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Background and objective: Accurate and fast diagnosis of rheumatic diseases

a�ecting the hands is essential for further treatment decisions. Fluorescence

optical imaging (FOI) visualizes inflammation-induced impaired microcirculation

by increasing signal intensity, resulting in di�erent image features. This analysis

aimed to find specific image features in FOI that might be important for accurately

diagnosing di�erent rheumatic diseases.

Patients and methods: FOI images of the hands of patients with di�erent

types of rheumatic diseases, such as rheumatoid arthritis (RA), osteoarthritis

(OA), and connective tissue diseases (CTD), were assessed in a reading of 20

di�erent image features in three phases of the contrast agent dynamics, yielding

60 di�erent features for each patient. The readings were analyzed for mutual

di�erential diagnosis of the three diseases (One-vs-One) and each disease in all

data (One-vs-Rest). In the first step, statistical tools and machine-learning-based

methods were applied to reveal the importance rankings of the features, that is, to

find features that contributemost to themodel-based classification. In the second

step machine learning with a stepwise increasing number of features was applied,

sequentially adding at each step the most crucial remaining feature to extract a

minimized subset that yields the highest diagnostic accuracy.

Results: In total, n = 605 FOI of both hands were analyzed (n = 235 with RA, n =

229 with OA, and n= 141 with CTD). All classification problems showedmaximum

accuracy with a reduced set of image features. For RA-vs.-OA, five features

were needed for high accuracy. For RA-vs.-CTD ten, OA-vs.-CTD sixteen, RA-

vs.-Rest five, OA-vs.-Rest eleven, and CTD-vs-Rest fifteen, features were needed,

respectively. For all problems, the final importance ranking of the features with

respect to the contrast agent dynamics was determined.

Conclusions: With the presented investigations, the set of features in FOI

examinations relevant to the di�erential diagnosis of the selected rheumatic

diseases could be remarkably reduced, providing helpful information for

the physician.
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1. Introduction

Successful treatment of rheumatic diseases affecting the hands

depends on an accurate and fast diagnosis in patients presenting

with hand pain (1). Fluorescence optical imaging (FOI) has been

used to study a number of rheumatic diseases, including, for

example, rheumatoid arthritis (RA) (2–4), osteoarthritis (OA) (4,

5), connective tissue diseases (CTD) (6, 7), and others (8, 9). The

results of FOI for the diagnosis of rheumatic diseases have been

compared to MRI [3, 5, 9] and ultrasonography (2–5, 9, 10) with

good agreement. Inflammatory changes in the microcirculation can

be visualized using FOI. Until recently, the primary focus has been

on signal enhancement in the joint regions of both hands and wrists

(8). However, FOI examinations display more, less commonly used

image features that may also be of diagnostic value. These include

spots on the hand, distensions from the nail bed, the occurrence

of Raynaud’s syndrome in CTD, and others (6, 10). Eighteen

different features found in FOI examinations have recently been

presented (11).

When analyzing FOI images, it is important, on the one

hand, to find specific features that contribute value to the correct

diagnosis and, on the other hand, to focus on a minimal set

of decision-making features in terms of feasibility. To achieve

this, we used statistical and machine learning-based feature

selection methods.

Machine learning algorithms are not explicitly programmed

to approach a problem but extract knowledge about the solution

from input data, e.g., solution-dependent patterns or associations

(12). That is, complex non-linear interaction effects in the data

are captured in an exploratory way without the need to explicitly

specify these in the model definition (13). Due to these capabilities

and the increasing availability of usable data, the utilization of

machine learning in rheumatologic diagnostics and research is

growing. A comprehensive review of the application of machine

learning in rheumatology and a description of machine learning

terms, algorithms, and workflows are available (12).

Feature selection denotes identifying features among the data

that are important for solving the problem. Although feature

selection is often conducted to improve the generalizability and

performance of a predictive machine learning model, it can be

used to extract only the most informative features and remove

noisy, non-informative, irrelevant, and redundant features (14) and

therefore help researchers understand the biological process(es)

that underlie a disease (15). Therefore, feature selection is

widely applied to medical problems (14, 16) and was applied

to rheumatological problems with different kinds of data (12),

including personal health records (17), genomics (18), and

ultrasound (19). The aim of this analysis was to find specific image

features for making accurate diagnoses of different rheumatic

diseases affecting the hands.

