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Motion control of robots is a high-dimensional, nonlinear control problem that is often difficult to handle
using traditional dynamical path planning means. Reinforcement learning is currently an effective means to
solve robot motion control problems, but reinforcement learning has disadvantages such as high number of
trials and errors and sparse rewards, which restrict the application efficiency of reinforcement learning. The
Hindsight Experience Replay(HER) algorithm is a reinforcement learning algorithm that solves the reward
sparsity problem by constructing virtual target values. However, the HER algorithm still suffers from the
problem of long time in the early stage of training, and there is still room for improving its sample utilization
efficiency. Augmentation by existing data to improve training efficiency has been widely used in supervised
learning, but is less applied in the field of reinforcement learning. In this paper, we propose the Hindsight
Experience Replay with Transformed Data Augmentation (TDAHER) algorithm by constructing a transformed
data augmentation method for reinforcement learning samples, combined with the HER algorithm. And in
order to solve the problem of the accuracy of the augmented samples in the later stage of training, the decaying
participation factor method is introduced. After the comparison of four simulated robot control tasks, it is
proved that the algorithm can effectively improve the training efficiency of reinforcement learning.
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1. Introduction

The motion control problems of robots are often difficult
to solve using traditional control algorithms due to high
dimensionality and nonlinearity, while reinforcement learn-
ing algorithms have higher robustness and environmental
adaptability and can deal with motion control problems
more flexibly, and In recent years, reinforcement learning
algorithms have been studied and applied more success-
fully in control problems such as robotic arms, multi-legged
robots [1], unmanned vehicles [2], and unmanned ships [3].

However, there are still many problems with reinforce-
ment learning, two of which are more influential, one of
which is the reward sparsity problem [4], in reinforcement

learning tasks, the reward value can only be obtained un-
der special circumstances, such as the grasping problem of
a robotic arm, where the reward value can only be obtained
when the task is completed. Since reinforcement learning
relies on the reward values obtained from experience to
update the value function network, if the reward values
are sparse, the value function takes a long time to get up-
dated, which seriously affects the training efficiency. One
approach is to manually design elaborate reward functions,
but this approach is labor-intensive and requires multiple
trials and errors, which is difficult to reuse.

Secondly, reinforcement learning requires a lot of trial
and error to collect data and train them to get more suc-
cessful intelligences, and on the one hand, such trial and
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error takes a long time, and if the task dimension is high
and complex, this longer training process will affect the
application of reinforcement learning. On the other hand,
for some tasks, the cost of trial and error is high, and only
a smaller number of real trial and error samples can be
improved. Therefore, how to improve the efficiency of sam-
ple utilization becomes one of the directions to improve
reinforcement learning algorithms.

Data augmentation is an idea commonly used in ma-
chine learning to improve sample utilization efficiency. In
supervised learning, samples can be randomly flipped, ro-
tated, noisy, etc., so as to expand the data set, improve
training efficiency, and effectively reduce the problem of
overfitting. In this paper, from this idea of data augmen-
tation, a HER algorithm based on transformed data aug-
mentation is proposed based on the reinforcement learning
algorithm based on HER [5]. The algorithm is able to use
the already acquired empirical data to expand the empiri-
cal data set by certain transformations so as to obtain the
enhanced new data, thus greatly improving the training
efficiency of the reinforcement learning algorithm.

2. Ralated work

2.1. Reinforcement Learning

The idea underlying reinforcement learning [6] is the ex-
istence of an agent that interacts with the outside world,
and that agent observes information about the outside envi-
ronment and makes the appropriate decisions to reach the
next state and obtain a certain reward value. This process
is known as a Markovian decision process. Markov pro-
cess is a class of stochastic processes defined in probability
theory, characterized by the fact that the state Xt+1 at the
next moment is only related to the state Xt at this moment
and not to the state at the previous moment. Based on
this definition, the action decision process added to the
reinforcement learning control process results in a Markov
chain decision process (MDP), represented by a quadruplet
(S, A, R, S′).

