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Abstract –Data assimilation (DA) is the process of merging information from prediction models with noisy
observations to produce an estimate of the state of a physical system. In ionospheric physics-based models,
the solar ionizing irradiance is commonly estimated from a solar index like F10.7. The goal of this work is
to provide the fundamental understanding necessary to appreciate how a DA algorithm responds to estimat-
ing an external parameter driving the model’s interpretation of this solar ionizing irradiance. Therefore, in
this work we allow the DA system to find the F10.7 value that delivers the degree of photoionization that
leads to a predicted electron density field that best matches the observations. To this end, we develop a
heuristic model of the ionosphere along the magnetic equator that contains physics from solar forcing
and recombination/plasma diffusion, which allows us to explore the impacts of strongly forced system
dynamics on DA. This framework was carefully crafted to be both linear and Gaussian, which allows
us to use a Kalman filter to clearly see how: (1) while recombination acts as a sink on the information
in the initial condition for ionospheric field variables, recombination does not impact the information in
parameter estimates in the same way, (2) when solar forcing dominates the electron density field, the prior
covariance matrix becomes dominated by its leading eigenvector whose structure is directly related to that
of the solar forcing, (3) estimation of parameters for forcing terms leads to a time-lag in the state estimate
relative to the truth, (4) the performance of a DA system in this regime is determined by the relative
dominance of solar forcing and recombination to that of the smaller-scale processes and (5) the most
impactful observations on the electron density field and on the solar forcing parameter are those observa-
tions on the sunlit side of the ionosphere. These findings are then illustrated in a full physics-based
ionospheric model using an ensemble Kalman filter DA scheme.
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1 Introduction

The ionosphere is a dynamic plasma enveloping the Earth
that interacts directly with the neutral components of the atmo-
sphere. The dynamical evolution of this mixture of ions, elec-
trons and neutral molecules is well-known to be strongly
governed by the external forcing being imposed on the iono-
sphere (Siscoe & Solomon, 2006, Codrescu et al., 2018). In
physics-based ionospheric modelling, the various external forc-
ings critical to predicting the evolution of the ionosphere are
thought to be due to solar radiation and solar wind, geomagnetic
and auroral dynamics, electrodynamic processes, and impor-
tantly wave motions in the neutral atmosphere (Rishbeth &

Mendillo, 2001; Fang et al., 2018). In addition to these, there
are also solar flares, solar cycle activity, and solar rotation that
impact in one way or another the ionosphere through ionization.
Gravity waves, thermospheric tides, and planetary waves in the
neutral atmosphere influence the ionosphere directly through the
transport of the ion/electron density fields and indirectly through
electrodynamic processes. In addition to this direct impact
through the neutrals, the thermospheric winds, temperature,
and density also respond to solar and geomagnetic activity,
which leads to changes in the amount of ionization as well as
the efficiency of recombination processes.

The fact that ionospheric modelling is so strongly controlled
by external forcing is the focus of this work, while at the same
time, our overarching goal is to further the understanding of iono-
spheric prediction by focusing on problems related to the impact*Corresponding author: daniel.hodyss@nrl.navy.mil
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of the specification of external model parameters on ionospheric
simulations. In general, the forecasting of a given state consists of
three main components. First, there is a physical model that sim-
ulates all of the known physics, chemistry, dynamics, etc. of the
ionosphere. This model consists of computer code that solves
mathematical equations that describe known physical laws. This
model of the ionosphere has a state vector defined as containing
all the variables within the model as well as all the parameters
used to specify external and internal processes. This model then
takes as input both initial conditions as well as parameter values
and propagates the ionospheric state vector forward in time.
Second, there are observations of the state in question. These
may be in situ observations or remotely sensed from satellite
or ground-based measurements, and they may directly observe
themodel state or may observe variables that can be derived from
the model state. Third, there is a data assimilation (DA) system
that combines short-termmodel forecasts with these observations
to produce initial conditions for the next forecast, as explained
further below. The overall goal is to minimize the difference
between future observations and the forecasts of the model state.
It is important to keep all of these aspects in mind when building
and evaluating a prediction system.

The focus of this manuscript is DA. DA, or what is some-
times referred to as “specification” in the space weather commu-
nity, is a set of mathematical techniques that merge information
from an ionospheric model with noisy observations to obtain an
estimate of the state of the ionosphere that is generally better than
either individually. DA occurs whenever a set of observations
are available and at each of these times, the DA proceeds to
use or “assimilate” this set of observations. This step in the pro-
cess where observations are used is referred to as a DA “cycle”.
At each of these DA cycles, the key statistical quantity, that DA
exploits to merge information from the ionospheric model with
the latest set of noisy observations, is the correlation between
the elements of the model’s state vector and the observations.
In ensemble-based DA, an ensemble of model runs, each with
slightly different initial conditions (e.g., E � B drifts, ion densi-
ties, ion temperatures, electrostatic potential, etc.) and parameter
values (e.g. F10.7, Ap, etc.), is used to predict this instantaneous
correlation of state-vector elements with each of the observa-
tions. We emphasize that the use of this correlation between
state-vector elements and the observed quantities allows for
observations of one variable (say, total electron content [TEC])
to update all other variables, even those that are of a different
type with different units. Once this information from correlations
is available to the present cycle the DA system proceeds to
update all parts of the state vector where there exists a non-zero
correlation with the observations. We emphasize here that this
correlation structure is not a fixed, climatological one, but an
evolving, instantaneous estimate that is recalculated at every sin-
gle cycle of the process. These correlation magnitudes may be
stronger in some cycles and weaker or even non-existent in
others. For example, in the ionosphere, strong correlations are
often observed between TEC and the parameter we use to predict
solar irradiance, i.e. F10.7. Bergot et al. (2013) showed correla-
tions as a function of latitude of greater than 0.7, with a maxi-
mum correlation of 0.93 at latitudes of 10 and 20 N (see their
Fig. 4). However, this correlation can vary with local time, with
the season, with the phase of the solar cycle, and with geomag-
netic activity. Allen et al. (2023) provide further examination of
the correlations of F10.7 and TEC using the SAMI3 model and

the Jet Propulsion Laboratory (JPL) Global Ionospheric Maps
(GIM). The point here is that a good ensemble DA system that
correctly includes the correlation of F10.7 and TEC will be able
to discriminate the level of correlation in both time and space
thereby properly adjusting the degree to which it updates state
variables with the information from the observations.

Now, with all of that said, DA works best when the obser-
vations are used to inform the state variables that most strongly
influence the evolution of the system. In tropospheric weather,
there exists a sensitive dependence on forecasts to the variables
constituting the initial condition such that using observational
information to inform the initial condition provides enormous
information content to the prediction of relevant field variables.
By contrast, and as discussed earlier, the ionosphere is largely
controlled by external forcing and not the initial condition.
Hence, DA in the context of space weather should focus on
using observational information to update those parameters in
the model that most strongly influence its evolution through
external forcing.

Parameter estimation for the external forcing within an
ensemble DA system using an ionospheric physics-based model
has been explored in several studies (Solomentsev et al., 2012;
Matsuo et al., 2013; Morozov et al., 2013; Codrescu et al.,
2018). Solomentsev et al. (2012) used an ensemble Kalman filter
(EnKF) in which the state vector was augmented with additional
parameters that describe an imposed E� B drift and neutral wind
velocity on the electron density field. They used an iterative pro-
cedure applied to their EnKF and showed that they could recover
these parameters using observations of total electron content
(TEC). Matsuo et al. (2013) use the Ensemble Adjustment
Kalman Filter (EAKF), which is a part of the Data Assimilation
Research Testbed (DART), with the Thermosphere-Ionosphere-
Electrodynamics General Circulation Model (TIEGCM) to
assimilate Challenging Minisatellite Payload (CHAMP) neutral
mass density measurements and electron density profiles from
the COSMIC/FORMOSAT-3 mission. They updated several
parameters including the F10.7 index and showed some
improvement in certain configurations of their system. Morozov
et al. (2013) also used the EAKF and DART with the Global
Ionosphere-ThermosphereModel (GITM) to assimilate CHAMP
neutral mass density measurements. They found that while the
state estimates of F10.7 did not always converge to the true val-
ues, the GITM output did in fact become substantially closer to
CHAMP measurements. Codrescu et al. (2018) set up a unique
ensemble Kalman filter in which the posterior perturbations gen-
erating the ensemble were fixed at each cycle andwere applied to
the parameters of F10.7, the interplanetary magnetic field, as well
as the speed and density of the solar wind. In addition to per-
turbing these parameters, Codrescu et al. (2018) estimated these
same parameters using their ensemble Kalman filter and similar
to Morozov et al. (2013) they showed that performance improve-
ments can be obtained in the quality of state variables even when
the parameters do not converge to observed values.