2. Methods

2.1. Patients

FOI examinations were available in a database containing

3,690 patients with known clinical diagnoses. Three cohorts were

compiled from the database, including patients with rheumatoid

arthritis (RA), osteoarthritis (OA), or connective tissue diseases

(CTD). The main criterion for the inclusion of patients in

the cohorts was the known clinical diagnosis of the mentioned

diseases made by a rheumatologist without knowledge of the FOI

images. Additional criteria for inclusion in the RA cohort were

a manifestation of Steinbrocker II-IV in the patients, which was

examined by corresponding bone erosion in the X-ray images,

which were also available in the database. The number of OA

patients in the database was quite large, so to have comparable

cohort sizes and not overload the reading, the OA cohort

was constrained by random choice. For the CTD cohort, all

patients were included, and no further exclusion criteria were

applied. The images of the FOI examinations were not used for

inclusion decisions.

2.2. FOI imaging

FOI examinations were conducted with the Xiralite (Berlin,

Germany) X4 NIR-fluorescence optical imaging scanner. The

hands of the patients were placed in the device, and an examination

was started. After 10 s, an indocyanine green (ICG) fluorescence

contrast agent was administered intravenously at a dose of 0.1

mg/kg body weight. The examinations took 6min, with one image

recorded per second, resulting in 360 images. FOI examinations

were conducted at study sites at 10 resident rheumatologists’ offices.

2.3. Readings

Image sequences were divided into three phases. Using

specialized software, the reader first selected the end of phase 1

separately for the left and right hands. The end of phase 1 was

characterized by the beginning of the apparent backflow of the dye

from the nail bed area of fingers II–V. Phase 2 started thereafter and

ended with frame 150. Phase 3 comprised all the following images

to the end. Thereafter, the images of each phase were summed up

and presented to the reader, resulting in three images per patient

being assessed. The reader selected the observable image features

from a list of all features or marked the phase image as featureless.

The feature list comprised 20 features−15 described previously

(11), including joint-related features (D, P, M, C, and O), finger-

related features (r, R), nail features (a, I), the venous vessel feature

(V), connective tissue features (E, B, and Y), and skin features

(F, W). Five additional features (H, S, T, U, Z) were used in the

presented reading. They are introduced in Table 1.

2.4. Data preprocessing

The clinical diagnosis was made independent of which patient’s

hands were affected. Thus, prior to further analysis, the features

annotated for each hand separately were fused, removing the

information on which hand a feature occurred.

The annotated features were collected in feature vectors,

representing observations by a list of binary variables. With
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TABLE 1 Features used in the reading that are not yet described in the

literature.

Description Acronym Image

Veins at the

metacarpophalangeal

joint

H

Starry sky pattern on the

back of the hand

S

Streaky pattern T

U- or o-shaped pattern

around a fingernail

U

Spots in the nail bed Z

the named 20 examined features in three different phases, each

observation initially consisted of 60 explanatory variables and one

target variable representing a three-class classification problem

(RA, OA, or CTD). For further analysis, this multinomial problem

was transferred to a set of binomial classifications. This allowed

for a more in-depth analysis of relevant disease-specific features

and a differentiated diagnostic performance analysis. That is, three

One-vs-Rest (OvR) and three One-vs-One (OvO) problems were

evaluated. In the OvR problems, one diagnosis (positive class) was

contrasted against the remaining two other diagnoses (fused to one

negative class) (20). For OvO, each possible pair of classes was

contrasted against each other (one diagnosis is considered negative,

the other one positive) while ignoring the observations of the one

remaining class (21). In summary, six problems were considered:

RA-vs.-OA, OA-vs.-CTD, RA-vs.-CTD, RA-vs.-Rest, OA-vs.-Rest,

and CTD-vs.-Rest.

As is common in machine-learning-based data analysis, the

data were split randomly into a training set (90%) used for all

further investigations and a test set (10% holdout set), which was

retained from all analysis steps to evaluate the final results with an

unbiased performance estimate (22).

2.5. Feature selection

Assembling the right feature selection methodology can be

a challenging task, as there is no one-size-fits-all approach.

Instead, the applied methods need to be chosen with regard

to the specific objectives of the task (14). The feature selection

approach significantly reduces the feature set while ensuring that

no important features are missing. Given the null hypothesis, if

a feature does not provide any significant diagnostic information

or, respectively, no additional diagnostic information compared

to a considered feature subset, a type one error is considered

less severe than a type two error. Accordingly, the removal of

redundant features is desirable but not crucial, particularly because

this can be harmful when no perfect correlation is present (23).

