallel hybrid machine. One
can find that under this law, the free body diagrammust be
drawn to each body, and there are a number of
intermediate variables associated with the constraint
wrenches in the joints. Therefore, its computational
complexity and efficiency would be negatively influenced
by the increased number of actuators and moving links in
RAPMs. In [7], the Lagrange formulation with unknown
Lagrangianmultipliers was used to address the dynamics of
a planar RAPM with two translational DOFs. The
multipliers representing the magnitude of constraint forces
were eliminated using the null space of the differential
matrix of the closed-loop constrained equation. The
identical procedure was also employed in [8,9]. The
utilisation of the Lagrange equations in the modelling
process is accompanied by the introduction and elimination
of Lagrangian multipliers, and it involves a number of
partial derivatives. As a result, the computational demands
are not light. The principle of virtual work was used in
evaluating the superiority of redundant actuations in the
dynamic performance of an 8PSS spatial RAPM in [10]. In
[11], this principle was applied to compare the dynamic
performance of planar PMs with both actuation and
kinematic redundancies. It was employed in [12] to
calculate the joint torque to compensate for disturbances
to the mobile platform of a dual-arm underwater robot. It
also has been used in [13–15] where the EOM was used for
model-based control. In this principle, the ideal constraint
wrenches that do not generate virtual work are not taken
into account, and it does not require as many partial
deviations as in the Lagrange formulation. As such,
compared to the foregoing two methods, its computational
cost is lower.

Apart from them, another twomethods in the literature
attract our attention. The first is the newly developed
generalized momentum approach in [16,17]: it has been
successfully applied in both the conventional Gough-
Stewart platform and a 6PUS (prismatic-universal-spheri-
cal) PM. In this approach, the kinetic and the gravitational
components of generalized forces acting on a moving body
are computed by the differentiation of its generalized
momentum and potential energy, respectively, and they
can be expressed by the generalized coordinates. In
addition, the contributions to the total actuating torques
by each moving body can be found separately. As such,
compared to the classical Newton-Euler’ law, it is
characterised by being well-structured, straightforward,
and systematic. The second method is the classical
Lagrange-D’Alembert formulation, by which the dynamic
models of the planar 2-DOF RAPM from [8] and 3-DOF
purely translational PM were built in [18,19], respectively.
In this approach, the dynamic model of each rigid body is
firstly built by the Lagrange formulation, then following
the D’Alembert principle, the EOM of the mechanism is
reached. Compared to the procedure by the Lagrange’s
equations, it is not indispensable to introduce and then
eliminate the unknown Lagrangian multipliers. In addition
to the two methods’ respective advantages, they have two
common features: the constraints imposed by the closed
loops in the mechanism are embedded via the velocity
relationships between the end effector and the chains,
obviating the use of explicit constraint equations; they do
not take constraint wrenches in joints that do not generate
virtual work into consideration. As such, a minimal set of
variables and equations is generated and it is straightfor-
wardly beneficial to the model-based motion control.

Even though the successful applications of these two
methods in RAPMs are not quite extensive, due to these
foregoing merits, an attempt is going to be made to extend
them to the RAPM with HKPs which has a sophisticated
topology, and this is the first reason to use them in this
paper. The second is, the computational cost of these two
methods in RAPMs has not been compared to date, despite
their common advantages. Thus, it is necessary to find
which is faster. The third reason is, the software at hand
i.e., Matlab does not support redundant actuation mode in
simulations of inverse dynamics. Thereby, it is required to
use two methods simultaneously to cross-check the
correctness of the numerical results, and the foregoing
two methods are adopted in this paper.

In the meantime, from the view point of mechanism,
there are primarily two methods to implement actuation
redundancy in PMs as stated in [20]: the first is adding
identical kinematic chains as the existing ones in a PM, and
the second is actuating some of the passive joints of PMs.
By a sharp contrast, from the analysis in Section 3 in this
paper, redundant actuations are realised by imposing two
point contact HKPs at the end effector of a 6RSS PM.
Evidently, by this process, both the RAPM and its non-
redundantly actuated counterpart, namely, the 6RSS PM
have identical numbers of moving bodies and actuators,
respectively. Nonetheless, intuitively, the kinematic var-
iables in the RAPM are more strongly coupled, leading to
more complex kinematics and dynamics, and the compu-
tational demands would be higher than that of its
counterpart. Furthermore, studies on this sort of RAPMs
with HKP constraints are quite rare: from the literature,
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the publications are almost about RAPMs with lower
kinematic pairs and their end effectors are not constrained
by the base directly. Thus, under the adopted methods,
finding a short-cut that can alleviate the coupling among
variables to increase the computational speed of the
dynamic model is the second strong motivation for
conducting the study in the paper. In fact, the discovery
of this short-cut would indicate the nature of HKP
constraints in the inverse dynamics of the RAPM is
explored deeply.

In this paper, the rigid-body inverse dynamics is studied.
It is assumed that all bodies and joints are rigid, frictionless,
and free of clearances in the mechanism. The inertia of the
spherical joints is rather small and then ignored. The
remainder of the paper is organized as follows: a detailed
description of the mechanism is given in Section 2. In
Section 3, the kinematics of the mechanism including the
constrainedendeffector and thekinematic chains is analysed
comprehensively. The inverse dynamics of the RAPM is
analysed by the generalized momentum approach in
Section 4, in Model 1, the approach is directly employed
to theRAPM,while inModel 2, firstly the dynamicmodel of
the 6RSS PM is built by this approach, then the two
constraints fromHKPsaremodelled,finally, themodelof the
RAPMisbuiltby incorporating themodelof the6RSSPMas
its core. In Section 5, an identical procedure as in Section 4 is
implemented by using the Lagrange-D’Alembert formula-
tion. Section 6 is devoted to the numerical computations and
discussions in the four models by the two methods, and the
influences of theHKP constraints. Finally, some conclusions
are made in Section 7.

The three contributions of this paper are:

–
 By using the inverse dynamic model of the 6RSS PM as
the core of that of the RAPM can alleviate the coupling in
its parasitic motion variables and increase its computa-
tional speed as fast as that of the 6RSS PM.
–
 The insight into the nature of HKP constraints on the
inverse dynamics has been provided clearly in terms of
the modelling process, the computational cost, and the
numerical results.
–
 The applications of the generalized momentum approach
and the Lagrange-D’Alembert formulation have been
extended to the RAPM constrained by HKPs.

2 Description of the mechanism

The scheme of the RAPM constrained by two HKPs is
illustrated in Figure 1. The maxilla (i.e., the base) is fixed
on the ground and the movable mandible (i.e., the end
effector) is connected to the base by six independent
kinematic chains. The maxilla, to which the inertia frame
{S} is assigned, is not shown in the figure for a clear
exhibition of moving bodies. This frame consists of a
horizontal XS-YS plane perpendicular to the vertical ZS
axis. A frame {M} is established at the mass centre OM of
the end effector. The origins and orientations of {S} and
{M} overlap when the mechanism is at the home position,
that is, the maxilla and the mandible are in the occlusal
state. The origin OM is used as the reference point to
describe the mandibular translations, and its orientations
with respect to {S} are expressed by Bryant angles. In each
chain, the crank GiSi (i =1,…,6) is driven by a base-
mounted rotary actuator, whose shaft connects it with a
rotational joint at Gi, and a coupler SiMi that joins the
crank and the end effector via two spherical joints at its two
ends Si and Mi, respectively. The layout of six chains is in
accordance with that of the six primary chewing muscles.
The rotation of the ith actuator with respect to {S} is
described by the actuator frame{Ci}attached at Gi. In it,
the.XCi

.axis is directed from Gi to Si, theZCi
axis runs

through the driving shaft of the actuator, and theY Ci
axis

completes the frame, obeying the right-hand rule. A frame
{Ni} is attached at themass centreEi ofSiMi to describe its
motions with respect to {S}. TheXNi

axis points from Si to
Mi, theY Ni

axis is parallel to the cross product of two unit
vectors defined along theXNi

andXS axes, and theZNi
axis is

defined by the right-hand rule.
Two HKPs modelling the left and right TMJs are

formed by the two condyle balls being in contact with the
articular surfaces. The two contacts between the left and
right condyles of the mandible and the maxilla at TMJs,
are realised by the two condyle balls being always
constrained within a condylar socket in the mechanism
prototype, as shown in Figure 2. The width of the socket
equals the diameter of the condyle ball; thus, it can always
guarantee the point contact during the movement of the
mandible. By this design, the motion of the condyle ball
centre is always constrained onto a surface, which is offset
from the upper and lower surfaces of the socket by the ball
radius. Thereupon, it is clear that the end effector is
actuated by six chains and constrained by the base at the
two HKPs simultaneously. Besides, the end effector is
shown in Figure 2d. the green component is a manufac-
tured mechanical part, while the red lower mandible and
golden teeth are scanned from a human cadaver by
computer tomography in the School of Dentistry at the
University of Otago, Dunedin, New Zealand [3]. The
prototype of the mechanism is provided in Figure 3.

