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The calcineurin inhibitor (CNI) Tacrolimus (Tac) is the most prescribed
immunosuppressant drug after solid organ transplantation. After renal
transplantation (RTx) approximately 95% of recipients are discharged with a
Tac-based immunosuppressive regime. Despite the high immunosuppressive
efficacy, its adverse effects, narrow therapeutic window and high intra- and
interpatient variability (IPV) in pharmacokinetics require therapeutic drug
monitoring (TDM), which makes treatment with Tac a major challenge for
physicians. The C/D ratio (full blood trough level normalized by daily dose) is
able to classify patients receiving Tac into two major metabolism groups, which
were significantly associated with the clinical outcomes of patients after renal or
liver transplantation. Therefore, the C/D ratio is a simple but effective tool to
identify patients at risk of an unfavorable outcome. This review highlights the
challenges of Tac-based immunosuppressive therapy faced by transplant
physicians in their daily routine, the underlying causes and pharmacokinetics
(including genetics, interactions, and differences between available Tac
formulations), and the latest data on potential solutions to optimize treatment of
high-risk patients.
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1. Introduction

Currently, the calcineurin inhibitor (CNI) Tacrolimus (Tac) is the most prescribed

immunosuppressant after renal transplantation (RTx), as approximately 95% of recipients

are discharged with a Tac-based immunosuppressive regimen (1). It is recommended by

the The Kidney Disease: Improving Global Outcomes (KDIGO) guideline as the main

cornerstone immunosuppressant after RTx (2) because it offers a significant reduction in

acute rejection rates as well as an increase in long-term allograft survival (3). Despite

being highly effective, its numerous adverse effects such as nephrotoxicity, infection rates,

post-transplant diabetes, neurotoxicity, hypertension, and malignancies are limiting its

usage (4). Therefore, many efforts have been made to develop alternative

immunosuppressive regimens or improve drug galenic, especially for patients suffering

from adverse effects or at risk of unfavorable outcome. Multiple studies on dose reduction

by combining Tac with mechanistic target of rapamycin (mTor) inhibitors or belatacept,

as well as elimination by switching to other immunosuppressant drugs have been

published lately (5, 6). Therein, everolimus-based immunosuppression showed comparable

efficacy in combination with (reduced) Tac compared with a standard regimen in renal

and liver transplant patients, with comparable increases in renal function and treatment

failure rates, but lower cytomegalo- and BK polyomavirus infection rates (7–9), most
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likely by retaining CMV-specific T-cell functionality (10), leaving

both protocols safe and effective (11).

Besides the adverse effects, the high inter- and intraindividual

variability (IPV) in pharmacokinetics (PK) and -dynamics pose a

major challenge to physicians at reaching a given target trough

level within the narrow therapeutic window. While therapeutic

drug monitoring (TDM) is essential to prevent underexposure

associated with increased rejection risk, and overexposure, which

leads to an increase in adverse events, it has limitations in

predicting the required Tac dose, due to the many factors that

impact the Tac metabolism (12). These include external influencing

factors such as drugs, foods, and herbs along with internal aspects

like gastrointestinal factors as well as sex, age, serum albumin,

hematocrit, and genetic variants, i.e., in the cytochrome P450

(CYP3A4/5) expression. Beside of that, the individual response of

patients to Tac treatment and the different galenics of the available

Tac formulations lead to distinct pharmacokinetic profiles, which

can result in over- or underexposure, although the measured

trough concentrations are always within the therapeutic window (13).

Despite the aforementioned potentially toxic profile and

limitations of TDM, Tac remains the most relevant

immunosuppressant in therapy of patients after solid organ

transplantation, which has led to a broad variety of studies

addressing Tac metabolism and optimization of dosing. Even

with machine-learning based approaches, statistic modelling, and

genetic analyses, which have been proven to be effective in dose

calculation (14–16), a simple and cost-effective tool for clinical

practice is not yet available.