Using a single feature selection method only involves the risk

of missing important features due to method-specific limitations

[see Pudjihartono et al. (14)]. Therefore, a two-step hybrid feature

selection approach was applied using an ensemble of feature

selectionmethods [see Pudjihartono et al. (14)]. A complete scheme

of the data processing workflow is shown in Figure 1.

2.5.1. Step 1: feature filtering and ranking
The first step aimed to identify features with no significant

diagnostic information to remove them from further analysis and

rank the features by suspected importance for a later in-depth

evaluation (see 2.5.2). This reduced the search space for the final

feature importance evaluation process in step 2 and sped it up.

For this purpose, two filter metrics and two embedded

measures were combined: (i) the phi-coefficient, (ii) the relief

algorithm MultiSURF, (iii) Mean Decrease Impurity (MDI), and

(iv) Mean Decrease Accuracy (MDA).

The phi-coefficient rφ , which is the same as the Pearson

correlation for binary variables, was used as the first filter metric. As

a measure of association for two binary variables, it reveals simple

univariate linear dependencies of the diagnosis on the features (and

is used to examine redundancies among features as well). It is

worth noting that many different measures and statistical tests are

available to evaluate univariate dependencies (14). It can be shown

that for all binary (dichotomous) settings, common approaches like

Pearson correlation, chi-squared test, mutual information, etc., are

equal or will not differ significantly in terms of feature selection

in practice. Therefore, the phi-coefficient was used here as it is

widely known, provides easy interpretability, and can be tested for

significance using a t-test.

To evaluate the involvement of features in diagnostic-relevant

feature interactions, a multivariate filter, namely a relief algorithm,

was used. In its basic form, a relief algorithm assigns weights

(W) to each of the input features by measuring the distance of

randomly selected instances with respect to near instances of the

same class and near instances of the opposite class (24). In this

study, the MultiSURF algorithm is used since it is capable of

detecting univariate, 2-way, and 3-way interactions (25).

Two embedded feature importance metrics were derived from

a machine learning model called gradient boosting machine

(GBM). A GBM consists of an ensemble of multiple single

machine learning models and reaches better performance through

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2023.1228833
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Rothe et al. 10.3389/fmed.2023.1228833

FIGURE 1

Flow diagram of the computer methods used in the presented analysis.

a stage-wise combination of these (26). Decision trees are

commonly used as base models (called gradient-boosted trees),

as was done in this study. Decision trees recursively partition

observations into sub-groups by predictor selection criteria

that minimize impurity in the sub-groups and thus predict

uncertainty. Thus, a regression tree’s “root node” represents the

best predictor using all observations, whereas subsequent nodes

represent the best predictors within nested, increasingly smaller

sub-samples of observations. Therefore, trees are capable of

handling strong non-linear interaction effects between several

predictor variables (see 2.6 for more details on the applied

machine learning procedure and GBM). It is worth noting that,

in contrast to step 2, all features were added to the model in

this step.

The importance of a feature for the trained GBM model

was investigated using the common approaches MDI and

MDA. MDI is the average reduction in impurity II, a

feature caused by all single trees (26). MDA randomly

permutes the observations of the investigated feature

multiple times while leaving the other features untouched

and averages the observed drop in the model’s performance

IA (27).

These four importance estimates were subsequently used

to build four reduced feature importance rankings from high

to low estimated importance for all six problems containing

all features that met the following criteria: rφ of the feature

suggested a significant association with the diagnosis (p-value <

0.05) or W, IA, or II was larger than 0. That is, the respective

metric suggested a slight importance for this feature, at least.

Because all features included in these lists act as candidates

in the next final feature selection step, these lists are called

candidate lists.
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2.5.2. Step 2: sequential forward selection
The second step of the feature selection process aimed to

find a small, comparable set of features for each problem by

which (near) maximum diagnostic performance can be reached.

Therefore, a stepwise forward selection process [wrapper method,

see Pudjihartono et al. (14)] was applied for each problem.