3 Kinematics of the mechanism

A priori development of accurate kinematic analysis is
fundamental to the inverse dynamics. In this section, the
kinematics of the end effector and the chains in terms of
their displacements, velocities, and accelerations is ana-
lysed comprehensively.

3.1 Constrained motions of the end effector

A second-order surface was used as the workspace of the
centre of the condylar ball in [1,2,21,22]; its shape and size
was designed by referring to [23–25]. However, on the one
hand, when the mechanism tracks the real chewing
trajectories of healthy human subjects, for instance, the
one in Section 6 which serves as an illustrative example in
this paper, the surface where the path of the condylar ball
centre is situated can be approximated as a flat one. On
the other hand, it is quite difficult to derive explicit
analytical expressions of the parasitic motions in the



Fig. 1. A schematic view of the RAPM constrained by two point contact HKPs, where① right condyle ball,② left condyle ball,
③ articular surface of right TMJ, ④articular surface of left TMJ [21].
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RAPM under the second-order surface. In these regards,
in this paper where the chewing system is explored from
the viewpoint of mechanical dynamics and with an
emphasis on the constrained dynamics of the end
effector, the surfaces in {S} where the left and right
condyle ball centres TL and TR slide on are designed as
flat (unit: mm):

ZL ¼ p1XL þ p2; p3 � XL � p4; p5 � Y L � p6
ZR ¼ p1XR þ p2; p3 � XR � p4; �p6 � Y R � �p5
p1 ¼ �1:1; p2 ¼ 13:215; p3 ¼ �27:65; p4 ¼ �14:65;
p5 ¼ 69; p6 ¼ 75: (1)

From the Kutzbach-Grübler criterion, the mechanism
now has four DOFs, but the information on which four to
choose is not given. They are to be derived from a rigorous
computation below: the coordinates of Ti (i=L,R) in {S}
can be expressed as

OSTi ¼
Xi

Y i

Zi

2
4

3
5 ¼ OSOM þMSR⋅MOMTi; (2)
whereOSOM ¼ X Y Z½ �Tdenotes the 3◊1 position
vector of OM in {S},MSR ¼ RX að Þ⋅RY bð Þ⋅RZ gð Þis the
rotation matrix from {S} to {M}, RX (a) , RY (b),
andRZ (g)are three rotation matrices about the XM, YM,
and ZM axes by three Bryant anglesa, b, andg, respectively.
It is worth noting that in this paper, amatrix/vector/scalar
in local frames owns a leading superscript on its left to
denote the specific frame it refers to, but those in {S} omit
their superscripts for the sake of convenience and clarity.
The six motion variables of the end effector are grouped
and expressed as

XEE ¼ X Y Z a b g½ �T : (3)

From equation (2), one can obtain

XL ¼ X þMSRð1;:Þ⋅M OMTL;XR

¼ X þMSRð1;:Þ⋅MOMTR;ZL

¼ Z þMSRð3;:Þ⋅MOMTL;ZR

¼ Z þMSRð3;:Þ⋅MOMTR; ð4Þ



Fig. 2. The RAPM: (a) CAD model, (b) magnification of the right HKP, (c) prototype of the HKP [2], (d) end effector.

Fig. 3. Prototype of the mechanism [2].
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where MSR i;:ð Þ is the ith(i=1,3) row of MSR . Putting
equation (4) into equation (1) produces

Z þMSRð3;:Þ⋅M OMTL

¼ p1⋅ X þMSRð1;:Þ⋅MOMTL

� �
þp2;Z þMSRð3;:Þ⋅MOMTR

¼ p1⋅ X þMSRð1;:Þ⋅MOMTR

� �þ p2: ð5Þ

Because of the left-right symmetry ofMOMTLand-
MOMTRin {M}, a summation and a subtraction of the two
equations in equation (5) sidewise yield

Z ¼ p1X þ p2 þ p1⋅MSRð1;:Þ �MSRð3;:Þ
� �

⋅
MOMTL 1ð Þ

0
MOMTL 3ð Þ

2
4

3
5

g ¼ �atan
sa

p1cbþ casb
:

;

ð6Þ
where MOMTL (1)and MOMTL (3)are the first and third
terms ofMOMTL, respectively. From these computations,
it is found Z and g are transferred from DOFs to parasitic
motions and they are functions of qEE, which is a 4� 1
vector by grouping four DOFs as

qEE ¼ X Y a b½ �T ; ð7Þ
and it constitutes the task space of the mechanism. To
characterise the instantaneous configuration of the mech-
anism, equation (3), or both equations (6) and (7) ad hoc
are needed. In other words, the RAPM can still perform
motions in six directions with four DOFs and two parasitic
motion variables. Regarding this, redundant actuations in
the mechanism are essentially caused by constraints from
the base directly onto the end effector, which is completely
different from the two methodologies mentioned in [20].
It is also worth noting that though the workspace of the
centre of the condylar ball is simplified as a flat surface as in
equation (1), a strongly nonlinear and sophisticated
relationship between Z/gand qEE in equation (6) can be
observed.
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After figuring out the DOFs of the end effector, its
motions can be defined below. The angular velocity is

vEE ¼ M0a⋅XEE ¼ M0b⋅qEE; ð8Þ
where

M0a ¼ 03 Rv½ �;

Rv ¼
1 0 sb
0 ca �sacb
0 sa �cacb

2
4

3
5;

M0b ¼ M0a⋅MJ :

03 is 3×3thezeromatrix, andMJdenotes the6×4Jacobian
matrix between XEE and qEE, namely

MJ ¼ Jacobian XEE; qEEð Þ;
_XEE ¼ MJ ⋅qEE:

ð9Þ

From it, the second time-derivative of XEE can be
derived as

€XEE ¼ _MJ ⋅ _qEE þMJ⋅ €qEE: ð10Þ
The translational velocity of the end effector is

expressed by

VOM
¼ M1a⋅ _XEE ¼ M1b⋅ _qEE;

M1a ¼ E3 03½ �;
M1b ¼ M1a⋅MJ :

ð11Þ

where E3 is the 3� 3 identity matrix.
3.2 Kinematics of the ith chain

The inverse kinematics of the mechanism, i.-
e.,u ¼ u qEEð Þ u ¼ u1 ⋯ u6½ �T

� �
that consists of a sys-

tem of six decoupled equations expressed byqEE, has
already been derived in Section 3.2 of [22]. Nonetheless, the
motions of the coupler SiMi(i=1,…,6) are still needed for
its rigid-body dynamics. Due to the two spherical joints at
Si and Mi, the coupler can rotate around the three
orthogonal axes of {Ni}. The rotation around XNi

axis is a
passive DOF for it is not controllable; this rotational range
is quite small thanks to the physical restrictions from the
used spherical joints in the mechanical design, however. In
these regards, it is assumed that there is no axial rotation in
the coupler. As such, two Euler angles bi and gi around
theY Ni

and ZNi
axes, respectively, are used to express the

rotation of SiMi in {S} in terms of the two rotational
matrices RY (bi) and RZ (gi). Thereafter, the coordinate
vector of the coupler can be expressed as

SiMi ¼ Ni0SR⋅RY bið Þ⋅RZ gið Þ⋅
kSiMik
0
0

2
4

3
5; ð12Þ
where Ni0SR is the orientation of SiMi in {S} at the
initial configuration of the mechanism at hand,
andkSiMikis the length of SiMi. From the geometry of
the mechanism in {S}, the vector of the coupler can also be
found from the difference in the position vector ofMi and Si:

SiMi ¼ OSOM þOMMi �OSGi � GiSi; ð13Þ
where OMMi ¼ MSR⋅MOMMiand MOMMi is the coordi-
natevector ofMi in{M};OSGiis theconstantpositionvector

of Gi in {S}; and GiSi ¼ Ci0SR⋅RZ uið Þ⋅
kGiSik
0
0

2
4

3
5, in

whichCi0SR is the orientation of GiSi in {S} at the initial
configuration of themechanism,RZ (ui) is the rotationmatrix
about the ZCi

axis by ui, and kGiSikis the length of GiSi.
Substituting equation (12) and ui= ui (qEE) into

equation (13) produces

bi ¼ �atan
ni3

ni1
;

gi ¼ asinni2:
ð14Þ

where
ni1

ni2

ni3

2
4

3
5 ¼ Ni0SR

�1⋅ SiMi

SiMi
. For the sake of convenience,

a3� 1 generalized vector is defined as qri ¼ ui bi gi½ �T ,
which consists of the joint space of the ith chain and
completely specifies its configuration. It is highlighted
thatqri is the function of qEE, i.e.,qri ¼ qri qEEð Þ.