A fascinating result of this work is the performance
improvements seen when the parameters did not actually con-
verge to their true values. This pathological behaviour is well-
known to occur when the forecast model used in the DA is
not identical to the true model evolving reality forward in time.
There are two ways a model can be flawed in this way. First, it
could be that we are not certain of all of the laws of physics
governing the evolution of a particular physical system of
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interest. In this case, we are led to build a model that is missing
some physics that should have been included in order to evolve
the system correctly. Second, it could be that we do know the
laws of physics perfectly but because of computational con-
straints, we cannot employ sufficient resolution to resolve all
the phenomena of interest. When our model applies to either
or both of these cases, simulations of the ionosphere will not
evolve correctly even when the initial condition and parameters,
like F10.7, are specified correctly. In fact, in this case, where the
model is flawed, finding another value for a parameter like
F10.7 that is not the true value is likely to produce a better sim-
ulation of the ionospheric field variables (e.g. electron density),
which is precisely what Morozov et al. (2013) and Codrescu
et al. (2018) found.

This manuscript aims to provide the fundamental under-
standing necessary to appreciate how and why the properties
of estimating one of the drivers of an ionospheric model,
namely the photoionization through the irradiance proxy,
F10.7, matters to the prediction of the evolution of the iono-
spheric field variables. We view this problem as composed of
two main questions. On the one hand, there is the question of
how, in principle, the DA should behave when estimating pho-
toionization from solar irradiance using a parameter like F10.7
and then using it in a perfect forecast model. On the other hand,
there is the question of what it means to use DA to find an F10.7
value that differs from the true one yet still can produce a better
mean prediction of the degree of photoionization happening in a
flawed model. While both questions are of great interest, this
manuscript focuses on the former by carefully constructing a
“perfect” model scenario where the only model error present
is the misspecification of the solar ionizing irradiance through
the F10.7 parameter. This configuration implicitly assumes that
the only error is that we have the wrong F10.7 value available,
but the physical relationship between photoionization and that
F10.7 value is correctly specified in the model. This is in con-
trast to the other scenario whereby the model is flawed and there
is an error associated with using F10.7 as a proxy for the solar
ionizing irradiance (Chamberlin et al., 2008). We then go on to
show the behaviour and limitations of a DA system in this best-
case scenario. We focus here on this best-case scenario of using
a perfect forecast model because it is crucial to understand
exactly how a DA system should behave in the perfect model
scenario before one can fully understand and appreciate its
behaviour when the model is flawed.

The rest of this manuscript is organized as follows. In
Section 2 we build a heuristic model of the low-latitude iono-
sphere in order to study the estimation of parameters in a simple
setting that allows full control of all aspects of the problem. In
Section 3 we show that what we see in the simplified setting is
robust by using an ensemble Kalman filter with a full physics-
based ionospheric model. Lastly, in Section 4 we close the
manuscript with a discussion of our main results and their impli-
cation for data assimilation in the ionosphere.

2 A Heuristic model of the equatorial
ionosphere

In this section, we develop a heuristic model of vertical total
electron content (vTEC) along a latitude circle in the equatorial

region. The goal is to reveal the basic principles we will see in
the more complex, physics-based model of Section 3.

2.1 Model

We begin by imagining a latitude circle along the magnetic
equator and focus attention on the vTEC field. Further, imagine
that vTEC is being impacted by solar forcing, recombination,
and a myriad of second-order, essentially random processes that
might move plasma in and out of the equatorial column. We
note that while technically solar forcing and recombination act
locally to influence the electron density field itself, this heuristic
model of the ionosphere considers the vertically integrated influ-
ence of these processes.

We hereby denote the vTEC along this latitude circle as
a column vector of length N, which we label q = q(x, t), and
write its evolution as a stochastic differential equation of the
form

dq ¼ F tð Þg x� ct1ð Þdt � 1
s
qdt þ asdS: ð1Þ

The first term on the right-hand side is meant as a heuristic
model of the production of electrons from solar ionizing radia-
tion, where dt is the infinitesimal time increment, F = F(t) is
some proxy for solar irradiance that is to be thought of as some-
thing akin to an F10.7 index value, g � 0 is a structure-function
represented in the form of a column vector that is N long that
describes the sunlit region of the latitude circle (an example will
be provided below), x is an N-vector denoting the distance
along the latitude circle, and c is the speed of the sunlit region
as it moves across the latitude circle. The second term on the
right-hand side of (1) represents a very simple dissipation term
that is intended to grossly model the recombination of ions and
electrons and the dissipative effects of plasma diffusion along
field lines. Both of these processes are thought of as combined
into a dissipation term implying an exponential decay with rate
s. While a recombination term is more properly thought of as
quadratic, writing it here as linear allows us to make our points
in the clearest possible way because the statistical character of
the system remains Gaussian and, as we will see, this allows
for a careful analytic analysis of the problem. The impact of rep-
resenting the recombination as quadratic in this model is
described in Appendix A. In addition, we emphasize that this
recombination term has a rate coefficient that is independent
of the solar forcing parameter, F. In some regards, this is a sig-
nificant assumption as the recombination is typically controlled
in one way or another by the solar forcing through the thermo-
sphere and hence this is yet another route that could lead the
recombination term to be nonlinear in the prognostic variables.
We chose a constant rate coefficient to again keep the physical
system linear and therefore to allow for the analysis of
Section 2.2, where we implement a Kalman filter which requires
a linear/Gaussian system of equations. We will return to this
assumption at several places below in order to comment on
where there exist some minor qualitative differences from this
form of recombination versus one that is a function of F. Lastly,
the last term in equation (1) is meant to represent the collec-
tion of second-order processes that might move plasma in and
out of an equatorial column. This heuristically includes the
effects of the east-west E � B drifts as well as smaller-scale
processes such as vertically propagating gravity waves in the
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thermosphere. as is a parameter governing the amplitude of
these processes and we simply represent this as Gaussian
random noise of the form dsj = wjdt, where dsj is the jth element
of the N-vector dS and wj is drawn from N(0, 1/dt).

We also write the solar forcing parameter as varying through
time according to a random walk as

dF ¼ aF wdt ð2Þ
where aF is a parameter that governs the size of the steps in
(2) and w here is also drawn from N(0, 1/dt).

We may solve (1) and (2), respectively, to obtain a broad
understanding of the general characteristics of the solution to
such equations, viz.

q tð Þ ¼ q 0ð Þ exp � t
s

� �
þ
Z t

0
exp

t0 � t
s

� �
F ðt0Þg x� ct01ð Þdt0

þ as

Z t

0
exp

t0 � t
s

� �
dS0 ð3Þ

F tð Þ ¼ F 0ð Þ þ aF

Z t

0
wdt0: ð4Þ

First, note that in (3) the initial condition for the vTEC field is in
q(0), which therefore would contain all the information derived
from the observations up to time 0 in a potential DA system.
Hence, if the time between DA cycles is longer than the recom-
bination time, s, then the information being provided from
observations will be largely lost between each cycle. This shows
that recombination is essentially a sink in the information in the
initial condition that we are attempting to extract from the obser-
vations and place into the model’s time evolution. On the other
hand, the initial condition for the solar forcing parameter, F(0),
does not have a dissipation factor associated with recombina-
tion. Therefore, information derived from observations about
the solar forcing parameter is likely to last longer than in the
vTEC field. Second, the second term on the right-hand side
shows how the solar forcing term drives the diurnal pattern
on the vTEC field. The integral shows that this term has a
memory of both past solar forcing values as well as where the
sun was shining through the structure-function, g(x � ct1), but
nevertheless the exponential weighting through time implies
that it quickly forgets past values further back than the recom-
bination time, s. The last term on the right-hand side of (3) is
a modified random walk in which the random walk forgets
where it has been over the same time scale s. Lastly, equation
(4) is a standard random walk because equation (2) does not
include any physical damping or forcing terms as in (1).