Stepwise forward feature selection was employed as a sequential

machine learning procedure, commencing with a model devoid of

any variables. Each step of this iterative process examines features

for potential inclusion in the model. In this study, a maximum of

four candidates were considered for each step. These candidates

consisted of the best-ranked remaining feature from each metrics

candidate list for this problem from step one. Separate GBMs were

trained on a feature set consisting of a candidate feature and the

yet-added features. The candidate feature that yielded the highest

increase in the model’s performance was finally added to the model.

Importantly, candidate features not selected in a given step were

not discarded but considered again as potential candidates in the

following steps. This process was continued until all candidate

features had been evaluated and no further candidates not already

included in the model remained. At some point, adding more

features to the model should not significantly improve predictive

performance anymore. Conventionally, the process is aborted at

this point, but in this study, all features were included to ensure no

potential performance-increasing power of a feature was missed.

This kind of methodology was applied because a brute-force

feature selection approach testing all possible feature subsets was

not considered suitable for this large feature space. Not all available

features were tested in each step, but the results of step one act as

an educated guess of which features are likely to be the next most

important ones.

2.5.3. Gradient boosting machine
In a preliminary evaluation, different machine learning

algorithms were tested on the given data to find suitable methods

for this study. GBM showed the best performance andwas therefore

used for further analysis. All GBMs were trained and validated in

this study, as described below.

The performance of a machine learning model can vary

depending on the specific training and test data used. To gain

insight into this performance variance, repeated cross-validation

(CV), a vital technique in machine learning, was applied. During

CV, multiple models are trained, and each of the training runs

happens on a subset of the overall training data. The model’s

performance is evaluated with the remaining subset (called the

validation set) of the data not used in the respective training

run. The aggregated validation performance of all runs gives a

more accurate estimate of the true model’s performance compared

to a single training and testing cycle (28). In this study, a 10

x 3 CV was used in the first step. This is a set of 30 models

trained on different sampled training and validation data sets. In

the second step, an even more extensive 5 x 20 CV was applied.

This is caused by the differing purposes of the models. In the

first step, the GBM was used only for feature importance guesses

(MDI and MDA), while the exact model’s performance was less

interesting. In the second step of final feature ranking and selection,

statistically robust and generalized findings about the model’s

performance were particularly crucial, especially considering that

the performance differences among features can be remarkably

close (see results section).

It is worth noting that hyperparameter tuning was performed

during the cross-validation process to boost the GBM’s

classification performance. That is, model parameters that

cannot be learned by themselves from the data were optimized

using a grid search (29) by repeating the CV for different settings

of hyperparameters. From the hyperparameter tuning, the setting

with the best mean performance was chosen as the optimal set

of hyperparameters (see below for details about performance

measurement). Afterward, a so-called final model was trained

with these optimal hyperparameters and the full set of all

training data (noted as the final model in Figure 1). Finally, the

performance of the models was tested on the test split set aside

in advance.

Because of the unbalanced problem-dependent class

distribution, a random oversampling was performed for the

training set to avoid a biased classification of the models toward the

majority class. That is, randomly selected instances of the minority

class were copied so a balanced distribution was reached for each

considered problem (30). As usual, no sampling was conducted for

validation and testing.

For the performance evaluation of the GBM classifiers,

the area under the receiver operating characteristics curve

(ROC) was used, which is simply known as the area under

the curve (AUC). The AUC was used because, unlike other

common classifier performance metrics, it is independent of

a specific decision threshold. The ROC is a graphical plot

showing the sensitivity against “1—specificity” reached by a

binary classifier when varying the decision probability threshold

from 0 to 1. Therefore, the AUC can be interpreted as

the probability that the classifier can distinguish between a

randomly selected positive and a randomly selected negative

instance (31). It is also worth noting that even though

classification performance is also referred to as accuracy in

this study, performance is always measured in terms of AUC,

not the correct classification rate, which is often termed

accuracy (ACC).

While gradient-boosted trees and other tree-based models

can handle multicollinearity, correlated features can still impact

the model’s build and splitting processes and complicate feature

importance analysis [e.g. (32–34)]. Moreover, removing highly

correlated features can help reduce the dimensionality of

the data set, which can help reduce overfitting, improve

model interpretability, and decrease training time. Therefore, a

collinearity analysis was applied in step 1.

3. Results

In total, data from 609 patients in three cohorts were included

in the analysis. Details are listed in Table 2. Written informed

consent was obtained from each patient prior to inclusion. No

features were selected in the reading for four patients (2 RA, 2 OA).

These patients were excluded from further analysis.