To derive the relationship between the first time-
derivatives ofqriandqEE, equation (13) can be rewritten as

OSGi þ GiSi þ SiMi ¼ OSOM þOMMi: ð15Þ
The two sides can be expressed by qriand qEE,

respectively.Thefirst time-derivative of equation (15) yields

M1i⋅qri ¼ M2i⋅qEE: ð16Þ

where

M1i ¼ Jacobian OSGi þ GiSi þ SiMi; qri
� �

;
M2i ¼ Jacobian OSOM þOMMi; qEEð Þ:

Moreover, one can find that

_qri ¼ M3i⋅qEE; ð17Þ

where M3i ¼ M�1
1i ⋅M2i, and the second time-derivative

ofqri is given as

€qri ¼ M3i⋅qEE þM3i⋅qEE: ð18Þ

So far, _qri _riand __qri rihave been derived as quantities
intimately associated with the motions of the ith chain.



Fig. 4. The structure of dynamic modelling by the two methods in Sections 4 and 5.
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The angular velocity of SiMi is

vSiMi
¼ Ni0

S
R⋅RvSiMi

⋅ _qri ; ð19Þ

where RvSiMi
¼

0
0
0

0 sbi

1 0
0 cbi

2
4

3
5. Substituting equation

(17) into equation(19) renders

v
S iM i

¼ Ni0SR⋅RvSiMi
⋅M3i⋅ _qEE: ð20Þ

The coordinate vector of the mass centre Ei in {S} is

OSEi ¼ OSGi þ GiSi þ SiEi: ð21Þ
The translational velocity ofEi can then be found by the

differentiation of equation (21) with respect to time as

VEi
¼ JEi

⋅ _qri ;
JEi

¼ Jacobian OSEi; qri
� �

:
ð22Þ

Upon substitution of equation (17) into equation (22),
it yields

VEi
¼ JEi

⋅M3i⋅qEE: ð23Þ
As far as the crankGiSi is concerned, its mass centreGi

is passing through the rotational shaft of the actuator, as
such VGi

¼ 03� 1. Its rotational velocity in {S} is

v
GiS i

¼ C
i0

S
R⋅RZ uið Þ 02� 1

_ui

� �
¼ Ci0

S
R :;3ð Þ⋅ _ui: ð24Þ

where CiSR :;3ð Þ is the third column of CiSR.
Heretofore, the motions of all moving bodies in the

mechanism have been explicitly expressed. These are all
the ingredients needed for the construction of the EOM
based on the two dynamic methods in the following two
sections. In each of them, two models are built by the
generalized-momentum approach and the Lagrange-
D’Alembert formulation, respectively. In Section 4, the
generalized-momentum approach is directly used to the
RAPM in Model 1; in Model 2, by following an intuitive
procedure, the EOM of the 6RSS PM free of HKPs is firstly
written, then the two constraints from HKPs are modelled,
to finally reach the EOM of the RAPM where the model of
the 6RSS PM is used as its core. An identical procedure is
implemented in Section 5 by the Lagrange-D’Alembert
formulation. The structure of dynamic modelling in the
following two sections are given in Figure 4.

3.3 Singularity analysis

To analyse the singular configurations of the mechanism, a
6◊1 constraint vector is defined as

L u;qEEð Þ¼

kOSG1þG1S1� OSOMþOMM1ð Þk2�kS1M1k2
..
.

kOSG6þG6S6� OSOMþOMM6ð Þk2�kS6M6k2

2
64

3
75¼06�1:

(25)
Its first time-derivative is

JA _u þ JW _qEE ¼ 06� 1; ð26Þ
where

JA ¼ Jacobian L u; qEEð Þ; uð Þ;
JW ¼ Jacobian L u; qEEð Þ; qEEð Þ;

and their sizes are 6◊6 and 6◊4, respectively. It is also
noted that the ith(i=1,…,6) row of L (u, qEE) is the
function of ui and qEE, then the non-diagonal entries of JA
must be zero, i.e., JA is a diagonal matrix.

From Section 5.3 of [26], there are three sorts of
singularity conditions:

1: An inverse kinematic singularity occurs when JA is
rank-deficient, i.e.,

det JAð Þ ¼ 0: ð27Þ
Thus, at least one diagonal entry of JA is zero. In this

case, a motion of the actuators does not lead to the
displacement of the end effector.
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2. A direct kinematic singularity occurs when JW is
rank-deficient, i.e.,

det JWð Þ < 4: ð28Þ
In this case, the end effector can possess uncontrollable

motions in some directions while all actuators are locked.
3. Combined singularities occurs when both equations

(27) and (28) are valid. In this case, the end effector can
remain stationary while the actuators undergo some
infinitesimal motions. On the other hand, it also can
undergo infinitesimal displacements in some directions
while all actuators are locked.
4 Generalized momentum approach

In writing the EOM by this approach, it must be kept in
mind that the forces acting at the end effector via the two
HKPs are ideal constraint forces rather than active forces,
as such, they do not appear in the formulation. In this
section, Model 1 is built by directly applying this approach
to the RAPM, and in Model 2, the dynamic model of the
non-redundantly actuated counterpart, namely, the 6RSS
PM is firstly built, then the HKP constraints are modelled,
to arrive at the dynamic model of the RAPM finally.
4.1 Model 1

Under this approach, the kinetic and gravitational
components of the generalized forces of each moving body
is obtained by differentiating its generalized momentum
and potential energy with respect to time and qEE,
respectively. The EOM of the RAPM is acquired by the
law of power equivalence: the power generated by the
generalized forces of all rigid bodies in the mechanism is
equivalent to that by actuating torques from actuators and
external wrenches from the environment.
4.1.1 The end effector

On the one hand, the generalized momentum of the end
effector is computed as

qEE1 ¼ MEE⋅
VOM

vEE

� �
¼ BEE1⋅ _qEE; ð29Þ

where MEE ¼ mEE⋅E3

IEE

� �
is the 6� 6 inertia dyad, mEE

and IEE are the mass and the inertia matrix with respect to
OM and expressed in {S}, respectively. By equations (8)

and (11), it can be found thatBEE1 ¼ MEE⋅
M1b

M0b

� �
, and the

size of qEE1 is 4� 1.
The kinetic component of the generalized force acting

on the end effector can be computed as

FK
EE1 ¼ _qEE1 ¼ _BEE1⋅ _qEE þ BEE1⋅€qEE: ð30Þ
On the other hand, the potential energy of the end
effector is

PEE1 ¼ mEE⋅g⋅Z: ð31Þ
where g=9800m/s2 is the gravitational acceleration. The
gravitational component of the generalized force is

FG
EE1 ¼

∂PEE1

∂qEE

: ð32Þ

4.1.2 The ith chain

As far as the coupler SiMi of the ith kinematic chain is
concerned, by virtue of equations (20) and (23), its
generalized momentum is computed as

qSiMi1
¼ MSiMi

⋅ VEi

vSiMi

� �
¼ BSiMi1⋅qEE; ð33Þ

whereMSiMi
¼ mSiMi

⋅E3

ISiMi

� �
is the 6� 6 inertia dyad

of SiMi, mSiMi
andISiMi

are the mass and the inertia
matrix with respect to OM and expressed in {S},

respectively, and BSiMi1 ¼ MSiMi
⋅ JEi

Ni0SR⋅RvSiMi

� �
⋅M3i.

