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Mendelian-randomization study
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Background: As a result of the COVID-19 pandemic, patients with glioblastoma

(GBM) are considered a highly vulnerable population. Despite this, the extent of

the causative relationship between GBM and COVID-19 infection is uncertain.

Methods: Genetic instruments for SARS-CoV-2 infection (38,984 cases and

1,644,784 control individuals), COVID-19 hospitalization (8,316 cases and

1,549,095 control individuals), and COVID-19 severity (4,792 cases and 1,054,664

control individuals) were obtained from a genome-wide association study (GWAS)

from European populations. A total of 6,183 GBM cases and 18,169 controls from

GWAS were enrolled in our study. Their associations were evaluated by applying

Mendelian randomization (MR) including IVW meta-analysis, MR-Egger regression,

and weighted-median analysis. To make the conclusions more robust and reliable,

sensitivity analyses were performed.

Results:Our results showed that genetically predicted COVID−19 hospitalization

increases the risk of GBM (OR = 1.202, 95% CI = 1.035–1.395, p = 0.016). In

addition, no increased risk of SARS-CoV-2 infection, COVID-19 hospitalization

and severity were observed in patients with any type of genetically predicted

GBM.

Conclusion: Our MR study indicated for the first time that genetically predicted

COVID−19 hospitalization was demonstrated as a risk factor for the development

of GBM.

KEYWORDS

Mendelian randomization, COVID-19, SARS-CoV-2, glioblastoma, genome-wide
association study
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1 Introduction

In Coronavirus disease 2019 (COVID-19), the severe acute

respiratory syndrome Coronavirus 2 (SARS-CoV-2) is responsible

for the illness (1). Since January 1, 2023, more than 661 million

people have died from COVID-19, which has caused the tragic loss

of over 6 million lives. Coronavirus infections may cause acute

cardiac or kidney injury, acute respiratory distress syndrome, shock,

secondary infection, cancer, and high mortality risk (2). According

to epidemiological studies, cancer is an independent adverse

prognostic factor for COVID-19 outcomes, including admission

to the intensive care unit and invasive ventilation (3–5). It is

especially true for patients suffering from glioblastoma (GBM),

which is one of the most aggressive and common types of

primary brain tumor. Several factors make GBM patients one of

the most fragile and vulnerable cancer populations. Firstly, GBM

patients tend to be old age and have multiple age-related

comorbidities. Additionally, their large use of steroid medications

further increases immunosuppression. Furthermore, there is an

increased risk of tumor and/or chemotherapy-related

thromboembolic events due to the patient’s loss of autonomy.

These result in a greater susceptibility to infection (6).

Besides, the role of COVID-19 in GBM was also a topic of

interest. Angiotensin-converting enzyme 2 (ACE2) receptor

molecules on the cell membrane interact with the viral spike (S)

glycoprotein to allow viral entry (7). According to several studies,

the viral S protein binds to the VEGFR (Vascular Endothelial

Growth Factor Receptor) and the EGFR (Epidermal Growth

Factor Receptor) more frequently in GBM cells than in other

types of cancer cells, contributing to their development (8). It has

been suggested that COVID-19 infections are associated with a

unique brain predisposition to thrombosis caused by cytokine

storms (9), which is correlated with faster GBM development.

Poor prognosis is associated with tumor thrombus in GBM (10).

Several studies have shown a close relationship between GBM

and COVID-19 susceptibility and severity, and traditional

observational studies are biased by unmeasured confounding

factors, making it difficult to speculate on their causal relationship

(6, 11–13). However, observational studies are susceptible to
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unmeasured confounding or reverse causality. Single-nucleotide

polymorphisms (SNPs) are used as instrumental variables (IVs)