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2023.1228833
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Rothe et al. 10.3389/fmed.2023.1228833

TABLE 2 Demographic data of the included cohorts.

n = 609 n Sex
female/male/unknown

Age
(standard
deviation)

RA 237 179/56/2 61.7 (12.4)

OA 231 195/35/1 61.6 (10.7)

CTD 141 116/25/0 51.9 (12.5)

Features are named with a combination of a letter and a

number, representing the acronym and the phase, respectively. 15

of the available features were never observed in the readings and

were neglected for further analysis: E1, H1, H2, H3, O1, r2, r3, S2,

S3, T1, T2, T3, W1, W2, and W3. The features B1 and U1 were

never present for the diagnosis of RA and CTD and were therefore

not considered for the RA-vs-CTD problem.

3.1. Collinearity analysis

The pairwise correlation matrix of the phi-coefficients for

all features in all data is shown in Figure 2. No very high

correlations are present among the features, which shows that

no feature was completely redundant to another one in terms

of contained information. Nonetheless, some features were

moderately correlated among their phases, yielding potential

information redundancy between these phases, e.g., D1 & D2

(rφ = 0.73) and P2 & P3 (rφ = 0.70). Thus, it is likely that

only a little additional information was provided by using both

features for a classifier. Variance inflation factor (VIF) analysis also

revealed no alarming collinearities (the maximum was D2 with

3.46). Therefore, no variables were excluded from further analysis

for collinearity reasons.

3.2. Step 1: feature filtering and ranking

The four feature importance metrics of step 1 are shown in

Figure 3 in descending order for the six problems. For convenience,

the lists are shortened to the first 10 features. The complete lists

are available in Supplementary Tables 1– 6 and visualized for each

metric in Supplementary Figures 1– 6.

The results show partly noticeable differences among the used

metrics regarding the ranking of the features and the number

of features revealed as important, which justifies the decision to

use multiple different metrics in the analysis. For RA-vs-OA, the

four metrics indicated 13–18 features with at least measurable

importance, reducing the number of potentially relevant features

that are taken into account in step 2. For the other problems,

the number of at least somehow important features is higher,

depending on the respective metric. Nevertheless, reducing the

feature candidates before step 2 was also feasible. Furthermore, only

a few features are indicated to be of high importance, while most

features only contribute to the diagnosis on a comparable low level,

especially for the RA-vs-OA problem.

3.3. Step 2: sequential forward selection

From the resulting feature importance rankings shown in

Figure 3, one feature was chosen to bemost important by sequential

forward selection at each step. The performances of the GBMs for

the six problems are shown in Figure 4 (OvO) and Figure 5 (OvR).

Each winner of a step of the selection process is presented from

left to right, starting with one feature-only model on the left and

adding one feature per step. This is, only the winning candidate

feature newly added to the model, and the corresponding model’s

performance is presented. For example, for considering the OA-

vs-CTD problem, the feature candidates in the first round would

be P2 (suggested by the phi-coefficient ranking), Y2 (MultiSURF),

and Y1 (MDI and MDA). P2 was the feature that yielded the best-

performing model and therefore won the first step and was added,

while all other candidates were considered in the next round again

together with the next phi-coefficient feature in line (F2 in this

example). The model won the second step using P2 (the winner of

the previous round) and Y2 additionally (one of the new candidates

tested this round), which is why only Y2 is named in the figure

for this step. The boxes show the CV performance distribution of

the models together with the performance of the final model of

the step. Notably, the CV performance is the more reliable model’s

performance estimate due to its statistical robustness compared to

the test performance, which relies only on a one-time random split.

For all problems, the AUC showed a rather steep rise initially

as more features were incorporated, achieving a peak at a specific

count and then exhibiting a mild decrease or fluctuations around

the maximum with the continued addition of features. The

transition point where performance ceases to show significant

enhancement is marked by a shift from blue to orange in the plots.

This point is defined as follows: no subsequent model demonstrates

higher mean CV performance (with a tolerance range of 0.01),

and the immediate succeeding model does not provide better

performance either. It is worth noting that this criterion is only

a suggestion by the authors and can be adjusted, as discussed in

Section 4.