With this review, we want to offer an update on the current

knowledge of Tac pharmacokinetics and provide assistance to

physicians in clinical practice by presenting a simple and cost-

effective tool, the C/D ratio, which can support the management

of Tac-based immunosuppressive therapy.
2. Factors influencing Tac
pharmacokinetics

2.1. CYP3A4, CYP3A5 and P-glycoprotein

One of the most important determinants of Tac PK is the first-

pass effect, regulated by Cytochrome P450 enzymes CYP3A4 and

CYP3A5 as well as the P-glycoprotein (P-gp), which are

predominantly expressed in the liver and gut, but can also been

found in other tissues. Their function depends on genetic

polymorphisms (12). It is important to note that CYP3A4/5 and

P-gp are involved in the metabolization process of a wide variety

of drugs and susceptible to induction or inhibition (17, 18).

P-gp is an ATP-dependent efflux pump located in the cell

membrane that, among other drugs, transports Tac back into the

intestinal lumen. CYP3A4 and CYP3A5 are monooxygenases and

involved in the so-called phase I metabolism by catalyzing many

reactions of multiple different drugs (19, 20). Phase II

metabolism on the other hand occurs exclusively in the liver by

glucuronidation, conjugation, acetylation, sulfation, and

demethylation. After phase I and phase II, Tac is metabolized
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into at least 8 different products (21), potentially involved in

mechanisms of Tac toxicity (22). Some metabolites are described

in literature, such as M-I, M-II and M-III which are mono-

demethylated, M-V/VI/VII which are di-demethylated, the

mono-hydroxylated M-IV and M-VIII, which is modified by

multiple reactions (23, 24). Despite being known for some years,

data on this subject are inconsistent, and the pharmacological

activity of Tac metabolites requires further investigation. Overall,

Tac is largely metabolized by the liver and excreted via the bile

(∼97%) and urine (2%), with less than 1% of the compound

remaining unmetabolized in urine and feces (25).
2.2. Gastrointestinal parameters

After oral Tac intake, it undergoes presystemic metabolism,

which mainly involves CYP3A4 and CYP3A5 metabolism in gut

and liver as well as P-gp transport into the intestinal lumen

(26, 27). When Tac enters an enterocyte of the intestinal mucosa

as a highly lipophilic substance, it either migrates to the

basolateral side and into the blood or is eliminated by CYP3A

enzymes and P-gp. The latter keeps the intracellular Tac

concentration low and therefore prevents CYP3A from saturation

(28–30). Elimination of Tac metabolites occurs primarily through

biliary excretion (more than 95%), while only 0.5% of the parent

drug could be found unchanged in the urine or feces (30). On

top of that, Guo et al. recently found an additional elimination

route in which commensal gut bacteria (mainly Clostridiales)

convert Tac into the 15-fold less potent metabolite M-I (31).

Because of several gastrointestinal parameters, absorption and

bioavailability of Tac (when administered orally) are highly

variable (32), leading to the high IPV mentioned earlier. First of

all, gastric pH and motility impact Tac absorption directly (33).

The latter could be an explanation for the circadian and time-

dependent changes in Tac PK, as studies showed a significantly

lower Tac peak level (Cmax) and area under the curve (AUC)

after nighttime administration than after morning administration,

while it is known that the gastric emptying rate physiologically

decreases in the evening time (13, 34, 35). This is supported by

the fact that CYP3A expression decreases in the distant intestine

and an influence of the CYP3A expressor status on Tac

chronopharmacokinetics could not be found (36). In addition,

the Tac level appears to be relatively constant during the day and

night when using continuous i.v. application, as described in a

small number of 10 patients (37). Interestingly, despite the lower

measured AUC after nocturnal dosing, a recent study showed no

significant reduction in pharmacodynamic effect (38).

Tac bioavailability is generally influenced by food intake. In

particular, high-fat content food reduces Tac absorption in the

gut, which is why it is recommended to eat 2 h before or 1 h

after taking Tac (39, 40). In addition to that, several food

components, dietary supplements and herbs can have an

influence on Tac metabolization, i.e., an inhibition of CYP3A4 by

grapefruit juice should be noticed (41, 42).

As mentioned before, the intestinal first-pass mechanism is

highly responsible for the IPV after Tac exposure, with the
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hepatic metabolic component likely predominating (43). One

explanation could be the different distribution of CYP3A and P-

gp within the intestine, as CYP3A expression decreases more

distally and P-gp expression, though having a very high

variability, tends to increase and reaches its maximum in the

colon (44–46). Analogous to the decrease of CYP3A expression,

Tac absorption mainly occurs in the distal part of the intestine

despite the higher P-gp concentration. This leads to higher Tac

absorption rates with decreased intestinal transit time as the Tac

concentration increases in the distal intestine (47, 48). Which

again could be an explanation for the significant reduction of the

necessary dose in patients receiving LCP-Tac, an extended-release

formulation, in comparison to an immediate release Tac intake

(13).