in Mendelian randomization (MR) studies to examine causal

relationships between risk factors and outcomes (14, 15). We

used the MR method to evaluate the causal associations between

GBM and COVID-19 outcomes, given the limitations of the

current research.
2 Methods

2.1 Study design

The overall design of our MR study exploring the causal

relationships between GBM and COVID-19 outcomes can be

seen in Figure 1. The study was conducted on a bidirectional

two-sample univariable design. To estimate the causal effects of

GBM on COVID-19, a genetically predicted GBM risk is used as an

exposure and COVID-19 severity, hospitalization, or susceptibility

is used as an outcome (16, 17). Based on genetically predicted

COVID-19 severity, hospitalization, and susceptibility risks, we

estimate the causal effects of COVID-19 on GBM. MR analysis is

based on three critical assumptions: (i) There is a strong association

between exposure and IVs; (ii) Confounders should not affect IVs

due to exposure and outcome; and (iii) Only exposure mediates IV-

outcome associations.
2.2 Data sources and instruments selection

We obtained summary-level GWAS data for the datasets of

genetically predicted COVID-19 risk (38,984 cases and 1,644,784

control individuals for SARS-CoV-2 infection, 8,316 cases and

1,549,095 control individuals for COVID-19 hospitalization, and

4,792 cases and 1,054,664 control individuals for COVID-19

severity) (18). Participants in this GWAS were from the COVID-

19 Host Genetics Initiative, which is publicly available (19). Those

with very severe respiratory confirmed COVID-19 were defined as

those hospitalized for lab confirmed SARS-CoV-2 infection and
FIGURE 1

Flowchart of MR analysis in this study.
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dying or requiring respiratory support (20). GBM is defined as

glioblastoma (World Health Organization grade IV). GBM

genotyping data were derived from a meta-analysis of GWAS,

which included 6183 cases and 18169 controls (21). We provided

comprehensive details of the genotyping and quality control of

COVID-19 and GBM’s GWASs (Supplementary Table 1). We used

1000-Genome imputed GWAS data from the European GWAS

(22). The mean sample size was larger for COVID-19 and GBM

traits, so the genome-wide significance threshold (p < 5×10–9) was

used to avoid selecting false positive instruments. In the European

1000G reference panel, SNPs with the lowest p-values were retained

as independent SNPs after pruning all SNPs in linkage

disequilibrium (LD; r2 < 0.0001) (23).. We cross-checked the

Phenoscanner database (http://www.phenoscanner.medschl.cam.

ac.uk/) to identify SNPs associated with the exposure that could

potentially be linked to confounding variables or outcomes. We

calculated the F-statistic for each SNP to evaluate the strength of the

IVs (24, 25). Instruments with an F-statistic below 10 are considered

weak (26). Supplementary Table 2 showed the characteristics of all

the SNPs included in our analysis.
2.3 Statistical analysis

Several MR analytical methods were used to assess the causal

effects and evaluate the potential pleiotropic effects of genetic

variants. The main analysis was conducted using inverse-variance

weighted (IVW) regression, which assumes no directional

pleiotropic effects of individual instrumental variables (27).

Weighted median and MR-Egger regression methods were used

in complementary analyses (28). Additionally, we conducted
Frontiers in Oncology 03
sensitivity analyses using the Mendelian Randomization

Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global test,

MR-Egger intercept, and leave-one-out sensitivity analysis. The

sensitivity analysis was tested using a leave-one-out sensitivity

analysis by removing each SNP from the analysis and re-

estimating its causal effect (29). The horizontal pleiotropy of IVs

was assessed by MR-PRESSO and MR-Egger intercept methods (p<

0.05 was considered significant) (30). SNPs with outliers are

investigated in the MR-PRESSO global test (31). To test

heterogeneity, IVW, and MR-Egger in Cochran’s Q statistic were

used (p< 0.05 was considered significant) (32, 33). If the results of

the IVW method are significant (p< 0.05), and no pleiotropy and

heterogeneity were found, even if the results of other methods were

not significant, as long as the beta values of other methods were in

the same direction, they could be considered as positive results (34).