2.2 The Kalman Filter

We assume it reasonable to discretize (1) and (2) in time,
denoted with index, n, and use the standard forward Euler
scheme

qnþ1 ¼ Dqn þ �F ng x� ctn1ð Þ þ�asun ð5aÞ

Fnþ1 ¼ F n þ�aF vn ð5bÞ
where D� s is the time step and the noise terms in (5a) and (5b)
are defined such that un is an N-vector and vn is a scalar whose
elements are re-drawn from N(0, 1/D) at each time, n, and the

parameters as and aF determine the size of the noise forcing.
Finally, the dissipation rate parameter is

D ¼ 1��

s
: ð6Þ

Equations (5a) and (5b) are both linear and Gaussian. This
implies that we have quite a few analytic tools available for
understanding DA in this context. In the linear Gaussian setting
we know that the Kalman filter is the optimal DA system. DA
through the Kalman filter is comprised of two parts: the estima-
tion of the state and the propagation of the error variance
through time. These two parts are separated here and analyzed
in detail in the next two sub-sections.

2.2.1 Mean state

Upon applying an expectation to (5a) and (5b) we find the
evolution equation for the prior mean state (i.e. step before
observations are assimilated) as

qnþ1

� � ¼ D qnh i þ � F nh ig x� ctn1ð Þ ð7aÞ

Fnþ1h i ¼ F nh i: ð7bÞ
The first term on the right of (7a) reveals how information in the
previous mean state moves from time n to n+1 and the inherent
dissipation through the factor D. Note that when the time
between observations is equal to the recombination time
(D = s) no information from the previous time moves to the next
step. This fact that no information at all moves from one time to
the next is simply a result of the approximation of this solution
through the forward Euler scheme. If a higher-order numerical
method is applied here a very small impact from the previous
step can be felt even when the time step is approximately the
size of the recombination time. In any event, the second term
on the right of (7a) is the mean of the solar forcing term whose
impact is simply from the prior mean solar forcing value at that
time step. Also, note that the noise term in (5a) makes no
contribution to the prior mean in (7a) because that term has zero
mean and there are no nonlinear terms in (5a) and (5b) to “fold”
that information back into the mean. Lastly, because of the
simplicity of the random walk in (5b) equation (7b) shows that
the mean of the solar forcing parameter is constant with time,
but we emphasize that this is only true here because we have
yet to add DA, which we do next.

For ease of presentation, we assume that observations are
available at each time step of our model integration in (5a)
and (5b). We will assimilate observations at the n+1time to
obtain the posterior mean (indicated by superscript “s” for spec-
ification) as

qs
nþ1

� � ¼ qnþ1

� �þGnþ1 ynþ1 �H qnþ1

� �� 	 ð8aÞ

F s
nþ1

� � ¼ F nþ1

� �þQnþ1 ynþ1 �H qnþ1

� �� 	 ð8bÞ
where there are No observations contained in the vector yn+1, H
is an No � N matrix referred to as the observation operator,
which describes the relationship between the observation and
the state vector, and

Gnþ1 ¼ Bnþ1H
T HBnþ1H

T þ R
� 	�1 ð9aÞ
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Qnþ1 ¼ Cnþ1H
T HBnþ1H

T þ R
� 	�1 ð9bÞ

where we define the relevant covariance matrices as

Bnþ1 ¼ qnþ1 � qnþ1

� �
 �
qnþ1 � qnþ1

� �
 �TD E
ð9cÞ

Cnþ1 ¼ F nþ1 � F nþ1

� �
 �
qnþ1 � qnþ1

� �
 �TD E
: ð9dÞ

The matrix Bn+1 is the covariance matrix of the vTEC (qn+1) and
the row-vector Cn+1 describes the covariance between Fn+1 and
qn+1 at each grid point in the domain.

Given (8a) and (8b) we may use (7a) and (7b) to obtain the
time evolution equations for the posterior means, viz.

qs
nþ1

� � ¼ D I�Gnþ1Hð Þ qs
n

� �þ� I�Gnþ1Hð Þg x� ctn1ð Þ F s
n

� �
þGnþ1ynþ1 ð10aÞ

F s
nþ1

� � ¼ 1 ��Qnþ1Hg x� ctn1ð Þ½ � F s
n

� �
þQnþ1 ynþ1 � DH qs

n

� �� 	
: ð10bÞ

Equations (10a) and (10b) constitute the evolution equations for
the posterior means upon assimilating a given set of observa-
tions. What is interesting about these equations is that they
broadly take the form of an autoregressive process of lag-1
[AR(1)]. An AR(1) process is characterized by the presence
of a term 1-step in the past and a noise term, which in this case
takes the form of noise in the observations. This is particu-
larly interesting for the update of the solar forcing in (10b)
because, for sufficient numbers of observations, the quantity
DQn+1Hg(x � ctn1) is approximately a constant after the
spin-up of the DA system (not shown). The fact that it is
approximately constant with time implies a phase lag in the esti-
mate of the solar forcing, which we will see later in the numer-
ical experiments. See Appendix B for further discussion.

Another critical component of the update of the solar
forcing, F, in (10b) is the prior covariance between the solar
forcing and the vTEC field in (9d), which is a major component
of Qn+1, (9b). Note that a perturbation from the mean in vTEC
evolves according to

e
q
nþ1 ¼ Deqn þ �eFn g x� ctn1ð Þ þ as�un ð11Þ

where eqn ¼ qn � qnh i and eFn ¼ Fn � Fnh i. After the use of
(11), and the use of similar equations for eqn at other past times,
in (9d) we find the prior covariance between the state and the
solar forcing if no DA has yet happened as

Cnþ1 ¼ �r2
n g x� ctn1ð ÞT þ D

r2
n�1

r2
n

g x� ctn�11ð ÞT
�

þD2 r
2
n�2

r2
n

g x� ctn�21ð ÞT þ � � �

: ð12Þ

Note that because D < 1 and because a random walk has the
property that r2

n > r2
n�1 > r2

n�2 > � � � > r2
0 (as will be seen

in equation (13b)) the series of terms in brackets in (12) are
rapidly decaying for large n. Each of these terms corresponds
to the state of the solar forcing at times starting at n and back-
ward from there. This implies that the amplitude and structure of

the covariance between the solar forcing at time n+1 and the
vTEC at time n+1 is determined by the solar forcing in the past
starting at time n and looking backwards in time. Note further
that each of these terms is greater than or equal to zero and
therefore the covariance between the solar forcing and the vTEC
is either zero or positive. This immediately implies that
increases in solar forcing always increase vTEC and decreases
in solar forcing always decrease vTEC. We note here however
that numerical experiments (not shown here) with this heuristic
model but where we modify the recombination term to have a
rate coefficient that is proportional to F leads to negative regions
within the vector Cn+1. We will see later on in Section 3 that the
physics-based model, which does in fact have a recombination
rate that is a function of the F10.7, also creates negative corre-
lations between the F10.7 and the vTEC and this suggests that
the reason is because of the F10.7 dependence in the recombi-
nation rate.

2.2.2 Error covariance

The prior error covariance equations for the models in (5a)
and (5b) are,

Bnþ1 ¼ D2Bn þ Sn þ Nn þMn ð13aÞ

r2
nþ1 ¼ r2

n þ a2F� ð13bÞ

Cnþ1 ¼ DCn þ r2
n�g x� ctn1ð ÞT ð13cÞwhere

Sn ¼ r2
n�g x� ctn1ð Þg x� ctn1ð ÞT ð14aÞ

Nn ¼ a2s�I ð14bÞ

Mn ¼ �D g x� ctn1ð ÞCn þ CT
n g x� ctn1ð ÞT� 	 ð14cÞ

r2
n ¼ F n � F nh ið Þ2� �

: ð14dÞ

There are four important features of (13a) that we would like to
emphasize. First, the dissipation factor, D, is now squared,
while for the prior mean in (7a) dissipation is linear in D.
Because D < 1 this means the dissipation induced by recombi-
nation is faster here than in the prior mean evolution equation.
Second, the solar forcing drives the matrix, Sn, which is con-
structed from the outer product of the structure-function,
g(x � ctn1). A matrix constructed from an outer product of a
vector can have only one non-zero eigenvalue. Hence, Sn has
a rank of 1 and therefore when solar forcing dominates it drives
the prior covariance matrix to have a single dominant eigen-
value. This is important because the number of non-zero eigen-
values in the prior covariance matrix is one factor that impacts
the amount of information derived from a given set of observa-
tions and having few dominant eigenvalues leads to very strong
impacts from observations. Third, the covariance between the
solar forcing and the vTEC comes in through the matrix, Mn.
Fourth, while the noise term in (5a) did not contribute directly
to the prior or posterior mean the same noise does contribute
directly to the prior covariance in (13a) through Nn. Because
we constructed this noise as white in space it results in essen-
tially the opposite of the solar forcing term as this matrix is
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full-rank and of the form of a scaled identity. Hence, the result-
ing structure in the prior covariance matrix is a delicate balance
between the strength of the recombination versus the solar
forcing and this noise in the system.