The number of features needed to reach the best performance

was five for RA-vs-OA, ten for RA-vs-CTD, 16 for OA-vs-CTD,

five for RA-vs-Rest, 11 for OA-vs-Rest, and 15 for CTD-vs-Rest,

respectively. The final feature importance order, as depicted in the

x-labels in Figures 4, 5, is summarized in Table 3. Features that are

not included for a problem did not show sufficient performance

increases. This shows that maximum diagnostic performance can

be reached with a significantly reduced number of features for

all problems. For all problems, the maximum performance settled

around an AUC > 0.7. The test performances did not show great

deviations from CV performances.

4. Discussion

The presented analysis shows that feature reading of FOI is a

valuable method in the differential diagnosis process for the three

different rheumatic diseases RA, OA, and CTD, with a total AUC of

> 0.7, which is in the range of acceptable discrimination in general

(35). Of course, a good AUC depends on the specific use case,

but this shows that FOI features can provide relevant diagnostic
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FIGURE 2

Correlation matrix of all observed features. Combinations with a p-value > 0.05 are marked with a cross.

information. Thus, feature reading can be very helpful for the

physician, especially in the early arthritis clinic, where one of the

three diseases often appears. Moreover, the test results with the data

set aside (holdout) are widely in agreement with the CV results and

suggest that the learned models work for unknown data, and the

presented findings generalize well.

The results reveal that only a reduced subset of known features

needs to be considered to reach maximum diagnostic performance.

For example, discrimination between RA and OA can already be

accomplished with only five features. For RA-vs-OA, RA-vs-Rest,

and OA-vs-Rest, all metrics show that only a few features are

relevant and thus needed for the right diagnosis. For problems

containing CTD, comparatively more features were needed to reach

maximum accuracy. One reason might be that the diagnosis of

CTD consists of different types of diseases, including systemic

lupus erythematosus, systemic sclerosis, and others, which may

be characterized by different FOI features, and thus complicate

the diagnostic process, which reflects the complex nature of CTD.

Nevertheless, an extensive reduction of features was also possible

for CTD problems.

However, one or two features alone are not enough to reach

maximum diagnostic performance. At least, the interactions of a

number of features need to be considered. This is supported by

the phi-coefficients from step 1, where no high or moderately

high correlations for any of the problems were found (0.3 > rφ

> −0.3), suggesting that no feature provides sufficient diagnostic

information on its own. Due to the greedy one-feature-at-a-

time nature of the stepwise selection algorithm, important feature
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FIGURE 3

Feature ranking for the six problems with respect to the metrics phi-coe�cient, MultiSURF (MSURF), mean-decrease-impurity (MDI), and

mean-decrease-accuracy or permutation importance (MDA). Lists of all features are in the Supplementary material.
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FIGURE 4

Results of the stepwise feature selection for One-vs-One problems.

interactions may be added to the models in a delayed way, making

it hard to pick out these interactions accurately. An extended

examination of these interactions could further reduce the number

of features needed for maximum diagnostic performance.

The feature lists give no stringent instructions on how many

features should be used for diagnosis, but the gain in accuracy

for each additional feature hints at how much information would

be added or lost. For instance, 16 features are needed for OA-vs-

CTD to reach their maximum. However, after the fifth feature, C3,

the performance improvement flattens, and one could decide to

stop here. Moreover, in the RA-vs-Rest scenario, such flattening

can be observed after the fourth feature, I1, is incorporated. It

is noticeable that a total of five features are needed to achieve

maximum performance. Thus, for practical FOI diagnostics, a

further reduction of the suggested feature set at the price of only

low performance degradation may be convenient.

Some features are found to be relevant to several problems.

The most important are features P, M, Y, C, I, and B, representing

the proximal interphalangeal joints (P), the metacarpophalangeal

joints (M), the muscle-tendon junction of the wrist (Y), the

intercarpal joints (C), an inhomogeneous signal in the nail bed (I),

and broad, pronounced signals in the area of the dorsal tendons (B).

They are relevant to five of the six problems. Moreover, V and F,

representing superficial venous structures (V) and punctual sharp

signals (F), are found five times. Interestingly, feature D, which is

the distal interphalangeal joint, is not used at all in the machine

algorithms, even though in the literature, increasing signal intensity

at the distal joints is used to diagnose OA (4).