For each step of the Markov decision process, first, the
intelligence obtains some information from the current en-
vironment, which constitutes the state information St → S
at the current moment, and then generates an action a
based on the current policy π, by sampling or deterministic
form, and executes the action. After executing the action,
the agent shifts to the next moment’s state St+1 through the
state transfer equation. At the same time the agent obtains
the reward Rt+1 ∈ R for the next moment from the envi-
ronment according to the reward function S×A → R. This
way multiple MDP processes are connected in series until
they finally reach the termination state, which is called a

trajectory.

The training goal of reinforcement learning is to find
such an optimal policy π∗ that generates actions based
on states that maximize the expectation of the cumulative
reward value obtained for the whole trajectory afterwards.
Usually, when calculating the expectation of the reward,
the closer to the current moment the value of the reward
should be higher, so a discount factor γ is added, and the
cumulative expectation is called the value function, the
expectation calculated according to the state is the state
value function V(S), and the expectation of the reward
calculated according to the state action pair is the state
action value function Q(S, A). And the optimal policy
π∗ can make each decision process choose the action that
obtains the maximum Q value, which can be expressed by
the Bellman transfer equation as follows.

Q∗(s, a) = E
[
R(s, a) + γ max Q∗ (s′, a′

)]
(1)

2.2. DQN, DDPG, and HER

A deterministic strategy establishes a direct connection be-
tween the state space and the action space π : S → R,
while a random strategy generates a probability distribu-
tion about the action information based on the state infor-
mation, and then samples an action value from the distri-
bution action value at → R. Both have advantages and
disadvantages. The randomness strategy can train faster,
take into account the exploration function, and avoid get-
ting into a local optimum situation. However, the disad-
vantage is that if the action space dimension is high or the
action values are continuous, the stochastic strategy can
only be implemented by discretizing the action values or
some special methods, while the continuous deterministic
strategy can directly output the action values, so the deter-
ministic strategy is often used for control tasks that require
continuous action values.

DQN [7] is a model-free reinforcement learning method
applicable to discrete action spaces. In DQN, a neural
network is used to estimate the action state value function
Q(s, a). The key point is the use of experience replay and
target network to complete the training of the Q network.
The experience replay employs a replay buffer to store each
Markov decision process tuple (st, at, rt, st+1). During the
training process, one batch of data is taken from the replay
buffer each time, and the Q value is obtained using the
method of temporal difference, and then the parameters
of the Q network are updated using this Q value with the
method of gradient descent. In contrast, the target network
is used to make the updating process more stable, and
a Q network that was stable in the previous step, called
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the target Q network, is used for estimating the Q value,
instead of the Q network that is currently being updated,
and the parameters of the target Q network are updated
after the training of a batch is completed.

The DQN algorithm is only applicable when the action
space is discrete, and thus the application is limited. DDPG
[8] is a reinforcement learning algorithm based on DQN,
which combines a policy gradient approach such as PG, to
form a decision maker-commentator architecture. There
exists a decision maker network, i.e., a strategy network
π : S → A, which can receive state information and output
action information directly; and an evaluation network
Q : S×A → R, which receives state and action information
and outputs the evaluated Q value. During the training
process, the collected experience replay data is used to
train the Q network to improve the Q network accuracy,
and then the evaluation of the Q network is used to train
the policy network so that the policy network is close to the
optimal policy network. Thus, the problem of controlling
the continuous action value task is solved. both DQN and
DDPG are off-policy [9] reinforcement learning algorithms,
i.e., their update training data does not depend on the data
generated by a particular policy.

Building on the above off-policy reinforcement learn-
ing, the HER algorithm [5] borrows the idea of human
trial-and-error in order to solve the previously mentioned
reward sparsity problem. HER algorithm considers a
goal-oriented reinforcement learning task, i.e., reinforce-
ment learning to obtain a reward has a direct correlation
with reaching a certain goal, and HER borrows the idea
from UVFA [10] by setting G as the space of all possible
goals, and each g ∈ G is related to the reward function
rg : S × A → E. From this reward function one can derive
the value function Qπ (st, at, g) = E [Rt | st, at, g] contain-
ing the target. The HER algorithm not only puts the transfer
data (st ∥g, at, rt, st+1∥ g) containing the real target into the
experience replay buffer, but also generates a pseudo-target
g′ and a pseudo-reward r′ based on the state information,
and puts the modified transfer data (st ∥| g′, at, r′, st+1∥ g′)
into the experience replay buffer. This solves the problem
of not getting rewards in the early stage of training and
improves the training efficiency.