The kinetic component of the generalized force acting on
SiMi is computed as

FK
SiMi1

¼ _qSiMi1
¼ _BSiMi1⋅qEE þ BSiMi1⋅€qEE: ð34Þ

The potential energy of SiMi is

SeeFormulainPDF

PSiMi1 ¼ mSiMi
⋅g⋅OSEi 3ð Þ; ð35Þ

whereOSEi (3) is the third term of OSEi. The gravitational
component of the generalized force is

FG
SiMi1

¼ ∂PSiMi1

∂qEE

: ð36Þ

For the crank GiSi, its generalized momentum is

qGiSi1
¼ mGiSi ⋅E3

IGiSi

� �
⋅ VGi

vGiSi

� �
¼ BGiSi ⋅ _ui: ð37Þ

where BGiSi
¼ 03� 1

CiSR :;3ð Þ⋅IGiSi

� �
is a constant6� 1vec-

tor, and the scalar IGiSi
is the rotational inertia of GiSi

around theZCi
axis of frame{Ci}. As such, its kinetic

component of the generalized force is

FK
GiSi

¼ _qGiSi1
¼ BGiSi ⋅€ui: ð38Þ

BecauseGi is a fixed point in {S}, its potential energy is
constant and computed as
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PGiSi1 ¼ mGiSi ⋅g⋅OSGi 3ð Þ ð39Þ

in whichOSGi (3) is the third term of OSGi. Thereby, its
gravitational component of the generalized force is

FG
GiSi1

¼ ∂PGiSi1

∂qEE

¼ 04� 1: ð40Þ

4.1.3 The overall mechanism

In the entire mechanism, the instantaneous power
generated from the sum of the generalized forces on all
the moving bodies is balanced by that from the input
torques and bite force. As such, one can write

qTEE⋅ FK
EE1þFG

EE1þ
X6
i¼1

FK
SiMi1

þFG
SiMi1

þ
X6
i¼1

FK
GiSi1

þFG
GiSi1

 !

¼uT ⋅tþ VOM

vEE

� �T
⋅WFB ;

ð41Þ
wheretis the6� 1actuating torque vector by the six

actuators, andWFB
is the6� 1wrench vector by the bite

force FB. Substituting equations (8), (11), and (17) into
equation (41), and rearranging the term byWFB

give rise to

qTEE⋅

FK
EE1þFG

EE1þ
P6
i¼1

FK
SiMi1

þFG
SiMi1

þ
X6
i¼1

FK
GiSi1

þFG
GiSi1

�FEE1

0
BBBB@

1
CCCCA

¼qTEE⋅J
T
u1⋅t; ð42Þ

4526+++++++where FEE1 ¼ M1b

M0b

� �T
⋅WFB

is the gen-

eralized force vector by FB, Ju1 ¼
M31 1;:ð Þ

..

.

M36 1;:ð Þ

2
64

3
75 is the 6� 4

Jacobian matrix mapping q_EE into u_, i.e., u_=Ju1⋅q_EE, and is
the first row of. Because qEE is the independent generalized
coordinate vector of the entire mechanism under study, q_EE
is free to vary, thus one can obtain

FK
EE1 þ FG

EE1 þ
X6
i¼1

FK
SiMi1

þ FG
SiMi1

þ
X6
i¼1

FK
GiSi1

þFG
GiSi1

� FEE1 ¼ JTu1⋅t; ð43Þ

which is the inverse dynamic model of the RAPM and it
contains four equations and six unknowns.

4.2 Model 2

In this model, the EOM of the 6RSS PM without HKP
constraints is firstly written, then the constraints from two
HKPs are modelled, to finally reach the model of the
RAPM, where the model of the 6RSS PM is utilised as its
core. However, it must be kept in mind that now the kinetic
and gravitational components of generalized forces are
functions of XEE;XEE;XEE rather than qEE; qEE; qEE. In
the 6RSS PM, the step about the instantaneous power
equivalence among the sum of the generalized forces on all
the moving bodies, the input torques, and the bite force is
as follows:

XT
EE⋅

FK
EE2 þ FG

EE2 þ
X6
i¼1

FK
SiMi2

þ FG
SiMi2

þ
X6
i¼1

FK
GiSi2

þ FG
GiSi2

0
BBB@

1
CCCA

¼ uT ⋅t VOM

vEE

� �T
⋅WFB ; ð44Þ

whereFK
EE2,F

G
EE2,F

K
SiMi2

,FG
SiMi2

,FK
GiSi2

andFG
GiSi2

are the
kinetic and gravitational components of the generalized
force acting on the end effector, the ith coupler and the ith
crank, respectively. They can be computed in an identical
manner as their counterparts in the last section; thus, the
process is omitted to save pages. After the two constraints
from HKPs are exerted on the end effector, its DOFs are
changed from XEE to qEE. Then using equations (8), (9),
and (11), equation (44) can be rewritten as

qTEE⋅M
T
J ⋅

FK
EE2 þ FG

EE2 þ
P6
i¼1

FK
SiMi2

þ FG
SiMi2

þ
X6
i¼1

FK
GiSi2

þ FG
GiSi2

� FEE2

0
BBBB@

1
CCCCA

¼ qTEE⋅M
T
J ⋅J

T
u2⋅t; ð45Þ

where FEE2 ¼ M1a

M0a

� �T
⋅WFB

is the generalized force

vector by the bite forceFB, Ju2 is the 6� 6 Jacobian matrix
mappingX_EE to u_, namely, u_=Ju2⋅X_EE. Because q_TEE is free
to vary, it can be rewritten as

MT
J ⋅

FK
EE2 þ FG

EE2 þ
X6
i¼1

FK
SiMi2

þ FG
SiMi2

þ
X6
i¼1

FK
GiSi2

þ FG
GiSi2

� FEE2

0
BBBB@

1
CCCCA

¼ MT
J ⋅J

T
u2⋅t; ð46Þ

which is the model of the RAPM with four equations
and six unknowns. It must be emphasised that even though
the generalized forces in the bracket are ultimately
functions of qEE; qEE; qEE, they are directly expressed
and computed by XEE;XEE;XEE. In this manner, the
strong coupling in the parasitic motion variables Z and by
qEE is completely alleviated, reducing the computational
complexity to a huge degree, which will be exhibited in
Section 6.2.1.
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One can easily find that, by substituting only equations
(8) and (11) into equation (44), and “deleting” the
independent vector X_EE produces

FK
EE2 þ FG

EE2 þ
X6
i¼1

FK
SiMi2

þ FG
SiMi2

þ
X6
i¼1

FK
GiSi2

þ FG
GiSi2

� FEE2

¼ JTu2⋅t ð47Þ

which is theEOMof the6RSSPMwithoutHKPs.That is
tosay, fromthecomparisonbetweenequations (46)and(47),
the EOM of the RAPM can be easily generated by left-
multiplyingMT

J at the two sides of that of the 6RSS PM,
which is used as the core of the dynamicmodel of theRAPM.

5 Lagrange-D’Alembert formulation

In writing the EOM of the RAPM by this formulation,
there are two models to achieve the EOM in this section: in
Model 1, the EOM is directly formatted to the RAPM;
while in Model 2, firstly, the dynamic model of the 6RSS
PM is built, and next, the two HKP constraints are
modelled, to finally obtain the model of the RAPM of
interest.

5.1 Model 1

In this model, this formulation is directly applied to the
RAPM: at first, the mechanism is virtually cut at Mi, then
the dynamics of the end effector and the chains is
formulated in the task space and the joint space
independently by the Lagrangian formulation; next, the
complete dynamic model of the mechanism without
constraints is built. Finally, the model of the RAPM is
acquired via the D’Alembert formulation.

5.1.1 The end effector

The kinetic energy of the end effector is computed as

TEE1 ¼ 1

2
⋅ VOM

vEE

� �T
⋅MEE⋅

VOM

vEE

� �

¼ 1

2
⋅qTEE⋅MEE1⋅qEE ð48Þ

whereMEEis the inertia dyad that has been given in
equation (29), andMEE1 is its4� 4mass matrix that can be
expressed as

MEE1 qEEð Þ ¼ M1b

M0b

� �T
⋅MEE⋅

M1b

M0b

� �
ð49Þ

Its potential energy has already been derived in
equation (31). Regarding these, its Lagrange function is

LEE1 ¼ TEE1 � PEE1

¼ 1

2
⋅qTEE⋅MEE1 qEEð Þ⋅qEE �mEE⋅g⋅Z ð50Þ
One can find that

∂LEE1

∂qEE

¼ MEE1 qEEð Þ⋅qEE;

d

dt

∂LEE1

∂qEE

� 	
¼ MEE1 qEEð Þ⋅qEE þMEE1⋅qEE;

∂LEE1

∂qEE

¼ 1

2
E4 � qEEð ÞT ⋅ ∂MEE1 qEEð Þ

∂qEE

⋅qEE �mEE⋅g⋅
∂Z
∂qEE

ð51Þ
by virtue of which the Lagrangian formulation of the

end effector is

d

dt

∂LEE1

∂qEE

� 	
� ∂LEE1

∂qEE

¼ MEE1 qEEð Þ⋅qEE

þ CEE1 qEE; qEEð Þ⋅qEE

þ GEE1 qEEð Þ
¼ FEE1 qEEð Þ ð52Þ

where

CEE1 qEE; qEEð Þ ¼ MEE1 qEEð Þ � 1

2
E4 � qEEð ÞT ⋅ ∂MEE1 qEEð

∂qEE

GEE1 qEEð Þ ¼ mEE⋅g⋅
∂Z
∂qEE

SeeFormulainPDF

are the 4� 4 Coriolis/centrifugal force matrix and
the4� 1gravitational force vector of the end effector,
respectively.FEE1 (qEE) is the4� 1generalized force vec-
tor corresponding to the four DOFs of the end effector
and has been computed in equation (42); evidently, it is a
function of qEE. Now the dynamic model of the end
effector has been formulated straightforwardly in the
task space.
5.1.2 The ith chain