The expert assessment of the features found by the machine

learning algorithm in the various disease groups showed high

compliance with expectations from a pathological point of view,

but some results deviate from experience. In the comparison of

the OA-vs-CTD patient cohort, feature M, which represents an

increase in fluorescence intensity in themetacarpophalangeal joints

(MCP), should not have significance. Usually, they are only slightly

affected in patients with OA (4), while in patients with CTD

(excluding RA patients), the MCP joints are expected to be less

often inflamed than the connective tissue and tendons surrounding
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FIGURE 5

Results of the stepwise feature selection for One-vs-Rest problems.

the joints. When comparing the RA with the OA patient group,

feature Y (enhancement pattern at the muscle-tendon junction of

the forearm) is not expected to be remarkably important. However,

the greater accumulation in the OA group could have arisen

because of degenerative changes in the heavily stressed forearm

in the context of OA, which would thus be consistent with the

diagnosis. Furthermore, feature R, which is caused by changes in

the blood flow in the fingers (Raynaud’s syndrome), would have

been expected to be more frequent in the CTD patient group. Some

of these discrepancies can be explained by moderate correlations

between features, as shown in Figure 2.

In addition, the study could not consider that two diagnoses

could apply to one patient, as they were assigned to cohorts

by primary diagnosis. Nevertheless, some patients have

both OA and CTD or RA. Overlapping syndromes and the

high variability of the pathology could have made the exact

diagnosis and classification into the appropriate cohort difficult.

This contradicts the exclusive classification setting of the

presented problems.

A further limitation of the study is the limitation to three

rheumatic diagnoses, as there are more rheumatic diseases

associated with hand pain, including psoriasis arthritis, peripheral

spondyloarthritis, and others. However, it could be shown that for

the chosen diagnoses, the methodology provides valuable support

to the diagnostic process. Another limitation is the choice of

the features available in the reading, which included all known

features at the time, but new findings might enlarge the set of

features. Further, the readings can be extended to multiple readers

to corroborate the findings.

The used statistical metrics merely expose that a feature

includes high or low information for solving the problem but do

not reveal if the presence or absence of the feature leads to the

classification decision. In a clinical setting, this must be added by

the physician. The sign of the phi-coefficient provides a hint of

which feature should be present for which disease, but focusing

on single features is not sufficient, as discussed above. Therefore,

in future research, the specific feature interactions affecting the

classification of diseases need to be addressed.
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TABLE 3 Features importance lists for the six problems in descending

order from left to right for each problem until no improvement

considered significant is observed.

Problem Feature importance list

RA vs. OA Y1 M3 O2 Y2 P3

RA vs. CTD P2 r1 B2 P1 M3 V2 C1 I1 M2 V3

OA vs. CTD P2 Y2 F2 M2 C3 a3 Y1 r1 V3 B3 a1 O2 F3 E3 Z1 I1

RA vs. Rest Y1 P2 M3 I1 P3

OA vs. Rest Y1 M3 Y2 C3 M2 O2 B3 F2 R1 F3 M1

CTD vs. Rest P2 r1 I1 C3 V3 P1 Y2 B3 I3 M2 C2 M3 R3 Y1 C1

An experienced physician might miss a feature that is

expected to be necessary among the ones that demonstrate

the most importance. This may be because several features are

correlated to some extent, as shown in Figure 2, and thus, little

information is added when both of them are used. The GBM

will focus on one of them. These feature correlations could also

further reduce the set of necessary features, especially as some

moderate correlations are present among phases 2 and 3, which

suggests joining these two phases and should be investigated in

future studies.

Since medical data of different kinds (e.g., laboratory data) was

utilized successfully in rheumatologic patient classification tasks in

the past (12), it should be evaluated if using this kind of additional

data along with FOI image features could boost overall diagnostic

performance further and therefore support FOI-based diagnostics

in practice.

An extension to other cohorts, including psoriasis arthritis,

and other diseases, and differentiating CTD diseases are already

in progress.

5. Conclusion

Altogether, FOI feature reading is an accurate method in

the process of differential diagnosis for three rheumatic diseases:

RA, OA, and CTD. Therefore, it could be a helpful tool for

the physician in the early arthritis clinic, in which one of the

three diseases often appears. The study reveals that treating the

features independently in a univariate analysis is not sufficient.

Several features and feature interactions must be considered. It

could be shown that for the presented problems, an extensive

reduction of relevant features for the diagnostic process is

available. The information gained by the calculations about which

features to use in which phase for which problem and the

feature-specific improvement of diagnostic performance provides

helpful insight for the differential diagnostic process for the

presented diseases.
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