The evolution of the prior variance of the solar forcing in
(13b) is considerably simpler than that of (13a). In a random
walk, the variance increases linearly with time as can be seen
in (13b) as the variance forcing term is linear in the time step.
However, while (13b) is independent of the variance of the
vTEC field, the vTEC variance in (13a) depends on the variance
of solar forcing through the solar forcing term, Sn. Lastly, (13c)
describes the covariance between the vTEC and the solar forc-
ing, F, and that covariance structure is largely determined by the
structure-function, g, and again because g � 0 this implies that
Cn+1 � 0.

As we will see in the numerical experiments to come, the
variances in this problem setup are approximately constant after
an initial spin-up period. This is a commonly understood feature
of the solutions to the Kalman equations for autonomous sys-
tems of equations (i.e. system equations with time-independent
coefficients). The equation in (1) is in general non-autonomous
because of the solar forcing term, but nevertheless, there are
interesting symmetries that allow us to see situations where
the covariance matrices could become steady. We examine
some of those situations next.

Equation (13a) has an interesting symmetry if we transform
to a moving frame (x0 = x � ct1) and subsequently search for a
steady-state (B = Bn+1 = Bn), viz.

B ¼ 1
1� D2 S x0ð Þ þ NþM x0ð Þ½ � ð15Þ

where we have dropped the subscripts on S, N, and M because
S and M are independent of time in the moving frame and, as
seen in (14b), N is always independent of time. Hence, while
the prior covariance is constantly evolving with the diurnal
cycle, in a frame moving with the diurnal cycle this model’s
resulting prior covariance is purely a constant through time.
Note further that the presence of this translating steady-state also
implies that the trace of (13a) is also a constant even without the
transformation to a moving frame. Hence, global summary
statistics as we will see in the numerical experiments below
are likely to find steady states.

The Kalman posterior error covariance equations for vTEC
and the solar forcing, respectively, are

Ps
nþ1 ¼ Bnþ1 �Gnþ1HBnþ1 ð16aÞ

Rs
nþ1 ¼ r2

nþ1 �Qnþ1HCT
nþ1 ð16bÞ

Cs
nþ1 ¼ Cnþ1 �Qnþ1HBnþ1 ð16cÞ

where we emphasize that the result of (16b) is a scalar and (16c)
is a row vector. These equations describe the expected reduction
in error from a given set of observations, where (16a) describes
the reduction in error in vTEC, (16b) describes the reduction in
error in the parameter F, and (16c) reveals how the covariance
between F and vTEC changes owing to the corrections made by
the latest set of observations.

Again, the DA process is to replace Bn with Ps
n at each

assimilation time. We do this to (16a) while making use of

Ps
nþ1H

T ¼ Gnþ1R ð17Þ
to obtain

Ps
nþ1 ¼ D2Ps

n þ Sn þ Nn þMn

� 	
Iþ D2Ps

n þ Sn þ Nn þMn


 �
H

T
R�1H

h i�1
: ð18Þ

While this equation is complicated by the inverse we can reveal
the presence of a steady state in the limit where the dissipation is
strong (D� 1) and again using the frame moving with the Sun.
In that limit, we see that the observation locations in this equa-
tion, as described by the observation operator, H, control the
emergence of a steady state posterior covariance. In a regime
where D � 1, we find a steady-state when we observe all pos-
sible state locations (H = I) to find

Ps ¼ Sþ NþM½ � Iþ Sþ NþMð ÞR�1
� 	�1 ð19Þ

which in the limit of large observation error reduces to (15)
because in that limit the observations provide no information
and therefore the posterior covariance must reduce to the prior
covariance.

In terms of the posterior variance of the solar forcing param-
eter, F, it will prove illuminating to examine (16b) in two differ-
ent observation configurations. In the first, we examine the
resulting posterior variance from a vTEC observation at a single
point along the latitude circle. Note that in this case, H is a row
vector. Hence,HCn+1 selects a single element at the location, x0,
of the observation. In this case, the posterior variance is

Rs1
nþ1 ¼ r2

nþ1 �
�r2

nb

 �2
b0 þ r

ð20Þ

where r is the observation error variance for this observation,
b0 is the scalar HBn+1 H

T, and

b ¼ g x0 � ctnð Þ þ D
r2
n�1

r2
n

g x0 � ctn�1ð Þ

þD2 r
2
n�2

r2
n

g x0 � ctn�2ð Þ þ � � � : ð21Þ

We further assume that dissipation is strong (D � 1) and the
noise term, Nn is weak such that the prior covariance reduces
to the solar forcing, Sn and (21) is reasonably approximated
as b 	 g(x0 � ctn). In this scenario, and with r = 0, (20) reduces
to

Rs1
nþ1 ¼ r2

nþ1 � �r2
n


 �2
: ð22Þ

In the second observation configuration we observe every point
(H = I). In this situation we have

Rs
nþ1 ¼ r2

nþ1 � Cnþ1 Bnþ1 þ R½ ��1CT
nþ1: ð23Þ

Again, assume that dissipation is strong (D � 1) and the noise
term, Nn is weak such that the prior covariance reduces to the
solar forcing, Sn. In this case (13c) is reasonably approximated
as

Cnþ1 	 �r2
ng x� ctn1ð ÞT : ð24Þ

Again, in the scenario where r = 0, and we interpret the inverse
in (23) as the pseudo-inverse, we see (23) reduce precisely to
(22). Hence, in terms of the update of the solar forcing
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parameter, F, when solar forcing dominates then observing at
one location will be approximately the same as observing every-
where, since in this case, the vTEC field will have strong spatial
correlations.

2.3 Numerical experiments

In this section, we perform numerical experiments to illus-
trate the behaviors we have just discussed as well as thoroughly
explore the possible solution space. We first integrate the mean
and covariances forward to the next set of observations using
(7a) and (7b) for the mean and (13a)–(13c) for the covariances.
The result of these integrations is the prior means and covari-
ances required to evaluate the Kalman filter equations of (8a)
and (8b) and (16a)–(16c) for the posterior means and covari-
ances. Once we have these updated values we return to (7a)
and (7b) and (13a)–(13c) and we repeat the process. Note that
the amplitude of the solution to (5a) and (5b) depends on the
recombination time, s. To compare simulations with different
recombination times, we set the observation error variance as,
R = r2I, where r is a fixed constant determined as a percentage
of the spatial average of the true vTEC at the final time. This
allows for a self-consistent comparison of DA experiments with
different recombination times. We note that the initial condition
for the forcing parameter, F, is arbitrarily assigned an initial
value of 1 and represents the production in units of vTEC over
time. In addition, the time step is also an arbitrary value of 1.
The subsequent units for q are then based on these relatively
arbitrary values and therefore do not correspond to common
units of TECU. We remind the reader that this is a heuristic
model and we are interested in the general behaviors and inter-
relationships among variables. Lastly, in the experiment shown
here, we use a state vector of 100 points and an observational
network of 10 equally spaced point observations along the
latitude circle starting at the prime meridian.

Figure 1 shows an example DA experiment using the model
of (7a) and (7b) and (13a)–(13c) for the assimilation and (5a)
and (5b) to generate the truth. In this experiment, we set s =
6-time units, D = 1-time unit, as = 0.05, aF = 0.025, and the
observation error is set at 100% of the spatial average of the true
final time field, which equates to setting the observation error
variance to r = 2.35. The structure function, g, is defined as
the uniformly westward translating, positive portion of the
wave-1 sine function on the latitude circle, which effectively
creates the daylit portion of the latitude circle as can be seen
in Figure 1a. While the time step is of course also heuristic
we set it to 1 unit to be broadly equivalent to 1 h, such that there
are 24 time steps in a day, and we integrate out to 10 days. In
Figure 1a we see the shape of the simulated vTEC field as it
looks at the final time (t = 240). This structure is the shape of
the vTEC field after the initial spin-up (i.e. after it has come into
equilibrium between solar forcing and recombination), but nev-
ertheless, this structure rotates with the Sun and traverses the
globe from east to west. An important feature of the vTEC field
is that it follows the solar forcing with its peak always to the east
of local noon and, in additional experiments not shown here, we
have seen that the degree to which it is shifted to the east of
local noon is dependent on the recombination time, s. We will
see that the prior and posterior covariances have this phase lag
with respect to local noon as well. Phase lags in ionospheric
variables have been previously found in several studies

(Schmölter & Bedermann, 2021; Vaishnav et al., 2021a) and
shown to be controlled by eddy diffusivity rates (Vaishnav
et al., 2021b). In any event, the prior and posterior means
generally have the structure of the true state except that they
are missing the small scales as was already discussed in regard
to equations (7a) and (10a).