2.3. Data Augmentation

2.3.1. Data augmentation for supervised learning:

The data augmentation [10] method refers to the expan-
sion of the existing data set based on the existing data by
analyzing the completeness of the data and using certain
rules. Data augmentation has gained wide application in
supervised learning machine learning tasks. For exam-

ple, in image-based machine learning tasks, the images of
the original dataset can be cropped, flipped and rotated,
scaled, shifted, added with Gaussian noise, added with
color dithering, and other different methods [11] to obtain
new labeled data and expand the existing dataset. Among
the natural language processing tasks [12], the enhanced
dataset can be generated by adding noise to the original
data; mastering the distribution of the original data and
sampling new data from the distribution; training a lan-
guage model based on the original data and then generat-
ing synonymic near-synonyms of the original data by the
model.

2.3.2. Data augmentation for reinforcement learning

Reinforcement learning has a higher demand for data uti-
lization efficiency than supervised learning, and there ex-
ists a lot of research on data enhancement for reinforcement
learning, which is generally mostly based on image input
reinforcement learning tasks, with the following represen-
tative algorithms.CURL [13] adopts a contrast learning
approach, where the input image is first cropped in some
way to produce a new series of state data. CURL contains
two feature extraction networks, where the original data
is first passed through the feature extraction network to
generate features, which are directly used to train the agent,
while the enhanced data is also passed through the feature
extraction network to generate features, and the enhanced
features are used to compare with the original features,
and if the loss is within a certain range, the data is consid-
ered valid and can be put into the replay buffer. Thus, the
dataset is expanded.

The RAD [14] and DrQ [15] algorithms are more straight-
forward, i.e., more data augmentation methods are applied
to the input image, which is then fed into the intelligence
for training. There is also a reinforcement learning method
based on the world model [16], the idea of this algorithm is
to use the obtained Markov decision transfer information
to train a model neural network that simulates the environ-
ment while training the intelligent body. This network can
predict the next state in a sentence of the input state action.
If the world model is more accurate, a trajectory can be
simulated by model sampling as data for training, thus im-
proving the efficiency of data utilization. However, among
the above data augmentation methods, those with models
require additional training and longer time to obtain an
accurate model, while the rest of the algorithms are based
on image based state data inputs, all of which have the
disadvantage of being inapplicable in robot motion control
problems.
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3. Hindsight experience replay with transformed
data augmentation

3.1. Reinforcement learning environment for motion con-
trol tasks

In the control task of reinforcement learning, usually the
agent does not have complete access to all the information
about the environment, but only to a part of it, called "state
information". At the same time, the environmental infor-
mation needs to be processed and transferred to the agent
in a certain form. Different forms of state can affect the
training efficiency, action results, etc. The state data can be
expressed in various forms, such as image data, position
pose data, point cloud data, etc. It is also possible to char-
acterize the abstraction of the state by some function, so as
to form abstracted feature data and improve the training
efficiency of reinforcement learning.

Excellent state design should be built on the basis of task
design, extracting the factors in the environmental data that
have critical and comprehensive influence on the task data,
so as to provide more accurate state information to the
agent. Therefore, task analysis is needed first, and the task
environment covered in this paper is the motion control
task of the robot. The motion control of a robot is character-
ized by high dimensionality and sparse reward functions,
as well as high overlap between state information and task
goals.

Therefore, in the reinforcement learning task studied in
this paper, the positional information is used as the main
state information expression, and at the same time, the po-
sitional information is also used as the expression of the
target information to realize the connection between the
state information and the target information. Specifically,
the state space information S is a collection of a series of
coordinate information x of the robot’s own elements and
environmental targets, etc., and some state data y that are
independent of the coordinate system in the global coor-
dinate system. This includes, but is not limited to, the
position coordinates of each joint, velocity vectors, etc.

S = [x1, x2, x3 . . . xn, y1, y2, . . . yn] (2)

The target information G needs to be linked to the state
information in the form of a function: G=f(S)

Taking the Fetch task in Openai’s Gym [17, 18] environ-
ment as an example, the robot it controls is a 7-degree-of-
freedom robotic arm with a grasping mechanism at the
end, and the task goal is to make the arm’s grasping mech-
anism reach the coordinates of the target object. Its state
information, then, contains the following parts, showed in
Table 1.