It is well known that patients suffering from diarrhea show

increased Tac trough levels. This can be partially explained by

the aforementioned mechanism as the main absorption area

shifts from the proximal to the distal intestine. Additionally,

besides increased hemoconcentration and decreased hepatic

blood flow (which negatively influences Tac metabolism),

intestinal damage and inflammation could lead to increased drug

permeability and negatively affect CYP3A and P-gp expression,

particularly in the lower intestine (49, 50).
2.3. Genetic polymorphisms

As mentioned before, the high inter- and intrapatient

variability of Tac PK poses a problem for clinical management,

especially when defining the starting dose after transplantation as

well as dose adjustment of ongoing therapy. While this can

partially be attributed to different genetic variations of

participating factors in Tac metabolism such as CYP3A enzymes

and membrane drug transporters, pharmacogenetics emerges as a

possible tool to assist physicians in clinical practice (51, 52).

Nowadays it is evident that fast metabolizers mainly express

CYP3A5*1, while CYP3A5*3 expressors have been identified as

slow metabolizers (53). CYP3A4 activity, however, showed no

correlation to Tac parent/metabolite ratios, confirming CYP3A5

as the single most important determinant of Tac metabolism

(54). Nevertheless, CYP3A5 status was not shown to have a

decisive influence on IPV (55, 56). Therefore, it is not surprising

that efforts trying to integrate CYP3A5 status into Tac dosing

considerations were often disappointing regarding safety or

outcome (57–59). This could be due to the fact that CYP3A5 is

only a part of a broad variety of factors that influence Tac

metabolism (51). Recent studies showed that approximately

16.3% of Tac’s biovariability is explained with CYP3A5

expression, 43.3% in combination with clinical factors such as

red blood counts and albumin, and only 70% when they

included a total of 44 gene variants (15, 60). The latter shows the

complexity of this topic as high throughput genetic screening

was necessary, which requires high effort in terms of cost and

interpretation and is therefore not suited for daily clinical

practice (15). At least an approach considering clinical and

demographical factors (with age and body surface area being the
Frontiers in Transplantation 03
most effective ones) next to CYP3A genotyping showed

promising results regarding individualizing Tac dose early after

transplantation (14), but further studying on this topic is needed.

To date there is no general recommendation regarding pre-

emptive genotyping, even though doubling the first Tac dose

after solid organ transplantation is recommend in known

CYP3A5 expressors. This leaves TDM as the main tool for

managing Tac dose adjustment in clinical practice, as there are

no further recommendations regarding pharmacogenetic

biomarkers to date (51).
2.4. Blood and tissue distribution

After transfer into blood, lipophilic Tac is mainly bound to red

blood cells through the FK506 binding proteins (FKBP), leading to

a 4-114-fold higher Tac concentration in full blood compared to

plasma (61, 62). Despite poor correlation with AUC, TDM by

measuring full blood concentration 12 (C12)- or 24 (C24) hours

after administration is most commonly used and currently state

of the art (51). Other assessment points with better correlation to

AUC (especially for once-daily formulations) have been

published, i.e., C6 as the most accurate single point or in

combination with C2 as a two-point model for AUC0-12 (63)

and C2 plus C10 for AUC0-24 (64), but have not yet gained

acceptance in clinical practice, mainly due to practical reasons

(65). Analytical methods for Tac measurement include either

different immunoassays or liquid chromatography coupled to

tandem mass spectrometry (LC-MS/MS). LC-MS/MS is the

current gold standard due to its high sensitivity and specificity

and its ability to quantify multiple compounds simultaneously,

but its usage is limited by the need for specialized trained staff

and by high efforts and costs. This carries the risk of handling

errors and, in addition to high assay heterogeneity, leads to high

inter-laboratory variation, making global standardization

challenging (66–68). As a result, almost half of laboratories

worldwide primarily use immunoassays that are produced as

commercial kits (67). However, these are less accurate due to

cross-reactivity of the immunoassay antibodies with Tac

metabolites and are associated with higher result variability

(66, 69). Therefore, current research is focused on the development

of new fully automated LC-MS/MS instruments (70, 71).