Solar forcing impacts the amplitude of the vTEC field. This
can be seen in Figures 1c and 1d. In Figures 1c (1d) we show
the maximum value of q (the solar forcing, F) for the truth as
well as the prior and posterior means. There are two points to
take away from Figures 1c and 1d. First, the maximum value
of q and the parameter F largely follow each other’s move-
ments. Second, there exists a phase lag between the truth and
the prior/posterior means in both the maximum q and the F.
Note however that a careful examination of Figures 1a and 1b
does not reveal any phase lag in the structure of q for the truth
relative to the prior or posterior mean even though data assim-
ilation is being done simultaneously for the q-field as it is for the
parameter F. For example, the structure seen in Figure 1a is
uniformly translated from right to left. If a phase lag were to
be present it would be seen as a shift to the right by the prior
(blue) or posterior (red) with respect to the truth (black).

This phase lag is therefore only found in the amplitude of q
and because the parameter F determines the amplitude of q this
phase lag arises from the F through the posterior update equa-
tion (10b). Please see Appendix B for an analysis showing
how this type of equation leads to a phase lag. Lastly, in Figures
1e and 1f we show both the domain-averaged prior and poste-
rior variances as well as the mean-squared error with respect to
the truth. Note that the error in both are quite similar and peak at
very similar times, which suggests that the largest errors are
dominated by those errors in F. Additionally, note that the
prior/posterior variances are very nearly constant after the initial
spin-up period. As mentioned previously, in a Kalman filter this
is normally the case with autonomous physical systems, which
is technically not a property of equation (5a) because it has the
time-dependent solar forcing term. However, in this system
what is important is having a sufficient number of observations
such that there are always several within the sunlit side of the
domain (i.e. within the non-zero portion of the function g).
Experiments not shown here using a single observation in the
centre of the domain show that the prior and posterior variances
then become a strong function of time and this functional
dependence is clearly seen to be determined by whether the
observation location is presently within the daylit side of the
domain. This controlling influence of the function g can be most
easily seen by noting that in equation (12), and the small D
limit, the covariance between q and F reduces to (13c), which
implies that the covariance between q and F is small on the
nighttime side of the domain. Even when D is relatively large,
D is nevertheless less than 1 and so the remaining terms in the
expansion (12) are still small, which again results in a small
covariance on the nighttime side of the domain. Therefore,
the most impactful observations in the estimation of F are those
on the sunlit side of the domain. Lastly, under these same con-
ditions, a careful examination of (13a) reveals that when Sn
dominates, observations of q on the nighttime side of the
domain also will have very little impact through the gain, G,
on the update of q itself. Therefore, the most impactful observa-
tions for both the vTEC field, q, and the solar forcing, F, are
those that are presently on the daylit side of the domain.
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Another way to see the interplay between the movement of
the solar forcing and the DA is to look at the prior covariance
matrices after the system has been assimilating observations
for some time. In Figure 2 we show the prior covariance matri-
ces for s = 6 and r = 0.235, 1.18, and 2.35, which corresponds
to 10, 50, and 100% of the final time truth, respectively. These
matrices show the two main properties we see in equation (13a):
large scales from the solar forcing term and smaller scales from
the noise term. This is most easily seen in Figure 2a, where we
can see that the daylit portion of the domain has the main mass
of contours, but the nighttime side of the domain has only a nar-
row diagonal. The larger scale portion arises from (14a) while
the smaller scale, diagonal component arises from (14b). This
reveals a strong diurnal dependence on the correlation length
scales, with the daytime length scales being much longer than
those at night. In Figures 2d–2f we show the function, g, denot-
ing the daylit portion of the domain. By comparing the peak of
the function g to the prior covariance matrix in Figures 2a–2c
one can clearly see that the peak uncertainty lags local noon
and that the lag increases with observation error, r. Lastly, in
Figures 2d–2f is shown the leading eigenvector of each prior

covariance matrix. The leading eigenvector [sometimes called
an Empirical Orthogonal Function (EOF)] is peaked at the loca-
tion of the peak in the prior covariance matrix itself and is there-
fore lagged with respect to local noon. Each of these EOFs
represents more than 95% of the variability in the system as
described by the prior covariance. Furthermore, for small obser-
vation error, the EOF structure is very nearly that of, g, while
for larger observation errors there exists a “tail” of past solar
forcing remaining in the system.

This phase lag that we see in the various components of the
DA algorithm manifests itself in the posterior means of the solar
forcing (F) estimates as already shown in Figures 1c and 1d. In
Figure 3 we quantify this phase lag as a function of recombina-
tion time and observation error. In Figure 3a we show the time
of the peak correlation between the posterior mean and the truth,
while in Figure 3b we show the value of the correlation at its
peak. Figure 3a shows that the time lag in the state estimate
of the parameter increases as the observation error increases
and as the recombination time increases. We have confirmed
this phase lag by also creating this same figure by calculating
the mean squared error (MSE) at various time lags and finding

Fig. 1. DA with the Kalman Filter. a) The true state q (black), prior mean q (blue), and posterior mean q (red) at the final assimilation time. The
green curve is the solar forcing function, g, also at the final time. b) The state for the grid point at longitude = 0 as a function of time; same
colour scheme as in (a). c) The maximum value of q as a function of time; same colour scheme as in (a). d) Solar forcing, F, as a function of
time; same colour scheme as in (a). e) Spatially averaged error squared error with respect to the truth for q (solid) for the prior (blue) and
posterior (red). The spatially averaged variance prediction from the Kalman filter (dashed) for the prior (blue) and posterior (red). f) Same as
(e) but for the solar forcing parameter, F.
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nearly identical curves (not shown). Lastly, we again emphasize
that in Figures 1a and 1b that there is no phase lag in longitude
between the analysis and the truth. Hence, this phase lag in the
solar forcing parameter leads to an inconsistency between the
vTEC field, which does not have a longitudinal phase lag,
and the solar forcing parameter.

3 Physics-based model and DA

In this section, we describe the development of an ensem-
ble-based Kalman filter data assimilation system coupled to a
physics-based ionospheric model.

3.1 System description

The physics-based ionospheric model we use is that of Huba
et al. (2000) and is commonly referred to as Sami is Also a
Model of the Ionosphere (SAMI3). SAMI3 simulates the trans-
port and chemistry of seven ion species and solves for the

electron/ion temperatures for three species on a grid aligned
along the geomagnetic field lines. This grid is an eccentric
dipole system aligned along geomagnetic field lines such that
there are 160 points along a field line along with two more coor-
dinates orthogonal to this field line where the approximately
“longitudinal” direction has 90 points and the approximately
vertical direction has 160. The momentum equation is split into
motions along and across these geomagnetic field lines. Further
details on the solver can be obtained from previous studies (see
Zawdie et al., 2020 and references therein). The neutral temper-
ature and composition are from NRLMSISE-00 (Picone et al.,
2002) and the thermospheric winds are from the Horizontal
Wind Model (HWM14; Drob et al., 2015).

In order to clearly make a connection to Section 2 it is
important to understand how the SAMI3 model produces its
estimate of the solar flux which is then used as a predictor of
the photoionization. First, the estimated F10.7 value is used
as a proxy to form

P ¼ F þ F a

2
ð25Þ

Fig. 2. Prior covariance matrices and EOFs at t = 240 from the Kalman Filter. In (a), (b), and (c) are the prior covariance matrices for s = 6 and
observation errors of 10, 50, and 100% of the truth, respectively. In (d), (e), and (f) the black line is the leading eigenfunction of the prior
covariance matrix for s = 6 and observation error of 10, 50, and 100%, respectively, while the green line is the function, g, at the time that these
covariance matrices are valid.
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where F is the F10.7 value and Fa is the 81-day averaged
F10.7 value. This proxy is then used in the EUVAC model
developed by Richards et al. (1994) to estimate the solar flux,
si, as

si ¼ F 74113i 1þ Ai P � 80ð Þ½ � ð26Þ
where F74113i is the modified solar minimum reference flux, Ai
is a scaling factor, and the subscript i denotes one of 37 wave-
length bands. Note that the solar flux is simply a linear function
of this F10.7 value. Hence, from the perspective of the DA,
there is little difference between directly estimating the solar
flux in the DA algorithm or simply estimating the F10.7 param-
eter in the DA algorithm (as we do here) and subsequently using
(26) to find the solar flux value.