Table 1. State Information of Fetch

State content

1 Cartesian coordinates of the gripping
mechanism

2 Cartesian coordinates of the target object
3 relative coordinates of the target object

4 the state of the gripping mechanism
(independent of the coordinates)

5 the angular state of the target object
6 linear velocity of the target object
7 rotational coordinates of the target object

8 linear velocity of the gripping
mechanism

9 opening and closing speed of the
gripping mechanism

3.2. Transformation consistency discussion

Here we consider the way humans think when performing
control tasks. When humans finish performing an action,
they will naturally associate that if the state space consis-
tency is high, then the translation, flip and rotation of this
control trajectory, should also be valid. For example, if we
are driving in an open territory, when the car turns left to
reach a certain place; then with the same starting point, we
would assume that turning the car to the right would lead
to a symmetric one target point.

In the training task of reinforcement learning, each train-
ing needs to utilize real trajectory data as the dataset, and
the training is less efficient. By such an idea, the existing
trajectory data can be transformed accordingly to form a
new trajectory, thus forming a richer data set with limited
data, which can significantly extend the data utilization
efficiency of reinforcement learning, improve the training
speed of reinforcement learning algorithm and enhance the
robustness of the intelligence.

In a typical reinforcement learning control task, the
control chain of reinforcement learning is composed of a
Markovian control chain. In the training process of DDPG,
the trajectories of this Markov chain are used for the train-
ing of two networks, one is the Q network, which receives
data in state space with actions and outputs Q values cor-
responding to the state and R values in the trajectory; the
other is the policy network, which receives a state space
data and outputs an action. Where the trajectory plays a
key role is the data when training the Q-value network.
When we transform the state space to some extent, a new
state S’ is obtained, and when the intelligence is located in
the new transformed state, a new action is generated based
on the new state.

Here, it is hoped that the Q network can be trained using
the control chain of the transformed trajectory. Assuming
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that S is the original state and the transition is T, we have
St = ST.In the Q-network training algorithm of DDPG, the
update formula is that:

L(ϕ,D) = E
(s,a,r,s,d)−D

×[(
Qϕ(s, a)−

(
r + γ(1 − d)Qϕuz

(
s′, µθux

(
s′
))))2

] (3)

In this update formula, there are four main state spaces
and action quantities involved, one of which is the original
state s, the second is the action a performed, the third is
the reward value r obtained, and the fourth is the state s’ to
which the action is converted after execution. Then when
the corresponding transformation of the state and space is
performed, its update formula becomes:

L(ϕ, D) = E
(st ,a,rt ,d)−D

×

[(
Qϕ (st, a)−

(
r + γ(1 − d)Qϕϕsy

(
s′t, µθθs

(st)
))))2

]
(4)

It can be analyzed that the transformation inconsistency
in the updated formula after conversion mainly comes from
the following aspects.

• inconsistency of the preceding and following actions:
if the original strategy is still used after the transfor-
mation is performed, then the action generated by the
sampling will also change because the state has been
transformed, and then the inconsistency of the action
will be generated.

• Inconsistency in the state after performing the action:
In the original Markov chain, each new state is gen-
erated by a real action, and when the original state is
converted, whether the new state generated by the ac-
tion can correspond to the new state in the converted
Markov chain, thus generating inconsistency in the
state after performing the action.

• Inconsistency of obtained rewards: In the original
Markov chain, the current obtained reward value is
the reward value obtained in the real environment,
and after the conversion, if the original reward value
is still used as the reward value in the update function,
the authenticity of the reward value cannot be guaran-
teed, which results in the inconsistency of the reward
value.

• inconsistency of temporal different Q values: in the
update formula, the temporal difference method is
used to estimate the subsequent Q values, so that the
current reward value and the temporal difference Q

value to find the current Q value. The Q-value utilizes
the untransformed strategy, and its resulting estimate
is also biased, thus generating the inconsistency of
temporal different.

It can be seen that a variety of different situations arise
after the conversion of the original state, and these can have
an impact on the effectiveness of the training. Therefore,
this paper proposes two methods to improve the converted
states. One is the action consistency conversion, and the
other is the decay participation factor. The specific methods
for both are stated in detail in the next section.