The EOMof a serial chain by the Lagrangian formulation is
well developed and can be found in many textbooks on
robotics. As such, the details are not given and only the
final EOM is written as

MGiSiMi
ðqriÞ⋅€qri

þ CGiSiMi
qri ; _qri

� �
⋅ _qriþGGiSiMi

qri

� �
¼ FGiSiMi

tið Þ
ð53Þ

where MGiSiMi
qri
� �

;CGiSiMi
qri ; qri
� �

;GGiSiMi
qri
� �

and
FGiSiMi

tið Þ are themass matrix, theCoriolis/centrifugal
force matrix, thegravitational force vector, and thegener-
alized force vector of the ith chain, respectively, and is the
actuating torque provided by the ith actuator. Note that
the model is built in the joint space, and

FGiSiMi
tið Þ ¼ ti

02� 1

� �
:.
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5.1.3 The overall mechanism

For the complete RAPM, the model without constraints
can be written as

Mqr qrð Þ⋅qr qEE ;qEE ;qEEð ÞþCqr qr;qrð Þ⋅qr qEE ;qEEð Þ
þGqr qrð Þ

MEE1 qEEð Þ⋅qEE þ CEE1 qEE; qEEð Þ⋅qEE þ GEE1 qEEð Þ

" #

¼ Fqr tð Þ
FEE1 qEEð Þ
� �

ð54Þ
where

qr qEEð Þ¼ qTr1 qEEð Þ ⋯ qTr6 qEEð Þ
h iT

;

Mqr qrð Þ¼diag MG1S1M1
qr1

� �
⋯ MG6S6M6

qr6

� �� �
;

Cqr qr;qrð Þ¼diag CG1S1M1
qr1 ;qr1

� �
⋯ CG6S6M6

qr6 ;qr6

� �� �
;

Gqr qrð Þ¼ GT
G1S1M1

qr1

� �
⋯ GT

G6S6M6
qr6

� �h iT
;

Fqr tð Þ¼ FT
G1S1M1

t1ð Þ ⋯ FT
G6S6M6

t6ð Þ
h iT

:

are the generalized coordinate vector, the mass matrix,
the Coriolis/centrifugal force matrix, the gravitational
force vector, and the generalized force vector of the six
chains without constraints, respectively.

Following the procedure of the D’Alembert formula-
tion, one can obtain that

Lqr1 qr;qr;qrð Þ�Fqr tð Þ� �T ⋅dqrþ LEE1 qEE ;qEE ;qEEð Þ
�FEE1 qEEð Þ

� 	T

⋅dqEE

¼
Lqr1

qr;qr;qrð Þ�Fqr tð Þð ÞT ⋅ ∂qr∂qEE

þ LEE1 qEE;qEE;qEEð Þ�FEE1 qEEð Þð ÞT

0
B@

1
CA⋅dqEE¼0:

ð55Þ
where

Lqr1
qr;qr;qrð Þ¼Mqr qrð Þ⋅qr qEE ;qEE ;qEEð Þ

þCqr qr; qrð Þ⋅qr qEE;qEEð Þ þ Gqr qrð Þ;
LEE1 qEE ;qEE ;qEEð Þ¼MEE1 qEEð Þ⋅qEE

þCEE1 qEE; qEEð Þ⋅qEE þ GEE1 qEEð Þ:
and dqrand dqEE are the virtual displacement vectors

formed by qr and qEE, respectively. Because dqEEis an
independent vector, it can be found that

Lqr1 qr;qr; qrð Þ � Fqr tð Þ� �T ⋅ ∂qr
∂qEE

þ LEE1 qEE;qEE; qEEð Þ � FEE1 qEEð Þð ÞT
¼ 01� 4: ð56Þ

Substituting equations (17) and (18) into equation (56)
and transposing the result, it can be equivalently written as

Mr1⋅qEE þ Cr1⋅qEEþGr1 � FEE1 ¼ JTu1⋅t ð57Þ
where

Mr1M
T
p1⋅M1 q1ð Þ⋅Mp1;

Cr1 ¼ MT
p1⋅ M1 q1ð Þ⋅Mp2 þ C1 q1;q1ð Þ⋅Mp1

� �
;

Gr1 ¼ MT
p1⋅G1 q1ð Þ;

Mp1 ¼ MT
31 ⋯ MT

36 E4


 �T
;Mp2 ¼ Mp1;

q1¼ qTr qEEð Þ qTEE


 �T
;

M1 q1ð Þ¼ Mqr qrð Þ
MEE1 qEEð Þ

� �
;C1 q1;q1ð Þ

¼ Cqr qr; qrð Þ
CEE1 qEE; qEEð Þ

� �
;G1 q1ð Þ¼ Gqr qrð Þ

GEE1 qEEð Þ
� �

:

In equation (57), there are four equations and six
unknowns, indicating the mechanism is under actuation
redundancy.

5.2 Model 2

In this model, the EOM of the 6RSS PM without HKP
constraints is written, as the function of XEE,X_EE,XEE.
Then the constraints from HKPs are modelled, to finally
reach themodel of the RAPM,where themodel of the 6RSS
PM is incorporated as its core.

Likewise, the Lagrange equation of the 6RSS PM free of
constraints among rigid bodies is written as

Mqr qrð Þ⋅qr XEE ;XEE ;XEEð ÞþCqr qr;qrð Þ⋅qr XEE ;XEEð Þ
þGqr qrð Þ

MEE2 XEEð Þ⋅XEE þ CEE2 XEE;XEEð Þ⋅XEE þ GEE2 XEEð Þ

" #

¼ Fqr tð Þ
FEE2 XEEð Þ
� �

:

ð58Þ
where qr XEEð Þ ¼ qTr1 XEEð Þ ⋯ qTr6 XEEð Þ
 �T

and
Mqr qrð Þ;Cqr qr; qrð Þ;Gqr qrð Þ;Fqr tð Þ have identical struc-
tures as their counterparts in equation (54). However, it
must be remembered that they are functions of XEE,X_EE,
XEE rather than qEE,q_EE,qEE. Specifically, differentiating
equation (15) with respect to time once and twice, and
rearranging the results for the six chains prodocue

qr ¼
M31

⋮
M36

2
4

3
5⋅XEE; qr

¼
M31

⋮
M36

2
4

3
5⋅XEE þ

M31

⋮
M36

2
4

3
5⋅XEE: ð59Þ

By the D’Alembert formulation, one can obtain

Lqr qr;qr; qrð Þ � Fqr tð Þ� �T ⋅dqr þ LEE2 XEE ;XEE ;XEEð Þ
�FEE2 XEEð Þ

� 	T

⋅dXEE

¼
Lqr qr;qr;qrð Þ�Fqr tð Þð ÞT ⋅ ∂qr

∂XEE

þ LEE2 XEE;XEE;XEEð Þ � FEE2 XEEð Þð ÞT

0
B@

1
CA⋅dXEE ¼ 0

ð60Þ
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where

Lqr qr;_qr;�qrð Þ ¼ Mqr qrð Þ⋅qr XEE;XEE;XEEð Þ
þCqr qr; qrð Þ⋅qr XEE;XEEð ÞþGqr qrð Þ;LEE2

XEE;_XEE;�XEEð Þ ¼ MEE2 XEEð Þ⋅XEE

þCEE2 XEE; _XEE

� �
⋅XEE þ GEE2 XEEð Þ:

Substituting equation (59) into equation (60) and
transposing the result give rise to

dXT
EE⋅ Mr2⋅€XEE þ Cr2⋅€XEEþGr2 � FEE2

� �
¼ dXT

EE⋅J
T
u2⋅t: ð61Þ

where

Mr2¼M
T

p1⋅M2 q2ð Þ⋅Mp1;

Cr2 ¼ M
T

p1⋅ M2 q2ð Þ⋅Mp2 þ C2 q2;q2ð Þ⋅Mp1

� �
;

Gr2 ¼ M
T

p1⋅G2 q2ð Þ;
Mp1 ¼ M

T

31 ⋯ M
T

36 E6

h iT
;Mp2 ¼ Mp1;

q2¼ qTr XEEð Þ XT
EE


 �T
;

M2 q2ð Þ¼ Mqr qrð Þ
MEE2 XEEð Þ
� �

;C2 q2;q2ð Þ¼ Cqr qr; qrð Þ
CEE2 XEE;XEEð Þ
� �

;

G2 q2ð Þ¼ Gqr qrð Þ
GEE2 XEEð Þ
� �

:

and Ju2 can be found in equation (46).
After the two HKP constraints are imposed to the end

effector, its DOFs have transferred fromXEE to qEE. Thus,
from equation (9), one can obtain

dXEE ¼ MJ ⋅dqEE: ð62Þ
Putting it into equation (61) and “deleting” the free

termdqTEEproduce

MT
J ⋅ Mr2⋅XEE þ Cr2⋅XEEþGr2 � FEE2ð Þ ¼ MT

J ⋅J
T
u2⋅t: ð63Þ

This set of equations is the model of the RAPM with
four equations and six unknowns.