The DA system we use is an ensemble-based Kalman filter,
which has two main components. The first component is the
update of the posterior mean using the observations, viz.

�zsnþ1 ¼ �znþ1 þGn ynþ1 �H�znþ1

� 	 ð27Þ
where �znþ1 denotes the prior mean and �zsnþ1 denotes the pos-
terior mean. The expression for the Kalman gain used here is
identical to that in (9a) but now we obtain the prior covariance
from an ensemble of SAMI3 runs in which we denote the
entire state vector as a column vector, z ið Þ

nþ1, where

Bnþ1 ¼ 1
Ne � 1

Znþ1Z
T
nþ1; ð28aÞ

Znþ1 ¼ z 1ð Þ
nþ1 � �znþ1 z 2ð Þ

nþ1 � �znþ1 � � � z Neð Þ
nþ1 � �znþ1

h i
:

ð28bÞ
The superscript in (28b) identifies an ensemble member out of
Ne total members. For SAMI3, the vector zðiÞnþ1 is constructed
from the concatenation of the following fields: electrostatic
potential, ion density for O+, NO+, Oþ

2 , N
+, Nþ

2 , H
+, and He+,

ion velocity along the field lines for each ion, ion temperature
for each ion, electron temperature, the two components of the
“E � B drift” (the cross-product of the electric and geomagnetic
field vectors), and of course the F10.7 value, which results in a
state-vector of approximately 50 � 106 elements. Lastly, we
emphasize that we have replaced the expectation operator
(hzi) used in (8a) and (8b) with the overbar used in (27) to
emphasize that these quantities are now sample estimates.

The second component of an ensemble DA system is the
ensemble generation step. We examined two different types
of ensemble generation schemes. One type of ensemble gener-
ation scheme was that of the Ensemble Transform Kalman Filter
(ETKF; Bishop et al., 2001) and the other was that of stochastic
observations (van Leeuwen, 2020). Because we saw very little
difference between the predictions from either method we
choose here to show our implementation of the ETKF.

In the ETKF scheme, the new posterior perturbations are
calculated using a basis of eigenvectors from

ZT
nþ1H

TR�1HZnþ1

Ne � 1
¼ VKVT ð29Þ

where the columns of V represent a basis of eigenvectors and K
is a diagonal matrix of corresponding eigenvalues. Note that the
eigenvectors V also serve as the right singular vectors of

R�1=2HZnþ1 ¼ UK1=2VT ð30Þ
where U are the left singular vectors. Given (30) we may re-
write (16a) as

Ps
nþ1 ¼ Znþ1TT

TZT
nþ1 ð31Þ

where T is referred to as a “transformation matrix” that scales
and rotates the prior perturbations into those consistent with
the posterior and takes the form

T ¼ V Kþ Ið Þ�1=2VT ð32Þ
and is written here including the mean-preserving rotation of
Wang et al. (2004). Hence, an ensemble of perturbations consis-
tent with the posterior error covariance matrix may be made by
defining those perturbations from the columns of

Zs
nþ1 ¼ Znþ1T: ð33Þ

On the other hand, in order to model the F10.7 evolution here in
a way that is self-consistent with Section 2 we developed the
following extension of equation (2),

dF ¼ b F E � F

 �

dt þ aF wdt ð34Þ
where FE is the actual 24-hourly time series of the Earth’s
observed F10.7. The goal of the addition of the first term on
the right-hand side of (34), when compared against (2), is to
require the evolution of F to remain in the vicinity of the

Fig. 3. (a) Time lag between the peak correlations between truth and
the posterior mean as a function of recombination time and
observation error. (b) Peak correlation value as a function of
recombination time and observation error.
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Earth’s observed F10.7 value to ensure physical realism.
Note that this term pushes F towards FE, while the second
term on the right-hand side is a random walk term that induces
a drift away from FE at a rate governed by aF. The degree to
which the solution is pushed towards FE is governed by the
size of b. The larger b is the greater the push towards FE. This
competition will produce the diversity we need in our ensem-
ble members while maintaining the F in a physically realistic
regime.

The experimental setup will use a truth run, which will con-
stitute the hidden truth from which we will draw noisy observa-
tions. We emphasize here that the ensemble members as well as
the truth will make use of (34) for its F10.7 value, and therefore
the Earth’s actual F10.7 value is not set here as the particular
value for the simulation we label truth. The reason we did this
is that we want to examine the ability of the DA to determine
the F10.7 value at a temporal frequency shorter than what the
Earth’s observed F10.7 values are generally available, for which
observed F10.7 is generally available daily while we are looking
for those values hourly.

3.2 Experiment

The experiment described here will use simulated vertical
vTEC observations at 30� geographic longitude spacing along
30� S, 20� S, 10� S, 0�, 10� N, 20� N, and 30� N degrees

geographic latitude for a total of 84 observations. The DA will
use an hourly cycling interval starting at 1 January 2014 at 0 Z
and these observations will be constructed from the truth run at
this 1-h frequency. The F10.7 evolution equation (32) will use
parameters of b = 2 and aF = 10.

A critical aspect of starting the DA process is to get the
initial ensemble variance correct during the “spin-up” of the
system such that we replicate random draws from a climatolog-
ical distribution that is self-consistent with the truth run in the
sense that the variance of the ensemble predicts the actual error
in the ensemble mean. We accomplish this in the following
way. The first day of the period for which we would like to
assimilate observations is 1 January 2014 at 0 Z. We start 3 days
before that on 29 December 2013 with a “cold” start at 0 Z in
which all ensemble members have an identical initial condition,
but a different F10.7 value through time as derived from (34).
We use 30 ensemble members. We integrate these 30 ensemble
members using the SAMI3 model for the 3 days needed to
get an ensemble that is valid at 0 Z on 1 January 2014. Self-
consistency with the truth run is obtained by generating the truth
in exactly the same way. The key features of this procedure are
1) giving the system enough time (3 days) to develop its own
natural variability and 2) we generate the truth run in the exact
same way as the initial members such that we can be absolutely
certain that truth and the ensemble members are random draws
from the same distribution.

Fig. 4. In (a) is the prior ensemble mean (in TECU) and in (b) is the ensemble standard deviation both valid at 12 Z on 20140104 and
for the 1-h forecast. Solid black contours are the solar zenith angle at 10�, 20�, . . . , 90�, denoting both local noon and the daylit region. The
dotted line is the magnetic equator.

D. Hodyss et al.: J. Space Weather Space Clim. 2023, 13, 21

Page 11 of 18



It is common in an ensemble DA approach for the prior and
posterior variance to be too small as compared to the MSE of
the ensemble mean, and this is usually due to inaccuracies in
the model as well as sampling error from small ensemble sizes.
To help ameliorate this issue we applied posterior inflation to
the ensemble posterior perturbations in equation (33) by multi-
plying that equation by a factor slightly greater than one. We
used a separate factor for the state variables versus the F10.7
value. Upon tuning these inflation factors we found that the best
performance (i.e. smallest MSE of the posterior mean) was
found when there was no inflation for the state variables and
an inflation factor of 1.1 for the F10.7 value. The presentation
to follow shows the behaviour of the ensemble using this pos-
terior inflation factor of 1.1.

In Figure 4 we show an example of the prior mean and stan-
dard deviation of the ensemble vTEC field at the 1-h forecast
time. The mean shows the strongest vTEC values are within
the daylit portion of the globe and slightly to the east of local

noon. The standard deviation shows that the strongest differences
between ensemble members also occur over the daylit portion of
the globe and has its peak slightly to the east of local noon. Note
that both of these features are represented in the vTEC field of the
heuristic model of Section 2 (see Figs. 1 and 2).

In Figure 5 we show the behaviour of this DA system for
predicting the F10.7 value as well as the ensemble’s prediction
of the uncertainty in both F10.7 and vTEC for both the prior and
posterior. Figure 5a shows the F10.7 values from equation (34)
that we use as the truth (green), as well as the prior (blue) and
posterior (red) mean estimates of the truth. The sharp jump at
the beginning of day 4 is caused by changes in the daily
F10.7 values used for FE in equation (34) as the Earth’s
F10.7 value jumped significantly from 3 to 4 January 2014.
Note that the predictions by the prior or posterior lag the truth
anytime there is a sudden change in the true F10.7 value,
which is similar to Figure 1. This phase lag between the truth
and the prediction can be most easily seen at the beginning of

Fig. 5. F10.7 and the error in F10.7/vTEC. In (a) is the Earth’s actual F10.7 value, FE, which is only available daily (black dots), the F10.7
value, F, used as a proxy for truth (green), as well as the prior (blue) and posterior (red) mean estimates of the truth. In (b) is the root mean
square error (RMSE) of the prior and posterior mean as compared with the standard deviation of the ensemble for the F10.7 prediction (in
TECU). In (c) is the RMSE of the prior and posterior mean as compared with the standard deviation of the ensemble for the vTEC prediction
averaged between �30� S and 30� N degrees latitude.
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Fig. 6. The prior ensemble correlation between F10.7 and the prior vTEC on 4 January 2014 at (a) 0000 Z, (b) 0600 Z, (c) 1200 Z, (d) 1800 Z.
Solid black contours are the solar zenith angle at 10�, 20�, 30�, . . . , 90�, denoting both local noon and the daylit region.