3.3. Transformed data augmentation

3.3.1. State and goal transformation

The state information of the robot control task has been in-
troduced in the previous section, and this section describes
how to perform certain transformations on the state to ob-
tain new state data and achieve data enhancement. There
are three types of state transformations: random transla-
tion, random flip, and random rotation, and as described
in the previous section, each state information is composed
of a set of coordinates. Therefore, to perform a state trans-
formation, we need to process the coordinates in the state
information that will be transformed, and finally form the
transformed state information.

First, the coordinates and rotation information in the
state information need to be processed and transformed
into the form of a positional matrix suitable for the transfor-
mation, and for the positional coordinates, the coordinates
themselves are the position description of the change point.
P =

[
px, py, pz

]T As for the pose description, the state in-
formation provides generally the Euler angular coordinates
of the rotations, and the rotations along the X-axis Y-axis Z-
axis are represented by γ, β, α respectively, then the rotation
matrix of the three rotations is:

Rx(α) =

 1 0 0
0 cos α − sin α
0 sin α cos α


Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β


Rz(γ) =

 cos γ − sin γ 0
sin γ cos γ

0 0 1


(5)

The final pose coordinates are:

R = Rz(γ)Ry(β)Rx(α) (6)

The final pose description is stitched from the position
and pose information into the pose matrix as.
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B = [R, P] (7)

The pose is then subjected to certain transformations.

1. random translational transformation: for the trans-
lational transformation, it is only necessary to add
an identical random transformation value to each of
the original position coordinates, with the pose un-
changed, to complete the random translational trans-
formation:

PT = P + Pr (8)

2. random rotational transformation: for the rotational
transformation, it is necessary to multiply the bit-pose
expression by the corresponding rotation operator,
which is the same as the expression of the pose, and is
the rotation matrix corresponding to the rotation of the
corresponding angles around the X-axis, Y-axis and
Z-axis, respectively, rz, rx, ry are the angles of each
random axis.

BT = Rot(Z, rz)× Rot(B, rb)× Rot(y, ry)× B (9)

Since the rotation and translation algorithms can be
transformed uniformly, the random translation rota-
tion transformation will be processed uniformly in the
algorithm of this paper, i.e., the state information will
be transformed by random translation:

BT = Rot(Z, rz)× Rot(B, rb)× Rot(y, ry)× Pr × B
(10)

3. Random mirror transformation: Considering that the
transformation along a random axis in the mirror trans-
formation is difficult and not conducive to the process-
ing of Markov chain for data enhancement, only the
coordinates of the state information are mirrored along
a certain coordinate axis in the global coordinate sys-
tem. For example, mirroring along the X-axis means
mirroring along the face formed by two coordinate
axes YZ. Then, for the position information P, both of
its YZ coordinate values remain unchanged, while the
X-axis coordinate values become the original negative
numbers.

PT =
[
−Px, Py, Pz

]T (11)

As for the attitude information, the Euler angles of the
mirror axes remain unchanged, while the Euler angles

of the other two axes become the original negative
numbers, and then the relevant attitude matrix can
be calculated according to the previous equation as
follows.

RT = R−γR−αR−β (12)

The above transformation can be uniformly expressed
as some kind of random transformation T. For the state
information, the absolute coordinate information and
the rotation quantity among the states are extracted
first, and the transformation is applied after getting
the positional matrices to get the transformed posi-
tional matrices, and then these positional matrices are
restored back to the coordinate information and the
rotation quantity to get the transformed state informa-
tion ST : ST = T(S)

3.3.2. Action Consistency Conversion

As mentioned above, if only the state information is flipped,
it will cause inconsistency in the transformation, which will
affect the effectiveness of data enhancement. Therefore, in
order to maximize the efficiency of data utilization and
reduce the inconsistency, each part of the Markov decision
process needs to be transformed accordingly. A Markov
decision process consists of {S, a, r, S′}, which requires the
following transformations.

1. the state information after the action S′
T : for the en-

hanced data samples, it is necessary to maintain the
consistency of their state information before and af-
ter the action, so the corresponding data in the trans-
formed S’ need to be transformed in the same way as
S to obtain the enhanced , i.e., S′

T = T(S)..