Because Tac binding to red blood cells is temperature sensitive

as well as nonlinear, and the uptake by red blood cells is strongly

dependent on FKBP concentration, it is practically difficult to

separate full blood from plasma Tac (72). Recently, Yoshikawa

et al. also suggested FKBP as a potential biomarker for predicting

Tac PK, because of its important role in the distribution of Tac

in red blood cells (73). However, plasma Tac is predominantly

bound to albumin, lipoproteins, α1-acid glycoprotein, and

globulins, whereas the unbound fraction is mainly responsible for

therapeutic effects (32). Only unbound Tac is cleared by the

liver, but because it is only released slowly by red blood cells,

hepatic clearance is comparatively low (74). Therefore, Tac is a

low-clearance substance.
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As expected, whole blood concentration of the clinically

relevant unbound fraction is strongly dependent to hematocrit

and albumin levels. Lower hematocrit and albumin levels mean

less full blood concentration, since excess unbound Tac is quickly

eliminated by the liver with no difference in therapeutic effect or

toxicity. Therefore, Tac full blood concentration in patients with

anemia or hypalbuminemia may be underestimated, which may

result in higher toxicity after increasing the Tac dose to maintain

target trough levels (12, 75–77). Sikma et al. recently confirmed

this correlation in early-stage patients after thoracic organ

transplantation and suggested measuring hematocrit-corrected

whole blood levels or using i.v.-application, aiming for a lower

therapeutic range (78, 79). However, it should be noted that i.v.-

administration of tacrolimus should be dose-reduced and

continuous over 24 h to avoid bolus-associated toxicity (25).

For its therapeutic effect, Tac binds to and forms a complex

with FKBP12 in lymphocytes and inhibits the activity of

calcineurin (73). Intracellular concentration of Tac in

lymphocytes correlates with full blood concentration (albeit

poorly) and is influenced by age, sex, albumin levels, hematocrit,

transplant duration and P-gp expression while determining the

degree of T-cell-activation. However, it was not found to

correlate with genetic variation in CYP3A enzymes and clinical

outcome such as rejection rates (80–82).

Tacrolimus is extensively distributed in the whole body but its

distribution in solid organ tissue behaves similarly to lymphocytes

and is dependent on P-gp expression and intracellular metabolism.

Tac clearance is not affected by low-grade renal or liver dysfunction

(83). Tac, however, impairs renal function directly in an acute and

chronical manner through vasoconstriction and nephrotoxicity

(84). Besides systemic Tac levels, recent studies also showed a

significant involvement of intrarenal accumulation in CNI-

induced nephrotoxicity. Tac accumulation in the allograft was

shown to be associated with Tac dose, full blood concentration

and, most notably, acute nephrotoxicity. An association with

CYP3A5 or ABCB1 genetics could not be found (85, 86). In

addition, we found that the development and extent of acute

Tac-induced nephrotoxicity were related to peak drug

concentration; higher peak levels were significantly more often

associated with toxicity in histology than lower levels (87).
2.5. Drug-drug interactions

Besides Tac, cytochrome P450 enzymes CYP3A4/5 metabolize

a broad spectrum of different drugs, which can also act as inducers

or inhibitors and thus influence Tac metabolism (88–90). In

addition, Tac competes with other drugs on binding capacities of

P-gp. For example, various antibiotics (i.e., macrolide), calcium

antagonists, protease-/kinase inhibitors [antivirals for HIV (e.g.,

booster), SARS-Cov2 (e.g., nirmatrelvir/ritonavir), or CMV (e.g.,

maribavir)], or antimycotics such as azoles can inhibit the

activity of CYP3A enzymes (47, 91, 92). With regard to azoles,

Huppertz et al. described only very small increases in Tac

exposure when using LCP-Tac, a new once daily Tac

formulation, after CYP3A inhibition with voriconazole, resulting
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in comparatively little effect on AUC and biovariability, in

contrast to immediate-release Tac (IR-Tac), and elegantly

demonstrating the influence of drug galenics and CYP3A5

distribution in the gut (93).