Fig. 7. (a) The leading EOFs for the prior VTEC on 4 January 2014 at 1200 Z and their projection onto the ensemble. Solid black contours are
the solar zenith angle at 10�, 20�, 30�, . . . , 90�, denoting both local noon and the daylit region. (b) Projection of the leading EOF onto the
ensemble as a function of the ensemble F10.7 values. (c), (d) Same as (a), (b) but for the second EOF.
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days 3 and 4. Otherwise, the prediction of the F10.7 value is
quite accurate.

Another important quantity to examine is the degree to
which the ensemble standard deviation matches the prediction
of the error. Figure 5b plots the error as compared to the stan-
dard deviation of the ensemble for the F10.7 and in Figure 5c
we see the same comparison but this time for the vTEC aver-
aged over the region �30 to 30 degrees latitude. In general,
we see a reasonable agreement between the time-averaged aver-
age error and the ensemble’s prediction of the error. In addition,
it is interesting that the peak error in F10.7 can be seen to lead
the peak error in vTEC. For example, note that the error spikes
immediately at the beginning of day 4 in F10.7 but that error
does not peak in vTEC until several hours later. We believe that
this is due to the fact that the increased F10.7 takes time to mod-
ify the vTEC field and this then leads to a time lag in the error.

In order to update the F10.7 from observations of vTEC we
must have a correlation between those two quantities. Figure 6
shows the correlation between those two variables from the
ensemble on 4 January 2014. It is clear from this figure that
the correlation between F10.7 and vTEC is strongest over the
daylit portion of the globe. This shows that observations of
vTEC in the daylit portion of the globe provide large amounts
of information towards the estimate of the F10.7 value, which
was a fact also deduced from the heuristic model of Section 2.
An interesting feature of Figure 6 is the generally negative
correlation found at night. These negative nighttime correlations
between F10.7 and vTEC imply that increases (decreases) in
F10.7 leads to less (more) vTEC at night. Recall that equation
(12) from the low-latitude heuristic model shows the covariance
between the solar forcing parameter and the vTEC is either zero
or positive. Hence, these negative nighttime correlations are
suggesting that there is physics missing from our heuristic
model and is apparently not described simply by a solar forcing
term balanced against linear recombination, where that recombi-
nation rate is independent of the F10.7. To this end, we per-
formed some DA experiments (not shown) in the low-latitude
heuristic model replacing the linear recombination term with a
recombination term that was a linear function of the F10.7.
This did in fact result in negative correlations between our
proxy for F10.7, F, and the vTEC in that model. Therefore, it
would appear that these negative nighttime correlations between
F10.7 and vTEC arise from the modulation of the recombina-
tion rate by F10.7.

Another way to see this relationship between vTEC and
F10.7 is to examine the EOFs of the prior covariance matrix.
In Figure 7 we show the leading two EOFs of the prior covari-
ance matrix on 4 January 2014 at 12 Z. These two eigenvectors
account for 94% of the global variability in vTEC. Recall from
Section 2 that in a system dominated by solar forcing it was
seen that the prior covariance matrix should be of very low rank
and here we are seeing that manifest itself in the prior covari-
ance matrix in our full physics model. Additionally, we project
each eigenvector back onto each ensemble member and subse-
quently produce a scatter plot of this EOF amplitude versus the
F10.7. From this, it is then seen that there is a strong relation-
ship between the amplitude of each member as represented by
these EOFs and the F10.7 value of the ensemble.

Lastly, we take the vTEC fields in magnetic coordinates
from the ensemble on 4 January 2014 at 16 Z, extract the

equatorial latitude circle, and then make a prior covariance
matrix. This matrix can be seen in Figure 8 and compares
remarkably favourably to Figure 2. The main difference
between Figures 2 and 8 appears to be the length scale of the
nighttime covariances, which are much longer here than in Fig-
ure 2. In the heuristic model from which Figure 2 was derived
the nighttime covariances are effectively modelled by the resid-
ual small-scale variability term. While we could have modified
the noise term in the heuristic model to produce correlated noise
to better match that of Figure 8 we do not believe this would
provide any new insights into the behaviours we have seen.
In any event, we show in Figure 8b the structure of the eigen-
vector from this prior covariance matrix and it too has a striking
resemblance to those shown in Figure 2. This eigenvector
explains 99.3% of the variance, which shows that the vTEC
along the magnetic equator results in a prior covariance matrix
that is very nearly rank-1. The heuristic model of Section 2
shows that this is a result of the dominance of solar forcing over
the other physical processes in the SAMI3 model.

Fig. 8. In (a) is the covariance matrix for the equatorial latitude circle
as defined in magnetic coordinates. In (b) is the leading eigenvector
of the matrix in the top panel. The green dashed line is the solar
zenith angle along the magnetic equator, where we emphasize that
local noon is at a minimum in the solar zenith angle.
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4 Summary and conclusions

In this work we have sought to reveal the fundamental
principles governing data assimilation (DA) in a physical
system being strongly impacted by external forcing. The speci-
fic application here was to understand what happens when one
drives the predicted state of the ionosphere through the estima-
tion of the solar ionizing irradiance from observations of the
state of the ionosphere. To this end, we developed a heuristic
model of the ionosphere along the magnetic equator that con-
tains physics from solar forcing, recombination, and smaller-
scale random processes and showed that its general behaviours
were quite close to the full-physics ionospheric model referred
to as SAMI3. Because this heuristic framework was both linear
and statistically Gaussian this allowed us to use the Kalman
filter to clearly reveal several important features of the problem.
We showed how recombination acts as a sink on the informa-
tion in the initial condition about ionospheric field variables
(such as vTEC or electron density) obtained from DA because
dissipation in a model, such as recombination, leads to the dis-
sipation of the information in the initial condition. On the other
hand, we also saw that the initial condition for the solar forcing
parameter is not damped in the same way and therefore it is
likely that observational information in these parameters will
last longer than for ionospheric field variables. This may mean
that state estimation for parameters, more so than field variables,
will lead to better forecasts from ionospheric modelling systems.
We also saw that when solar forcing dominates the prior covari-
ance matrix of the vTEC that this matrix becomes dominated by
a single eigenvector whose structure is directly related to that of
the solar forcing. This is important because low-dimensional
prior covariance matrices typically require that DA use fewer
observations to make substantial impacts. We showed an exam-
ple where the parameter estimation for forcing terms leads to a
phase error in the state estimate relative to the truth. This phase
error arises from the specific structure of the Kalman equation
and the way it averages the prior mean with the observations.
We also saw that the performance of a DA system in this regime
is determined by the relative dominance of solar forcing and
recombination to that of the smaller-scale processes. This means
given the same observations and when the solar forcing domi-
nates, the ability for DA to constrain the state is much higher
than when the smaller scales dominate. Lastly, we saw that
the most impactful observations on vTEC and the solar forcing
parameter are those observations on the sunlit side of the Earth.