2. Transformation of action information: Since the state
information before and after the action has been trans-
formed accordingly, if the action is not transformed,
the inconsistency of the action will occur. Therefore,
we need to transform the action space according to its
data form. The action space of the FetchReach task,
for example, is a four-dimensional control information.
The first three dimensions are the expected position
coordinates of the gripping mechanism, while the last
data controls whether to open or close the gripping
mechanism. The last data is independent of the trans-
formation and therefore does not need to be changed,
while the desired position requires the same transfor-
mation aT = T(a) to be applied according to the trans-
formation of the state information. For some tasks, the
action information is not related to the position infor-
mation, but only to the relative direction, e.g., the turn
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signal given to the vehicle in the driving task does not
need to be changed in the translation and rotation task,
while the corresponding mirroring is performed in the
mirroring task.

3. Transformation of reward and target: In the standard
reinforcement learning training task, the current re-
ward value obtained after the action and the Q value
after the time difference are used to calculate the gra-
dient to complete the training. After the transforma-
tion, there is no guarantee that the transformed state
can still obtain the exact same reward value, but only
assume that it is still equal, and then use the time-
permitted difference method to complete the estima-
tion of the reward value:

QT = rt + γQ
(
s′t, π

)
(13)

4. In HER algorithm, then also need to transform the
corresponding target value, because the target value
is associated with the state, so the transformed state
information, and then the corresponding target trans-
formation, you can get the corresponding target in-
formation, and then from the target information, to
obtain the corresponding pseudo reward value, can
constitute the HER algorithm, after the transformation
of the data.

gT := S′
T (14)

r′T := r
(
S′

T , a′T , gT
)

(15)

3.3.3. Decay participation factor setting

Through the transformation processing of the relevant
Markov decision process above, the inconsistency of the
before and after states and actions is solved here, but the
inconsistency of the reward information still exists, so the
enhanced data cannot be used as accurate training data,
and can only be a tool to improve the training efficiency
in the early stage. Alternatively, the enhanced data ob-
tained by transformation for training is equivalent to a
means of exploration, and in the later stages of training,
it will instead become a side effect that reduces the effi-
ciency of the algorithm due to its inaccuracy. Therefore,
in this paper, borrowing from the ϵ− greedy method of
reinforcement learning exploration, we set a participation
factor ϵ that decreases gradually with the number of train-
ing steps, transform the data with higher probability at
the beginning of training and use the augmented data for
training, and transform with lower probability at the later

stage of training, while using only the real training data for
training.

In order to realize the participation factor can be de-
cayed dynamically, a common method is to perform expo-
nential decay, but this method is more rigid and not flexible
enough. The reward-based dynamic decay method is used
here, and the steps are as follows: set a target reward value
Rtarget , an update reward value Rthreshold , set a number
of steps nsteps , divide the reward value and the factor into
equal parts according to the number of steps, and when-
ever the average reward value reaches the update reward
value, increase Rthreshold is increased by one and ϵ is de-
creased by one, and when the reward value reaches the
target reward value, ϵ also reaches 1 . The pseudo code is
as Algorithm 1 .

3.3.4. Hindsight Experience Replay with Transformed Data Aug-
mentation

The flow of the algorithm is shown in the pseudo-code of
Algorithm 2.

4. Expriment

4.1. Expriment environment

As mentioned earlier, the HER-based algorithm described
in this paper is suitable for a reward-sparse and goal-
oriented robot control environment. The robot environ-
ment in the openai gym is used here as the standard
experimental environment, which uses MuJoCo [19] as
the engine for the physical simulation. We also use the
DDPG+HER provided by stablebaseline [20] as a base crite-
rion for algorithm evaluation. We conducted experiments
in four robot tasks (fetchReach-v1, fetchPush-v1,fetchSlide-
v1, FetchPickAndPlace-v1) and compared them with the
standard version of the HER algorithm.

• 1FetchReach-v1: As shown in Fig. 1, there is a target
point in the state space, and the robot’s end-effector
needs to be moved to the target point by controlling
the robot arm.