In R (version 4.2.1), MRPRESSO (version 1.0) and TwoSampleMR

(version 0.5.6) were used for the analyses.
3 Results

A comparison of MR estimates obtained from different methods

of determining whether COVID-19 causes GBM is presented in

Table 1. The IVW analysis revealed that the genetically determined

COVID-19 hospitalized patients were at higher risk of developing

GBM than the general population (OR = 1.202, 95% CI = 1.035–

1.395, p = 0.016) (Figure 2). According to the MR-Egger intercept,

there was no evidence of horizontal pleiotropy (p=0.918).

Additionally, there was no obvious heterogeneity (all p-values

were >0.05). In leave-one-out analysis, the effect of COVID‐19

SNPs on GBM was robust. For sensitivity analysis, leave-one-out
TABLE 1 Association of COVID‐19 genetic IVs with GBM GWAS.

Exposure Outcome Method Number of
snps Beta P OR (95%

CI)
P for

heterogeneity test
P for MR-Egger

intercept

SARS-CoV-2 infection

GBM

IVW 4 -0.016 0.934
0.984 (0.676-

1.434)
0.184

MR Egger 4 -0.553 0.418
0.575 (0.197-

1.677)
0.210 0.404

Weighted
median

4 -0.096 0.610
0.908 (0.627-

1.314)

COVID-19 severity

IVW 6 0.089 0.125
1.093 (0.976-

1.225)
0.194

MR Egger 6 -0.384 0.139
0.681 (0.453-

1.024)
0.750 0.080

Weighted
median

6 0.082 0.181
1.086 (0.962-

1.225)

COVID-19 hospitalization
(significant)

IVW 5 0.184 0.016
1.202 (1.035-

1.395)
0.271

MR Egger 5 0.288 0.778
1.334 (0.213-

8.364)
0.162 0.918

Weighted
median

5 0.127 0.168
1.135 (0.948-

1.360)
OR, Odds Radio; IVs, Instrumental variables.
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studies were used and showed no influence (Figure 3). Furthermore,

no significant association was found between severe COVID-19,

SARS-CoV-2 infection, and the risk of GBM.

With the same approach, we predicted the association between

genetically predicted GBM and COVID-19 risk. All MR methods

did not indicate an association between genetically predicted GBM

and SARS-CoV-2 infection, COVID-19 hospitalization, or severity.

MR, heterogeneity, pleiotropy, and sensitivity analyses of all

methods associated with genetically predicted GBM and COVID-

19 risk are summarized in Table 2.
4 Discussion

According to epidemiological studies, cancer is an independent

adverse prognostic factor for COVID-19 (3). Due to a higher

incidence of GBM in the elderly population, frequent

hospitalizations, and treatment-related immunosuppression,

COVID-19 is a pandemic that affects many patients with GBM

(35, 36). The treatment of patients with high-grade gliomas has

already been recommended by several expert groups (6, 37). Some

preliminary cross-sectional studies have also supported the

hypothesis that patients with GBM are biologically vulnerable to

COVID-19 (38, 39). Methodological biases and unmeasured
Frontiers in Oncology 04
confounders prevented the causality of the association from being

established. We investigated the causal relationship between GBM

and COVID-19 susceptibility, hospitalization, and severity using

public GWAS data.

The results of our MR analyses showed that genetically

predicted COVID-19 hospitalization risk significantly increased

the risk of GBM in the European population (OR = 1.202, 95%

CI = 1.035–1.395, p = 0.016). The following mechanism might

explain our results. As a receptor for human Coronavirus-229E

(40), Alanyl aminopeptidase (ANPEP) plays an important role in

the entry of SARS-CoV-2 into cells (41, 42). Based on its co-

expression with ACE2, glutamyl aminopeptidase (ENPEP) has been

identified as a candidate co-receptor for SARS-CoV-2 (42, 43).

COVID-19 infection results in increased distribution of ENPEP and

ANPEP in endothelial cells of the blood-brain barrier, providing the

place for SARS-CoV-2 cell entry into the brain. Six receptors were

analyzed for survival in GBM cells in a study, and it was found that

ANPEP and ENPEP have a beneficial effect on survival. This

increases the susceptibility of SARS-CoV-2 to GBM (44).