One remarkable finding of this work was that the global
SAMI3 ionospheric system was constrained using 84 observa-
tions and 30 ensemble members. An ensemble-based Kalman
filter is known to have the property that the dimension of the
vector space that it can constrain is set by the size of the ensem-
ble. Therefore, even though the dimension of the state vector in
this system was of the order of 50 � 106 it must be true that the
actual dimension of the error space in SAMI3 is much lower,
and apparently no more than 30. This low-dimensional charac-
ter that we see from the SAMI3 model has two important impli-
cations. First, low-dimensional systems are typically highly
correlated (e.g. McNamara & Wilkinson, 2009; Forsythe
et al., 2020a; Allen et al., 2023) and therefore few observations
are required to constrain them, which of course is what we
saw happen here. This system (all 50 � 106 variables) was

constrained by 84 observations of vTEC, which we emphasize
is not a description of the apparent information content in vTEC
but in fact a description of the highly correlated nature of the
model. (See Reid et al., 2022 for a similar example.) Second,
this low dimensionality in both our heuristic model as well as
SAMI3 is directly arising from our assumptions about the
amplitude of the small-scale noise terms relative to solar forc-
ing. In our low-latitude heuristic model, we simply set the noise
level to be fairly low and representative of the SAMI3 variabil-
ity. However, in SAMI3 small-scale neutral variability from
such atmospheric processes as vertically propagating gravity
waves are entirely missing because the climatological thermo-
sphere is set from HWM14/NRLMSISE-00 (Picone et al.,
2002, Drob et al., 2015), which only models the broadest scale
atmospheric tides. For this reason, it could very well be that the
structure of the covariance matrices seen here, and the relative
dominance of solar forcing to the smaller scale processes, needs
to be revisited in the presence of a thermosphere with more
realistic variability at all scales (Forsythe et al., 2020b, 2021).
Indeed, Allen et al. (2023) compared correlations of vTEC from
SAMI3 forecasts driven by NRLMSISE-00 with SAMI3 fore-
casts driven by more realistic neutral winds from a general
circulation model and found that the latter had significantly
smaller correlation lengths that better agreed with those correla-
tion length scales calculated using JPL GIM vTEC fields.

Lastly, in this work, we only looked at how perturbations in
solar forcing through F10.7 affects the evolution of uncertainty
and the state estimation process. It would be interesting to
understand exactly what types of structural changes arise in
the ensemble statistics (i.e. the covariance and correlation
structure of the prior covariance matrices, etc.) of the electron
density fields from variability in other parameters, like Ap, a
measure of global geomagnetic activity, or the rate coefficients
in the photoproduction routines. For example, the physical
processes that are driven by Ap in the SAMI3 model (such as
the storm-time component of the neutral winds) are different
from that of the F10.7 parameter and therefore it is likely that
the impact on DA is different. Work in this direction is already
underway.
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Appendix A

Quadratic recombination in a Heuristic model

Imagine that we are interested in an N-vector, q, evolving
through time as

dq
dt

¼ F ðtÞg x� ct1ð Þ � a
s
q2 ðA:1Þ

where
a
s
is the rate of recombination and all other variables are

the same as Section 2.1. Note that this equation has a steady-
state solution when c = 0, i.e.

q ¼
ffiffiffiffiffiffiffiffiffi
s
a
Fg

r
: ðA:2Þ

Our goal here is to reveal the impact of the movement implied by |
c| > 0. We note that the solution to (A.1) is independent on a grid-
point by grid-point basis. Therefore, in the interest of clarity, we
describe the solution procedure at a representative grid point, x0.

We will use the WKB approximation below and that
methodology works most clearly with a non-dimensional equa-
tion. Therefore, we define the following re-scaling:

ðx; tÞ ! ðLx; TtÞ ðA:3Þ

q ! Qq ðA:4Þ

F ! Q
T
F ðA:5Þ
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c ! L
T
c: ðA:6Þ

Using these scales, we obtain the following non-dimensional
equation

dq

dt
¼ F ðtÞg x0 � ctð Þ � hq2 ðA:7Þ

where we have reduced the problem to a single non-dimen-
sional parameter

h ¼ aQT
s

: ðA:8Þ

Equation (A.7) is a nonlinear Ricatti equation. To solve (A.7),
we look for a solution, v, such that

q ¼ 1
a
1
v
dv
dt

ðA:9Þ
which upon using this in (A.7) obtains

1
h
d2v
dt2

¼ Fgv: ðA:10Þ

We assume that

e2 ¼ 1
h
� 1 ðA:11Þ

and, therefore, we have a WKB problem whose solution can
be written as

v tð Þ ¼ exp
1
e
S0 tð Þ þ S1 tð Þ þ . . .

� 
: ðA:12Þ

The standard solution method is to insert this into (A.10), bal-
ance like orders in e, and solve the sequence of resulting prob-
lems. We complete these steps out to the second term of the
series to obtain

v tð Þ ¼ c1M�1=4 exp h1=2
Z t

0

ffiffiffiffiffiffiffiffiffiffi
Qðt0Þ

p
dt0

� 
þ c2M�1=4

� exp �h1=2
Z t

0

ffiffiffiffiffiffiffiffiffiffi
Qðt0Þ

p
dt0

� 
ðA:13Þ

where Q(t) = Fg. While there are two possible solutions, when
we insert (A.13) into (A.9) we see that one obtains a negative
vTEC, which is obviously unphysical and we therefore dis-
card. The remaining solution obtains

q ¼ h�1=2
ffiffiffiffiffi
Fg

p
� 1
4hF

dF
dt

� 1
4hg

dg
dt

: ðA:14Þ

Note that the first term of this expression is the steady state
(A.2), which implies that the next two terms are the first-order
corrections to that steady state owing to the variability and the
movement of the solar forcing.

As a concrete example, imagine the structure-function takes
the following form

g x0 � ctð Þ ¼ exp � L2

2L2
g

x0 � ctð Þ2
" #

ðA:15Þ

where Lg is the Gaussian half-width of the solar forcing struc-
ture function. Using this in (A.14) obtains

q ¼ h�1=2
ffiffiffiffi
F

p
exp � L2

4L2
g

x0 � ctð Þ2
" #

� 1
4hF

dF
dt

� cL2

4hL2
g

x0 � ctð Þ:

ðA:16Þ

This solution reveals several interesting features of the VTEC
field and the impact of solar forcing balanced by quadratic
recombination. The first term varies in time according to the
square root of the F10.7 and whose structure is wider in scale
than the structure-function, g. Note that in the case where F is
a constant then the vTEC field, when forced by linear recombi-
nation (as seen in Eq. (3)), would depend linearly on the solar
forcing, while in the quadratic recombination case, the vTEC
field would be more weakly forced as

ffiffiffiffi
F

p
. The second term

shows that the next order correction to the time variations in
the solar forcing is to reduce (increase) the amplitude of the
vTEC field when the solar forcing increases (decreases) with
time. This non-intuitive result is a direct result of the quadratic
nature of this recombination term. As solar forcing increases it
causes an increase in amplitude in the first term. However, this
increase in amplitude causes a quadratically greater impact in
dissipation through recombination as the solar forcing changes,
which leads to this damping in the second term. The third term
is the most interesting as it implies a pedestal of vTEC behind
the main Gaussian vTEC mass as that mass moves across the
latitude circle. This pedestal is longest when the speed is largest
and the width of the structure-function is narrow. This asymme-
try in the vTEC field can also be seen in the presence of linear
recombination as in Figure 1a as the asymmetry of the vTEC
mass and its elongation to the east.

Appendix B

Time-lag from equation (10b)

We wish to discuss how equation (10b) results in a time-lag.
Equation (10b) is broadly of the following form

F nþ1 ¼ 1� að ÞF n þ adn ðB:1Þ
where a plays the role of �Qnþ1Hg x� ctn1ð Þ in (10b),
dn plays the role of the observations and we have discretized
time as tn+1 = tn + D. We can determine an expression for the
time lag in (B.1) most easily if we choose dn to be sinusoidal,
i.e.

dn ¼ eixtn ðB:2Þ
which upon assuming a solution of the form

F n ¼ aeixtn : ðB:3Þ

Obtains

a ¼ a a� 1þ cos x�ð Þ½ �
1� 1� að Þ cos x�ð Þ þ 1� að Þ2 � i

� a sin x�ð Þ
1� 1� að Þ cos x�ð Þ þ 1� að Þ2 : ðB:4Þ
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Because the parameter a is a complex number we choose to
write it in phase-modulus form, viz.

a ¼ re�ih ðB:5Þ
such that (B.3) maybe re-written as

F n ¼ reiðxtn�hÞ ðB:6Þ
where

h ¼ tan�1 sin x�ð Þ
a� 1þ cos x�ð Þ

� �
: ðB:7Þ

Note that it is clear from (B.6) that when h > 0 that this is a time
lag. As an example, we define a frequency x = 2p/24 and time-
step of D = 1 in order to plot h versus a in Figure B.1. We see
that the phase lag is inversely proportional to a, and is 6 time-
units for a value of a = 0.035.

Cite this article as: Hodyss D, Allen DR, Tyndall D, Caffrey P & McDonald SE, 2023. The effects of estimating a photoionization
parameter within a physics-based model using data assimilation. J. Space Weather Space Clim. 13, 21. https://doi.org/10.1051/swsc/
2023019.

Fig. B.1. The phase lag in units of non-dimensional “hours” as
arising from equation (B.1).
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