• 2FetchPush-v1: As shown in Fig. 2, a block exists in the
space and a target point is set randomly on the table
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at the same time. Control the robot’s end-effector to
push the block to the target location to get the reward.

• FetchSlide-v1: As shown in Fig. 3,there is a puck on
the table and a target point at the far end of the table,
you need to control the robot to push the puck and
get a reward if the puck stops near the target position
after sliding.

• FetchPickAndPlace-v0: As shown in Fig. 4, there is
a block object on the table, you need to control the
robot’s end-effector to pick the object and place it on
the target object.

The simulated robot in this task is a 7-degree-of-freedom
robotic arm. Its state space has been described before, and
its goal space is related to the state space by a fixed toler-
ance between the position of the object of interest (e.g., the
position of the actuator or the position of the target object)
and the desired position. If it is less than this tolerance, the
goal is considered to be achieved and the corresponding

Fig. 1. FetchReach

Fig. 2. FetchSlide

Fig. 3. FetchPush
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Fig. 4. FetchPick And Place

reward is given. The experiments were conducted on a
windows-based computer with an Intel i7-10750 processor,
nvidia rtx3060 graphics card, and 16GB DDR4 RAM. ana-
conda python 3.9 environment was used for the Python
environment.

4.1.1. Expriment methodology

1. Expriment design Experimental task: In the above
experimental setting we trained TDAHER separately
from the standard HER algorithm in stablebaseline
[20] for comparison. In each of them, different
epochs were trained for different tasks according to
the task difficulty, where feachreach was trained with
50 epochs, feachpush with 50 epochs, and feachslide
and feachpeakandplace with 200 epochs. each of these
epochs Each epoch contained 50 rounds of training.

In the Feachreach task, the experiments were designed
to simultaneously evaluate the standard HER algo-
rithm against the TDAHER algorithm with different
decay participation factors, with 1 full training session
for each algorithm.

In the other three tasks, the TDAHER algorithm used
the best-performing attenuation factor, with 10 com-
plete training sessions with each of the standard HER
algorithms.

Evaluation metrics: The main metric used to evalu-
ate the algorithm in the experiments is the success
rate, and the algorithm is used to make one attempt
to complete the task in each epoch. The success rate is
obtained by dividing the number of successes in each
round by the total number of rounds attempted. Also,
to evaluate the efficiency of the algorithms. The aver-
age time taken by each algorithm to reach a success
rate of 0.8 was calculated to visualize the operational

Fig. 5. FetchReach result

efficiency of different algorithms.

2. Expriment Hyperparameters All implementations are
trained by the same random seeds under which the
original HER algorithm is trained with the trans-
formed data augmentation HER algorithm (TDAHER),
and for comparison purposes, all training hyperpa-
rameters are kept the same. The capacity of the replay
buffer is 106 and each batch contains 256 samples. In
contrast, the networks of both Actor and critic have
four layers of linear neural networks, each layer con-
tains 256 neurons, and ReLU is used as the activation
function. Its actor network passes a tanh activation
function when outputting actions. Both networks use
adam opimizer for optimaze and a learning rate of
0.001 is used. Also, in order to accelerate the training,
a multi-process simultaneous training is used in the
training process, and eight processes will be trained
together at the same time.

3. Expriment Result

In the Fetchreach task, result showed in Fig. 5, both the
original HER algorithm and the TDAHER algorithm
can be trained to complete the task relatively quickly
due to the simplicity of the task. Here the compari-
son is made on what percentage of the update of the
participation factor will be set to the highest reward
value. As seen in the figure, if the target reward value
is set to the same value as the highest reward value,
it will cause a plateau period in the late training pe-
riod, which will affect the training efficiency. If the
target reward value is set to 0.5 of the highest reward
value, the improvement is limited, although it is also
improved in the early stage compared with the origi-
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Fig. 6. FetchPush result

Fig. 7. FetchSlide result

nal HER algorithm; when the target reward value is
set to 0.7 of the highest reward value, the improve-
ment is most obvious in Fetchreach compared with
the original HER algorithm. A success rate close to 1 is
reached at 23epoch, while the original HER algorithm
does not reach until after 26epoch.

In the fetchpush task, result showed in Fig. 6 , the TDA-
HER algorithm shows greater superiority compared to the
original HER algorithm, achieving a high success rate of
about 0.8 at 80 epoch, while the original HER algorithm
takes up to 100 epoch to achieve.