From this process, there are two things should be
emphasised: the first is, though in equation (61), the terms
inside the bracket are functions of qEE,q_EE,qEE ultimately,
the numerical values of XEE,X_EE,XEE computed from
equations (6), (9), and (10) are directly used in them.That
is to say, themodel of the 6RSSPMis used as the core of the
model of the RAPM. It can alleviate the coupling in the
parasitic motion variables and boost the computational
efficiency significantly, and this will be illustrated in
Section 6.2.1. The second is, by “deleting” the term in
((61), one can find the following equation

Mr2⋅ €XEE þ Cr2⋅ €XEEþGr2 � FEE2 ¼ JTu2⋅t: ð64Þ
is the EOMof the 6RSS PM. In this regard, themodel of

the RAPM can be formatted by left-multiplyingMT
J to the

two sides of the EOM of the 6RSS PM, which is an identical
manipulation as in Section 4.2.
6 Numerical computations and discussions

To verify the methods and models in this paper, the
mechanism is commanded to follow a real incisor
trajectory in free chewing by a healthy human subject
which lasts 5 seconds. The trajectory from different
perspectives is given in the first four subplots in Figure 5.
The experimental setup and procedure to obtain the
mastication movements from human subjects can be
found in Chapter 6 of [3]. The corresponding mandibular
motions in terms of the four elements of qEE are computed,
using the same method in equation (38) of [1]. Next, via
equation (6), the numerical values of parasitic motion
variables Z andgin terms of qEE can be obtained. Finally,
the first and second time-derivatives of these six motion
variables are also computed via equations (9) and (10).
The values of XEE,X_EE,XEE versus time are provided in
the following six subplots.

Four interesting features in this chewing trajectory in
Figure 5 can be observed. Firstly, the sagittal view in the
XS-ZS plane is like a straight line, indicating the trajectory
is nearly concentrated on one plane. Secondly, from the last
six subplots, during the first one second, the motions of the
mandible are quite small. After that period, it performs a
rhythmic chewing motion with larger amplitudes of Z
andbthan those of X, Y, a and g, and the first and second
time-rates of Z andbare also larger than their counterparts,
indicating the chewing motions are dominated by the
mouth opening and closing movements. In the third place,
the lateral movement indicated by the values of Y,Y_,Y are
quite small. Finally, the trajectories of a and g are nearly
coincident in the time history, so are their first and second
time-rates. In following this predefined trajectory, numeri-
cal values of six diagonal entries of JA in equation (26) are
exhibited in Figure 6. It clearly shows that none of them is
zero and as a result, equation (27) is not satisfied and an
inverse singularity cannot occur. Meanwhile, det(JW)
always equals four in the time history and then equation
(28) is invalid. In these regards, the planned trajectory is
not passing the three sorts of singular configurations as
mentioned in Section 3.3.

Concerning the 6RSS PM, its six DOFs and their first
and second time-derivatives as a function of time are
identical as those in the final six subplots in Figure 5. As a
consequence, in the two mechanisms, the end effectors
undergo identical motions in six directions, and each of
the six chains in them also undergoes identical motions in
terms of the numerical values of €qri ; €qri ; €qri . In tracking this
prescribed chewing trajectory, the 6RSS PM is at or near
singular configurations using the analysis of the RAPM as
in Section 3.3. Correspondingly, an experimentally
measured 3D bite force in {S} on peanuts by a healthy
human subject on the molars in Figure 7, is exerted onto
the right molar of the end effector. In this figure, there are
in total five bursts in the three components of the bite
force in the timeline, and each of the burst corresponds to
the jaw closing portion for each chew. The size of the z
component is larger than those in the other two directions,
because the force in this direction plays a more important
role in the food chewing process.



Fig. 5. Motions of the end effector in 3D space and time history [22].
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6.1 Solutions of two methods
6.1.1 Generalized momentum approach

In both Models 1 and 2 by this approach, there are four
equations and six unknowns in equations (43) and (46),
indicating there are infinite solutions for the torque
distribution theoretically. A closed-form solution for the
actuating torques can be obtained simply by the pseudo-
inverse of JTu1 and MT

J ⋅J
T
u2, respectively, as

t ¼ JTu1
� �þ⋅ FK

EE1
þFG

EE1
þ
X6
i¼1

FK
SiMi1

þFG
SiMi1

þ
X6
i¼1

FK
GiSi1

þFG
GiSi1

� FEE1

0
BB@

1
CCA;

t ¼ MT
J ⋅J

T
u2

� �þ⋅MT
J ⋅

FK
EE2

þFG
EE2

þ
X6
i¼1

FK
SiMi2

þFG
SiMi2

þ
X6
i¼1

FK
GiSi2

þ FG
GiSi2

� FEE2

0
BBBB@

1
CCCCA;

ð65Þ
which corresponds to the minimum of actuating

torques. From model 1, the input torquestversus time
along the chewing trajectory are exhibited in the first
column of Figure 8, and the torque differences between
Model 1 and Model 2 in this approach are given in the
second column. From the first column, one can see that the
five bursts produced by each actuator are tightly following
those in the bite force in the time history in Figure 7, rather
than those in the free chewing motion in Figure 5. It means
the torque cost required by the bite force is larger than that
by the inertia and gravitational forces of the mechanism
itself. More importantly, in the second column the
differences are quite minor, thus, the two models are
equivalent in terms of the numerical results.
6.1.2 Lagrange-D’Alembert formulation

Via the two models by the Lagrange-D’Alembert principle
in equations (57) and (64), the actuating torques can also
be minimised using the pseudo-inverse solution, respec-
tively, as

t ¼ JTu1
� �þ⋅ Mr1⋅€qEE þ Cr1⋅€qEEþGr1 � FEE1ð Þ;

t ¼ Ju2⋅MJð ÞT
� �þ

⋅MT
J ⋅ Mr2⋅€XEE þ Cr2⋅€XEEþGr2 � FEE2

� �
:

ð66Þ



Fig. 6. Numerical values of the diagonal elements of JA.

Fig. 7. 3D bite force profiles on peanuts [3].
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The actuating torques fromModel 1 and the differences
between the actuating torques from the two models under
this formulation are equivalent to those in Figure 8,
respectively. As a consequence, they are not exhibited for
the sake of brevity. Furthermore, the equivalent results
demonstrate the correctness and accuracy of the developed
four models by the two methods.

6.2 Discussion
6.2.1 Computational demands
The computational efficiency of inverse dynamics is
crucial to the real-time application of the RAPM, and it is
an important factor in judging the performance of the
model. To assess the suitability of the built models for
real-time control, reliable quantitative measurement of
the computational load is critical. The time consumption
is summarised in Table 1, where GM and L-D are short for
the generalized momentum approach and the Lagrange-
D’Alembert formulation, respectively, and the number 1
and 2 are meaning the first and the second model in the
corresponding method, respectively. The procedures
under each model are all divided into symbolic and
numeric computations, and have been implemented in
programs written in Matlab, using an Intel(R) Core(TM)
i7-8700K CPU@3.70GHz and 64GB of RAM. By the
symbolic EOMs, it is rather convenient to obtain the
mathematical functions of the Jacobian matrix, the
kinetic and gravitational components of the generalized
forces, etc. in these methods, and they can be called in the
numerical computations.



Fig. 8. Torques from Model 1 and differences between the two models by the generalized momentum approach.

Table 1. Computational time of the RAPM and the 6RSS PM (unit: s).