Inducers of CYP3A enzymes relevant to transplant physicians

medicine are isoniazid, rifampicin, several anticonvulsive drugs and

most importantly St. John’s wort, a long time used herb for the

treatment of depression, which is still commonly used (94).

Because it depends on the regulation of certain nuclear receptors,

induction of CYP3A and P-gp occurs with a delay (47).

Importantly, steroids, which are part of many

immunosuppressive regimes after solid organ transplantation,

also induce Tac metabolism and increase Tac clearance (95, 96).
2.6. Age

The age dependence of Tac metabolism has been the subject of

several studies. Pediatric patients require weight-adjusted and

usually higher Tac doses compared to adults to reach a certain

trough level (97, 98). This effect was attributed to increased

hepatic clearance because liver size is relatively larger in children

normalized to body weight, whereas no age-related difference

was seen with a Tac dose normalized to body surface area (99).

As for elderly patients, things become more difficult as

physicians are faced with more comorbidities and a higher

potential of drug-drug interactions (polypharmacy) as well as a

different immune response (immunosenescence) and

susceptibility to adverse effects (99). With age, the immune

system weakens, which leads to more infectious complications

but also lower rejection rates. Consequently, it was shown in

vitro and in a mice model, that a compromised CD4+ T cell

response is related to augmented immunosuppressive capacities

of Tac in elderly patients (100). This leads to the suggestion to

aim at lower target trough level. In addition, it has been

suggested that renal susceptibility to Tac increases with kidney

age (84), and since older recipients tend to receive older grafts

than younger ones, this must be taken into account. On the

other hand, older kidneys are more immunogenic than younger

ones (101).

Regarding Tac PK, studies showed contradictory results

regarding an age dependency. Unfortunately, the number of

elderly patients in these studies was mostly small, so their power

with respect to this question is limited (102–104). In theory, an

age-dependence of Tac PK would be logical, as a reduced

splanchnic and hepatic blood flow, higher body fat, and changes

in gastric pH in the elderly should have an influence on the

distribution and clearance of Tac. This is supported by data from

Jacobson et al., describing higher Tac trough levels with

increasing age (105) and our data, since we found a higher rate

of slow metabolizers in elderly than in younger patients (106). In

addition to that, David-Neto et al. showed a lower Tac clearance

and need for higher doses in elderly patients up to 6 months

after transplantation (107). The fact that the once daily Tac

formulation (LCP-Tac) results in lower treatment failure rates

than twice-daily capsules (IR-Tac) in patients with age >65 years
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also supports an impact of age on Tac PK (108). Beside of that,

safety and efficacy studies in this patient group are still lacking

and need to be further investigated in light of the increasing

number of elderly renal transplant recipients.
2.7. Sex and pregnancy

According to several studies, female patients require higher Tac

doses (83, 109, 110) and have a greater risk of experiencing adverse

effects (111). In pregnant women, it is necessary to increase the Tac

dose (about 25%–50% by the end of the first trimester) to maintain

a target trough level even though the effective drug concentration is

most likely overestimated (112). This is due to an increased Tac

metabolism from a higher CYP3A4 activity as well as an increase in

plasma volume next to hypoalbuminemia and anaemia (77). In a

review from Chandra et al., the author suggests to stay in the target

trough level, albeit risking over-immunosuppression, and only

reduce Tac dose if nephrotoxicity is suspected (113). Congenital

malformations have not been associated to Tac exposure, which is

most likely because of an active P-gp efflux transport towards the

mother even though Tac crosses the placenta. Although this prevents

the foetus from higher Tac exposure, physicians should be aware

that nephrotoxicity and hyperkalaemia can occur in the foetus as

well. Although it is very unlikely that Tac excretion in the breast

milk leads to adverse effects in the child, it is generally not

recommended according to the SmPC (25, 77).
2.8. Ethnicity

Several studies have reported that African Americans require

higher Tac doses compared to Caucasians or Asians (96, 114,

115) mainly due to differences in intestinal P-gp and CYP3A

variants (105, 116). A recent observational study showed an

association of CYP3A5*3 with higher doses in all ancestries, but

CYP3A5*6 and CYP3A5*7 were present only in African

Americans (117). The influence of CYPs in this context was

confirmed by a study comparing the administration of LCP-Tac

and IR-Tac in African Americans and showing that PK was

significantly less affected in the case of LCP-Tac than IR-Tac

(118). Native Americans usually require lower Tac doses due to a

decreased oral Tac clearance (119).
2.9. Time after transplantation

After transplantation, high doses of steroids are initially

administered, which induces CYP3A4 activity, requiring higher

doses of Tac to reach target levels. Then, steroids are reduced over

time, resulting in increased absorption of Tac and decreased

CYP3A activity (120). Thus, required Tac doses decrease over time

after transplantation (“maturation”), so TDM should be executed

in a higher frequency (104, 121), especially in CYP3A5 expressors.