In the Fetchslide experiments, result showed in Fig. 7,
both algorithms take a considerable amount of time to reach
a high success rate due to the increased difficulty of the
task. At the beginning of the task training, the TDAHER
algorithm is able to improve to a success rate of about 0.6

Fig. 8. FetchPickAndPlace result

relatively quickly compared to the original HER algorithm,
but after 70 epochs, the training speed of both TDAHER
and HER algorithms starts to slow down. The success rates
are close in this phase, but the TDAHER algorithm still
maintains its superiority and has a relatively high success
rate in the final phase of training.

In Fetchpickandplace, result showed in Fig. 8, it also
takes 200 epochs to reach a high success rate, but in this
task, TDAHER shows a higher superiority, especially in the
early stage, compared with the original HER, TDAHER’s
training efficiency improves significantly, slows down in
the middle stage, grows similarly to the original in the
plateau stage, and reaches a higher success rate in the late
The time to reach higher success rate in the later stage
is also earlier than the original version. The variance of
TDAHER data is also smaller and more stable than the
original version.

We compare the average time to reach a success rate of
0.8, the average success rate of each Epoch, and the average
highest success rate of the two algorithms in separate tables.
Tables 1 to 4 show the performance of TDAHER and HER
algorithms in FetchPush, FetchSlide, and FetchPickAnd-
Place respectively. As we can see, the highest success rate
of evaluation is similar for FeachPush and FeachSlide, and
TDAHER is higher for FeachPickAndPlace. In terms of
average time and average success rate, TDAHER has a sig-
nificant advantage over HER, with faster time and higher
average success rate of the whole trajectory, which proves
that TDAHER has higher training efficiency than HER.

4.2. Result analyse

The above experimental results show that TDAHER is more
obvious in the improvement of training efficiency com-
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Table 2. Feachpush Result

algorithm
FeachPush

Average time to reach
0.8 Success rate (epoch)

Average success
rate

Average highest
success rate

TDAHER 80.8 0.604 0.995
HER 87.3 0.538 0.996

Table 3. Feachslide Result

algorithm
FeachSlide

Average time to reach
0.8 Success rate (epoch)

Average success
rate

Average highest
success rate

TDAHER 148.9 0.617 0.905
HER 173.5 0.575 0.892

pared with the original HER algorithm, especially in the
early stage of training, due to the more efficient use of data
samples, which can make the agent faster to improve the
success rate. In the middle and later stages of training, due
to the difference between the data augmentation samples
and the real samples, the inclusion of samples will instead
affect the training efficiency, and by adjusting the decay of
the participation factor, this effect can be weakened and
more real samples can be used for training. In sum, data
augmentation can improve the training efficiency of HER
algorithm.

At the same time, the experiment also exposed a certain
amount of problems. The TDAHER algorithm has limited
improvement on the HER algorithm in the late training pe-
riod, and the effective degree and variance of the TDAHER
algorithm vary in the face of different tasks, which affects
the effectiveness of the algorithm.

5. Conclusions

In this paper, we propose a method for data augmentation
of robot control reinforcement learning task samples from
the problem of efficient sample utilization for reinforcement
learning algorithms, and based on this method, we propose
a novel algorithm based on data augmentation in combi-
nation with HER algorithm. The algorithm is subjected to
experimental analysis, and it is proved that the algorithm
can obtain higher reward values more quickly and improve
the training efficiency of HER algorithm effectively.

At the practical application level, the reinforcement
learning training task for robot control, where the rewards
are often sparse and the time to obtain a trajectory is long,
can be effectively reused for samples using this algorithm.
Improving the training efficiency of the reinforcement learn-
ing algorithm, shortening the training time, and enhancing
its applicability in the field of robot control.

At the same time the algorithm also has some limita-

tions, its data augmentation algorithm is based on the spe-
cial environment of robot control task, in the reinforcement
learning task, there are also a variety of lesser forms of state
space, how to combine different state spaces, design a more
general reinforcement learning data augmentation method,
is the future research direction. In addition, the algorithm
has only been trained in the simulator and has not been
tested in a real robot, which is something that needs to be
done in the future.
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