RAPM GM 1 L-D 1 GM 2 L-D 2 6RSS PM GM L-D

Symbolic 21.492 35.802 5.858 6.579 5.858 6.579
Numeric 14.369 25.463 2.724 3.462 1.400 3.439
Total 35.861 61.265 8.582 10.041 7.258 10.018
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In the dynamic models where the two methods are
directly utilised to the RAPM, i.e., in the first two columns
in Table 1, the model under the newly developed
generalized momentum approach is more computationally
efficient than that under the classical Lagrange-D’Alem-
bert formulation by about 40% and 43.6% in the symbolic
and numeric computations, respectively. The reason for the
superiority of the generalized momentum approach roots in
the high efficiency in deriving the Coriolis/centrifugal force
matrix by the differentiation of the generalized momen-
tum, as stated in [16,17]. In the twomodels where the EOM
of the 6RSS PM is incorporated as the core of the model of
the RAPM, namely, from the third and fourth columns, one
can also reach the conclusion that the generalized
momentum approach is faster than the Lagrange-D’Alem-
bert formulation.

From the comparisons between the first four columns
in Table 1, it can be seen using the dynamics of the 6RSS
PM can boost the efficiency to a huge degree. The total
time consumption by the two methods in Model 2 is only
about 22.5% and 16.2% of that in Model 1, respectively.
The main reason for this considerable improvement is that
the resulting complexity of Model 1 by each method is a
consequence of using the complex symbolic expressions of
Z and g from equation (6), and the Jacobian matrix MJ
from equation (9), for qEE,q_EE,qEE are used directly. By
contrast, in Model 2, even though the matrices and vectors
are ultimately functions of qEE,q_EE,qEE, they can be
computed by the numerical values of XEE,X_EE,XEE
directly, which can be available from qEE,q_EE,qEE at the
beginning of the computation, and then are fed into
equations (46) and (63). In this manner, the strong
coupling between the two parasitic motion variables Z
and g and the four DOFs qEE is completely alleviated. In
other words, Model 2 is free of the complex symbolic
computations brought by Z,g, and MJ. As such, the
symbolic mathematical functions, which are called and
used in numerical computations, are less complex than
those in Model 1, offering simpler possible computational
algorithms. In this regard, a shortcut that can greatly
boost the computational efficiency is found, by incorpo-
rating the dynamics model of the 6RSS PM as the core of
that of the RAPM. On this basis, a left-multiplication ofis
simply performed to the two sides of EOMs of the 6RSS
PM as in equations (47) and (64). Indeed, this shortcut is
inspired intuitively by the comparison between the
RAPM and the 6RSS PM: the former is generated by
the two HKP constraints onto the end effector of the
latter.

6.2.2 Influence of HKP constraints

It is remembered that the RAPM is built by imposing two
HKP constraints onto the end effector of the 6RSS PM.
Thereby, the dynamic model of the 6RSS PM free of HKPs
is also built via the foregoing two methodologies, as far as
the role of the HKP constraints in the numerical results and
the computational cost is concerned. equations (47) and



Fig. 9. Torques required by the end effector, the six cranks, and the six couplers in the RAPM.

Table 2. Four indices in the RAPM and the 6RSS PM
(unit: N.m).

F FEE FSM16
FGS16

RAPM 0.0207 0.0191 0.0016 0.0010
6RSS PM 0.0723 0.0690 0.0034 0.0011
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(64) are the EOMs of the 6RSS PM by these two methods,
and the variables inside them are functions of XEE,X_EE,
XEE, which are identical as in the final six subplots of
Figure 5. By these two approaches, its inverse dynamics
problem is reduced to solving a system of six linear
algebraic equations in six unknowns. The input torques can
be uniquely determined and there is no optimisation as in
the RAPM. Their profiles in the time history are similar to
those in the first column of Figure 6, and the only difference
is the magnitudes of the torques in the 6RSS PM are larger
than those in the RAPM. Thus, they are not exhibited to
save pages.

Specifically, the contributions the total torques by the
end effector, the six couplers, and the six cranks,
respectively in the RAPM and the 6RSS PM are to be
discovered and compared. in the RAPM, according to the
EOM by the generalized momentum approach, the torques
required by the abovementioned three parts are given in
the three columns of Figure 9, respectively. Clearly, the
bursts in each actuator are tightly tracking those in the
free-chewing trajectory as shown in the final six subplots in
Figure 5. In addition, in one subplot, the torques offered by
each pair of actuators are more or less equivalent. A very
large portion of the total torques is required by the end
effector, but those by the couplers and the cranks are quite
minor. From the comparison between Figure 9 and the first
column of Figure 8, it is obvious that the torque cost by the
motion of the RAPM itself is quite small, but the torque
required to sustain the bite force occupies a large portion.
In the 6RSS PM, the torque distributions by the three parts
are experiencing a similar profile as those in Figure 9 but
with larger magnitudes, thus they are not exhibited to save
pages.

To quantitatively justify and compare the influence by
HKPs to the actuating torques, in the RAPM and the 6RSS
PM, four indices are set about the numerical values of total
actuating torques, and torques required by the aforemen-
tioned three parts as

F ¼ 1

N

XN
i¼1

ktk; FEE ¼ 1

N

XN
i¼1

ktEEk;

FSM16
¼ 1

N

XN
i¼1

ktSM16
k; FGS16

¼ 1

N

XN
i¼1

ktGS16k:
ð67Þ

where

t ¼ JTu1
� �þ⋅

FK
EE1

þFG
EE1

þ
X6
i¼1

FK
SiMi1

þFG
SiMi1

þ
X6
i¼1

FK
GiSi1

þFG
GiSi1

0
BBBB@

1
CCCCA;

tSM16
¼ JTu1
� �þ⋅ X6

i¼1

FK
SiMi1

þ FG
SiMi1

 !
;

tEE ¼ JTu1
� �þ⋅ FK

EE1 þ FG
EE1

� �
; !
tGS16
¼ JTu1
� �þ⋅ X6

i¼1

FK
GiSi1

þ FG
GiSi1

:

and N is the number of sampling points in the time
history. Obviously, the total actuating torques t can also be
obtained from Model 2 by the generalized momentum
approach, or from the two models by the Lagrange-
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D’Alembert formulation.tEE; tSM16
; tGS16

can also be com-
puted from Model 2 by the generalized momentum
approach; however, by the Lagrange-D’Alembert formula-
tion, the contributions by each of the three parts to the
total actuating torques are not as easily available as from
the generalized momentum approach.

The numerical values of these indices of the RAPM and
the 6RSS PM are given in the first and the second line of
Table 2, respectively. The value of F is always 0.0207N.m
from the RAPM under the four models; while in the 6RSS
PM, F equals 0.0723N.m from two methods and is larger
than that by the RAPM over three times. It means that
redundant actuation canminimise the input torques, which
is a well-established and well-known opinion and has been
proved in a number of publications, even though the way to
generate redundant actuations in the mechanism is rather
different from the two primary methods in [20]: they are
caused by transferring two DOFs into parasitic motions
under the HKP constraints. In other words, smaller torques
are devoted to the remaining four DOFs, even though they
can give rise to two parasitic motion variables. Besides, the
torques required to maintain the motion of the aforemen-
tioned three parts increase by 72.32%, 52.94%, and 9.09%
from the RAPM to the 6RSS PM, respectively. Thereby,
both the proportion in the end effector and the torques
required by it are the largest. In these regards, an
important conclusion can be reached: even though the
end effector undergoes identical motions in six directions in
terms of displacements, velocities, and accelerations in
both the RAPMand the 6RSSPM, the required torques are
evidently smaller in the parasitic motion variables Z and
gin the RAPM than those by the corresponding two DOFs
in the 6RSS PM.

The computational time for the 6RSS PM under the
two methods is given in the last two columns of Table 1. It
is noted that the symbolic computational time is equivalent
to that in Model 2 by each method in the RAPM,
respectively, because one common file in Matlab for the
symbolic computation is shared by the RAPM in Model 2
and the 6RSS PM. The numerical computational burden of
the generalized momentum approach is also lower than
that of the Lagrange-D’Alembert formulation, which is an
identical conclusion found in the RAPM. Meanwhile, as
expected, the time used in the twomethods in the 6RSSPM
is comparable to that in Model 2 by the two methods,
respectively, because the core of the model of the 6RSS PM
is used in Model 2, and the difference is only a numerical
left-multiplication ofMT

J .
By comparing the time consumption between the 6RSS

PM and Model 1 from each method in the RAPM, where
both the two methods are directly used to the two
mechanisms, it is found that the two HKP constraints
greatly increase the computational complexity. The reason
why the RAPM consumes considerably more time is that
the complex expressions of parasitic motion variables Z
andg, and the JacobianmatrixMJ, etc. caused by the HKP
constraints greatly increase the demands in the symbolic
computations. On this basis, more complicated numerical
computations are processed. By contrast, in the 6RSS PM,
Z andgare directly used as DOFs which are much more
straightforward, and there is no Jacobian matrix MJ.
7 Conclusion

The inverse dynamics of a spatial RAPM constrained by
two HKPs was solved systematically via the generalized
momentum approach and the Lagrange-D’Alembert
formulation. The methods and models were thoroughly
studied and compared. Generally, studies of inverse
dynamics concentrate on RAPMs with only lower
kinematic pairs. Thereby, the scientific contribution of
this paper is the deep study of inverse dynamics in a spatial
RAPMwith both lower kinematic pairs and HKPs in terms
of revealing the nature of HKP constraints. Specifically, the
following conclusions can be drawn:
– The two models in each method give rise to identical
numerical results; however, by incorporating the
dynamic model of the 6RSS PM as the core of that
of the RAPM in Model 2 in each method, the
computational efficiency has been enhanced remark-
ably as fast as that of the 6RSS PM without any
simplification or loss of accuracy.