In addition to that, haematocrit and albumin levels increasing as

well, which amplifies the aforementioned effects (120).
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2.10. Tac formulation

After its introduction as Prograf® by Astellas in Japan in 1993,

several generics of IR-Tac were produced when the patent expired

in 2008, the first being tacrolimus from Sandoz in 2009.

Bioequivalence between the generic or branded drugs and the

original Prograf® has been shown in at least 10 publications,

recently reviewed by Kocur et al. (122), with the exception of the

granular formulation Modigraf®, which showed a 23% and 18%

higher mean for Cmax and AUC, respectively (123).

As a reaction to the high variability in intrapatient trough

levels, which are associated with worse outcomes (124–129),

once-daily administered Tac formulations with prolonged drug

release have been developed to improve bioavailability and

adherence as well as lower intraday fluctuation and peak

concentrations (Cmax), as illustrated in Figure 1. In addition to

the widely established IR-Tac, granulate formulation extended

release (ER)-Tac (Advagraf®) with a prolonged drug release (90%

absorption after 6–12 h) and LCP-Tac (Envarsus®) with an

additional improved bioavailability have been established in

clinical practice, reviewed in detail by Piotti et al. (130). The

latest formulation, LCP-Tac, uses MeltDose® technique, which

improves solubility by breaking the particles down into the

smallest possible units. This results in a progressive release of the

drug in the distal intestine, which has much lower CYP3A

activity and therefore lower Tac clearance (131). A recent

randomized controlled trial compared the three Tac formulations

in stable kidney transplanted patients and focused on PK (13). It

showed a lower intraday fluctuation, a prolonged time (Tmax) to

peak concentration (Cmax) and a significantly higher exposure

on a per milligram basis for LCP-Tac than for ER- and IR-Tac.

After exposure normalization, Cmax was noticeably lower for

LCP-Tac vs. IR-/ER-Tac (roughly 17%), while Cmin only differed

slightly to ER- (6% lower) and IR-Tac (3% higher). In

accordance with other studies in liver and kidney transplant

recipients (132, 133), a dose reduction of ∼30% after converting

from IR- and 36% from ER- to LCP-Tac has been suggested.

These different dose requirements also result in lower therapy

costs (131, 134). In the ASTCOFF trial, ER-Tac did not show

any differences in terms of exposure, Cmax, Tmax or fluctuation

vs. IR-Tac, which is not always consistent with previous studies

reporting slightly lower Cmax, longer Tmax and in some studies

even a lower PK variability of ER-Tac compared to IR-Tac

(135–137). The dose conversion rate from IR- to ER-Tac has

been calculated to +8% (13). This means that higher doses are

required (138), possibly attributed to lower saturation of CYP3A

and P-gp by a prolonged release in the intestine and therefore

resulting in an increase of the metabolism rate (47). Following

the findings mentioned above, the recommended starting dose of

IR-Tac with 0.1–0.3 mg/kg/day remained similar with ER-Tac.

Because of lower dose requirements for reaching effective trough

levels in de novo renal transplant recipients of 30%, as shown in

a randomized controlled trial, the starting dose for LCP-Tac was

reduced to 0.17 mg/kg/day (139). Interestingly, LCP-Tac was not

able to significantly reduce IPV compared with IR-Tac or ER-
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FIGURE 1

Schematic visualizations of the pharmacokinetics of different tacrolimus formulations. ER-Tac, extended-release tacrolimus, Advagraf®; IR-Tac,
immediate-release tacrolimus, Prograf®; LCP-Tac, once-daily, Envarsus®, arrows mark the different peak concentrations.
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Tac (140). This might be related to the limited influence of

CYP3A5 status on IPV mentioned earlier.