Healthy human lungs contain large amounts of 27-

hydroxycholesterol (27-OHC) produced by macrophages in the

alveoli (45). 27-OHC prevents the virus’s lipid envelope from fusing

with the host cell membrane, making it difficult for the virus to enter

the cell (46). Concentrations of 27-OHC will increase during the

presence of COVID-19 infection in lung tissue and blood (47). At

the same time, 27-OHC can also promote the growth of

glioblastoma tumor cells in vitro by stimulating cell division,

promoting cell migration and invasion (48). High levels of

oxysterols found in glioblastoma tumors isolated from patients

were associated with a poorer prognosis. Moreover, the findings

confirmed that COVID-19 promotes the malignant behavior of

GBM cells. Additionally, there is a possibility that COVID-19-

associated coagulopathy could affect long-term tumor behavior and

disease progression in GBM in a manner that has not yet

been recognized.

According to our MR analyses, genetically predicted GBM risk

is not associated with COVID-19 susceptibility, hospitalization, or

severity in the European population. This differs from the findings

of several preliminary cross-sectional studies (5, 49). Examples of

possible confounding factors include the following: the severe
FIGURE 3

MR leave‐one‐out sensitivity analysis for the effect of COVID‐19
hospitalization SNPs on the risk of GBM.
FIGURE 2

Individual estimates about the putative causal effect of COVID‐19 hospitalization on the risk of GBM.
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lymphopenia often associated with disease or treatment (e.g.,

alkylating agents like nitrosourea and temozolomide), a frequent

presence of neurological deficits resulting in a loss of autonomy in

daily living activities and an increased risk of thromboembolic

events, an increase in infection susceptibility as a result of chronic

use of steroids to treat brain edema, and finally comorbidities and

frailties associated with aging. Additionally, since most patients

with GBM are hospitalized patients, the detection rate of COVID-

19 in this situation may be higher than that in the non-hospitalized

population. As a result, the COVID-19 incidence can appear to be

higher in cancerous populations when the detection rate is confused

with the actual incidence.

Our study has significant clinical implications. First, it has not

been clear in the past whether COVID-19 increases the risk of GBM

in patients without prior malignancies. In this study, we used

Mendel ian randomizat ion to reveal that COVID−19

hospitalization increases the risk of developing glioblastoma. This

suggests that cancer development is one such foreseeable COVID-

19 sequelae since chronic inflammation is long-established to be a

fertile ground for oncogenesis, especially for hospitalized patient.

Better prevention of COVID-19 and possibly better evidence-based

treatment of COVID-19 is warranted in these patients. Second, in

our study, genetically predicted GBM risk is not associated with

COVID-19 susceptibility, hospitalization, or severity in the

European population. This will help us better allocate

medical resources.

Our study, however, has several limitations. First, the results of

other MR methods showed a consistent but nonsignificant

direction. The best results would be obtained if all three methods

were significant. The IVW approach, however, is statistically
Frontiers in Oncology 05
significantly more powerful than the other MR approaches,

including MR-Egger (50). The requirement for MR approaches to

follow a consistent beta direction has also been strengthened by

research. We used this requirement in our study as well (51, 52). In

addition, although our data did not show that a genetic

predisposit ion to GBM is associated with COVID-19

susceptibility or severity, it is not appropriate for patients to

assume that these patients can be treated at the same level as the

general population for medical surveillance management. The third

issue is that the sample is of mixed European ancestry. More studies

should be carried out on other ethnic groups or immigrants to

prove that the same relationship exists. Fourth, we don’t know what

percentage of COVID-19 patients already have symptoms that may

be related to glioblastoma. We are also unable to analyze the period

after COVID-19 when risk arises, and the information provided for

control groups remains incomplete.

In conclusion, even though our analysis suggests a causal link

between genetically increased COVID-19 and increased risk of

GBM, further studies are needed to determine the mechanism

behind this association. To optimize the allocation of healthcare

resources, it is crucial to identify those who are susceptible to SARS-

CoV-2 and those who are prone to severe illness (53).
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