– The two methods are equivalent in terms of the
numerical results; nonetheless, the computational
demands are greatly lower in the newly developed
generalized momentum approach than in the classical
Lagrange-D’Alembert formulation.

– By comparing the computational requirements be-
tween the RAPM and the 6RSS PM, it is discovered
that the HKP constraints greatly raise the computa-
tional complexity.

– Compared to the 6RSS PM with six DOFs, in the
RAPM smaller torques are devoted to its four DOFs
and two parasitic motion variables. In other words, the
torques required by the parasitic motion variables Z
and gin the RAPM are smaller than those by the
corresponding DOFs in the 6RSS PM.

The models in this paper can provide a great potential
to facilitate the real-timemotion and/or force control of the
RAPM. It is also expected to straightforwardly extend the
presented process to a class of RAPMs whose end effectors
are constrained by the base directly.

In future work, the new form of Lagrange-D’Alembert
formulation in [27] for dynamic modelling of PMs will be
employed to this RAPM.

Nomenclature

To comprehend the paper conveniently, a list of symbols
together with their definitions is provided in the following
table at their appearance order.
{S} Inertia frame
 {M} Frame established at the
mass centre OM of the end
effector
GiSi(i=1,…,6)
 The ith crank

SiMi(i=1,…,6)
 The ith coupler

{Ci}
 Frame established at the fixed

point Gi of the ith crank

{Ni}
 Frame attached at the mass

centre Ei of SiMi
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Tj (j=L, R)
 Left and right condyle ball
centres
OSOM
 3◊1 position vector ofOM in {S}

MSR
 Rotation matrix from {S} to

{M}

RX (a),RY (b),
andRZ (g)
Rotation matrices about XM,
YM, and ZM axes by Bryant
anglesa, b, andg, respectively
XEE
 6◊1 vector grouping six motion
variables of the end effector
X_EE,XEE
 First and second time-deriva-
tives of, respectively
pi(i=1,…,6)
 Parameters describing the shape
of surfaces where condyle ball
centres TL and TR slide on
X,Y, and Z
 Parameters describing transla-
tions of the end effector
a,b, and g
 Bryant angles describing rota-
tions of the end effector
qEE
 4◊1 vector grouping four DOFs
of the end effector
q_EE,qEE
 First and second time-deriva-
tives of qEE, respectively
vEE
 Angular velocity of the end
effector
MJ
 6◊4 Jacobian matrix between
XEE and qEE
03
 3◊3 zero matrix

E3
 3◊3 identity matrix

u
 6◊1 vector containing the dis-

placements of six active joints

biandgi
 Euler angles expressing the ro-

tation of the ith coupler

kSiMik
 Length of SiMi

OMMiandMOMMi
 Vectors ofOMMiin {S} and

{M}, respectively

OSGi
 3◊1 constant position vector of

Gi in {S}

Ci0SR
 Rotation matrix from {S} to

{Ci}at the initial configuration
of the mechanism
RZ (ui)
 Rotation matrix about
theZCi

axis byui

kGiSik
 Length ofGiSi

qri
 3◊1 generalized vector specify-

ing the configuration of the ith
kinematic chain
M1i
 Jacobian matrix of OSGi+
GiSi+SiMi with respect to qri
M2i
 Jacobian matrix ofOSOM+
OMMi with respect toqEE
vSiMi

Angular velocity of SiMi
VEi

Translational velocity of mass
centre Ei of SiMi
JEi

Jacobian matrix ofOSEiwith re-
spect toqri
vGiSi

Angular velocity of GiSi
L (u, qEE)
 6◊1 constraint vector to analyse
singularities
JA
 Jacobian matrix betweenL (u,
qEE)and u
JW
 Jacobian matrix betweenL (u,
qEE)andqEE
qEE1
 Generalized momentum of the
end effector in Model 1 under
the generalized momentum ap-
proach
MEE
 6◊6 inertia dyad of the end
effector
mEE and IEE
 Mass and inertia matrix of the
end effector with respect to OM
and expressed in {S}, respec-
tively
FK
EE1
 Kinetic component of the gener-

alized force acting on the end
effector in Model 1 under the
generalizedmomentum approach
PEE1
 Potential energy of the end
effector in Model 1 under the
generalized momentum ap-
proach
g
 Gravitational acceleration

FG
EE1
 Gravitational component of the

generalized force acting on the
end effector in Model 1 under
the generalized momentum ap-
proach
qSiMi1
 Generalized momentum of SiMi
in Model 1 under the generalized
momentum approach
MSiMi

6◊6 inertia dyad of SiMi
mSiMi
andISiMi
Mass and inertia matrix of SiMi
with respect to OM and
expressed in {S}, respectively
FK
SiMi1
Kinetic component of the gener-
alized force acting on SiMi in
Model 1 under the generalized
momentum approach
PSiMi1
 Potential energy of SiMi in
Model 1 under the generalized
momentum approach
FG
SiMi1
Gravitational component of the
generalized force in Model 1
under the generalized momen-
tum approach
mGiSi
andIGiSi
Mass and rotational inertia of
GiSi around theZCi

axis of frame
{Ci}, respectively
FG
GiSi1
Gravitational component of the
generalized force of GiSi in
Model 1 under the generalized
momentum approach
t
 6◊1 actuating torque vector by
the six actuators
WFB

6◊1 wrench vector by the bite
force FB
FB
 3◊1 bite force vector

Ju1
 6◊4 Jacobian matrix mapping

q_EE into u_

FEE1
 4◊1 generalized force vector by

FB in Model 1 under the gener-
alized momentum approach
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FK
EE2andF

G
EE2
 Kinetic and gravitational com-

ponents of the generalized force
acting on the end effector,
respectively, in Model 2 under
the generalized momentum ap-
proach
FK
SiMi2

andFG
SiMi2
Kinetic and gravitational com-
ponents of the generalized force
acting on the ith coupler, re-
spectively, in Model 2 under the
generalized momentum ap-
proach
FK
GiSi2

andFG
GiSi2
Kinetic and gravitational com-
ponents of the generalized force
acting on the ith crank, respec-
tively, in Model 2 under the
generalized momentum ap-
proach
Ju2
 6◊6 Jacobian matrix mapping
X_EE into u_
TEE1
 Kinetic energy of the end effec-
tor in Model 1 under the
Lagrange-D’Alembert formula-
tion
LEE1
 Lagrange function of the end
effector in Model 1 under the
Lagrange-D’Alembert formula-
tion
CEE1(qEE,q_EE)
 4◊4 Coriolis/centrifugal force
matrix, gravitational force vec-
tor, and generalized force vector
of the end effector, respectively,
in Model 1 under the Lagrange-
D’Alembert formulation
MGiSiMi
qri
� �

GGiSiMi
qri
� �
3◊3 mass matrix, 3◊3 Coriolis/
centrifugal force matrix,
3◊1gravitational force vector,
and 3◊1 generalized force vector
of the ith chain, respectively, in
Model 1 under the Lagrange-
D’Alembert formulation
ti
 Actuating torque provided by
the ith actuator
dqr, dqEE, dXEE
 Virtual displacement vectors of
qr, qEE, and XEE, respectively
F, FEE, FSM16
, FGS16
Indices about the numerical
values of total actuating tor-
ques, and torques required by
the end effector, six couplers,
and six cranks, respectively
HKP
 Higher kinematic pair

RAPM
 Redundantly actuated parallel

mechanism

3D
 Three-dimensional

RSS
 Revolute-spherical-spherical

TMJ
 Temporomandibular joint

EOM
 Equations of motion

DOF
 Degree of freedom

PUS
 Prismatic-universal-spherical
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