However, despite differences in PK between the Tac

formulations, prospective trials showing superiority of LCP-Tac

in terms of patient outcome remain rare. Recently, trials

demonstrated similar clinical outcomes of recipients treated with

LCP-Tac or other tacrolimus formulations during the first

months following de novo kidney transplantation (141, 142).

However, a benefit for LCP-Tac has been demonstrated in

patients at high risk of treatment failure (108) and with Tac-

induced tremor (131, 143). Since the tremor and also the

nephrotoxicity of Tac is related with a certain degree to Cmax,

LCP-Tac (with lower Cmax) might be beneficial in susceptible

patients, especially rapid metabolizers (87, 144). Using

retrospective data, we observed that switching to LCP-Tac was

associated with a noticeable recovery of renal function in fast

metabolizers (145). In liver transplant recipients, improvement in

renal function was observed 12 months after conversion from

standard-release Tac (IR- or ER-Tac) to LCP-Tac (146). Because

non-adherence is significantly associated with higher rates of

antibody-mediated rejection and graft failure (147), one of the

main aims in the development of once-daily Tac formulations

was the improvement of drug adherence, which has been

demonstrated by several studies (148–150).
3. Relevance of current Tac dose
finding models and the role of the C/D
ratio

The high inter- and intrapatient variability in Tac PK poses a

problem to physicians in predicting Tac exposure in their
Frontiers in Transplantation 06
patients. Given its association with impaired long-term allograft

outcome, recent efforts have been made to develop models to

optimize individual immunosuppressive therapy. As previously

described, genetic testing strategies were related to high efforts

and costs and often disappointing regarding safety or outcome

(57–59, 151–153). Population PK models for Tac dose prediction

have been established but are complicated and need further

research, especially regarding newer Tac formulations (154, 155).

Despite the drawbacks such as high IPV and the narrow

therapeutic window, Tac remains the most important

immunosuppressant in patients after solid organ transplantation.

To assist clinicians with a practical method for risk assessment

rather than dose calculation, we previously proposed the

calculation of the C/D ratio (106, 144). As presented in Figure 2

below, the C/D ratio is a simple and cost-effective tool that helps

clinicians to optimize individual immunosuppressive therapy and

identify patients at risk for adverse effects and unfavorable

outcome.

The C/D ratio is calculated by dividing the Tac trough level,

which is routinely measured, through the daily Tac dose at a

specific time (usually later than 1 months after surgery) in the

steady state after solid organ transplantation (106, 156). It should

be noted that the C/D ratio can be calculated for every Tac

formulation but cut-offs for definition of different metabolism

groups are different. The performance of the C/D ratio has been

extensively tested by our group and others in renal transplant

patients. However, it should be noted that although there are

many studies from different continents and transplant

programmes with mostly consistent results, they are based on

retrospective evaluations. A prospective study of liver transplant

patients is currently recruiting in Germany, and several studies of

kidney transplant patients are underway. Herein, we previously
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FIGURE 2

Flow chart for practical identification of fast metabolizers.

Henkel et al. 10.3389/frtra.2023.1160752
found a C/D ratio of 1.05 ng/ml × 1/mg to be a suitable cut off for

distinguishing slow metabolizers (C/D ratio ≥1.05 ng/ml × 1/mg)

from fast metabolizers (C/D ratio <1.05 ng/ml × 1/mg) when

using IR-Tac. We demonstrated that fast metabolizers needed

more indication biopsies, were more likely to experience biopsy

proven CNI nephrotoxicity and BK virus infection, as well as to

develop lower estimated glomerular filtration rate (eGFR) values

during a 24-month follow-up after renal transplantation (106, 157).

Following studies by our center showed that a low C/D ratio

increases the risk of developing acute CNI-induced nephrotoxicity

and was associated with a faster decline of eGFR, higher rejection

rates and, most importantly, a reduced patient as well as overall

graft survival within 5 years after RTx (87, 144). This was

confirmed in 2020 by the TOMATO study, in which the authors

described the C/D ratio as a predictor of death-censored graft

survival (158). Interestingly, the French study included patients on

IR-Tac and ER-Tac in their analysis. Recently we were able to

demonstrate that the C/D ratio is a valuable tool in kidney

transplanted patients treated with ER-Tac, showing that the

concept of the C/D ratio works for different formulations (159). A

recent Korean study also showed that a high C/D ratio correlates

with lower delayed graft function rates, less acute rejection lower
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and increased eGFR 6 months after RTx (160). An association of

high Tac clearance with the development of interstitial fibrosis and

tubular atrophy (IFTA) was shown by Egeland et al. in 2019 and

confirmed to be true for a low C/D ratio in a study 2 years later

(161–163). However, we found no differences between slow and

fast metabolizers in the incidence of diabetes mellitus, urinary tract

infections, and dyslipidemia after transplantation (164–166).

As mentioned above, the results of prospective studies are still

lacking. These are needed to make a definitive assessment of the

appropriateness of the C/D ratio. In particular, it needs to be

clarified whether, and if so which, changes in treatment lead to

better outcomes after a low C/D ratio has been detected in

individual transplant recipients.

CYP3A5-positivity (mainly CYP3A5*1) is known to be mostly

present in fast metabolizers and to be associated with a lower eGFR

as well as significantly increased risk of Tac-induced nephrotoxicity

(167, 168). Therefore, a correlation of CYP3A5*1 with a low C/D

ratio has been expected. Recent studies gained evidence of this

assumption and found a strong association of CYP3A5 genotype

with a low C/D ratio and a decline in eGFR values (60, 169, 170).

With growing evidence that calculation of theC/D ratio can identify

Tac-fast metabolizers and therefore at-risk patients, the timing for
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assessment remains to be discussed. In a study from our center, patients

with a Tac C/D ratio <1.05 ng/ml × 1/mg, calculated 3 months after

renal transplantation, were characterized as fast metabolizers and had

a significant reduced 5-year patient and overall graft survival, a faster

decline in eGFR as well as higher rejection rates within 5 years after

renal transplantation (144). An assessment 6 months after RTx also

had good discriminative results for eGFR and acute rejection rates

(160, 171). However, early assessment of the C/D ratio at day 0–7 did

not predict results because too many influencing factors probably

converge in the first days after transplantation (172). We conclude

from our data that assessment of the C/D ratio should occur no

earlier than 1 month, preferably 3 months, after transplantation,

because by this time many highly variable factors such as hemoglobin,

albumin, steroid dose have undergone some degree of stabilization

and the data for the time points are compelling.

So how can the clinical physician optimize the immunosuppressive

therapy after identifying a patient with a suspected unfavorable

outcome because the patient is a fast metabolizer?

In the last years, we and others investigated this topic by

modifying the immunosuppressive regimen either by changing

the Tac formulation or switching the immunosuppressive

regimen to everolimus or belatacept in selected patients. As fast

metabolizers receiving ER-Tac also showed a decline in eGFR

and increase of acute rejection rates similar to IR-Tac (159),

patients with side effects were indication-based switched from

IR- to LCP-Tac. In fast metabolizers LCP-Tac increased the

bioavailability, the C/D ratio and was associated with a

noticeable recovery of renal function while being safe (145). The

same effect on C/D ratio was observed when African Americans,

who have predominantly fast metabolism, were switched from

IR-Tac to LCP-Tac (118). Conversion to everolimus led to a

noticeable increase in renal function in both slow and fast

metabolizer groups with a tendency towards a higher increase in

fast Tac metabolizers (173). In addition, conversion to belatacept

could also be an option, as an increase in eGFR was observed at

12 months post-transplant (174, 175). We hypothesize that the

higher rate of adverse effect in fast metabolizers is caused by the

higher daily doses required, which ultimately result in higher

peak levels with comparable AUC and trough levels (87, 144, 176).
4. Conclusion

Despite its relevant side effects and narrow therapeutic window,

Tac is the most commonly prescribed immunosuppressant after renal
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transplantation. Hence, regular TDM and dose adjustment is

necessary, which poses difficulties for clinicians given the high PK

variability. Therefore, it is relevant to physicians to know factors

influencing its metabolism. A simple and effective tool, the C/D

ratio, can classify patients receiving Tac into two major metabolism

groups, and therefore helps to predict patientś risk for an

unfavorable outcome. Based on this assessment, physicians could

optimize and individualize immunosuppressive therapy, e.g., by

switching to a different Tac formulation, everolimus or belatacept.
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