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Introduction: Male infertility is a common, complex disorder. A better
understanding of pathogenesis and etiology is needed for timely diagnosis and
treatment. The aim of this study, therefore, was to identify genes involved in the
pathogenesis of idiopathic male infertility based on data from transcriptomic level
supported with data from genomic level.

Materials and methods: First, we performed whole gene expression analysis in
20 testis biopsy samples of patients with severely impaired (10) and normal
spermatogenesis (10). Further, we have performed systematic review of
comparable male infertility studies and overlapped the most significantly
expressed genes identified in our study with the most differentially expressed
genes from selected studies. Gene Ontology analysis and KEGG functional
enrichment have been performed with Enrichr analysis tool. Additionally, we
have overlapped these genes with the genes where rare variants have been
identified previously.

Results: In 10 patients with severely impaired spermatogenesis and 10 controls,
we identified more than 1,800 differentially expressed genes (p < 0.001). With the
systematic review of three previously performed microarray studies that have met
inclusion criteria we identified 257 overlapped differentialy expressed genes
(144 downregulated and 113 upregulated). Intersection of genes from
transcriptomic studies with genes with identified rare variants revealed a total
of 7 genes linked with male infertility phenotype (CYP11A1, CYP17A1, RSPH3,
TSGA10, AKAP4, CCIN, NDNF).

Conclusion: Our comprehensive study highlighted the role of four genes in
pathogenesis of male infertility and provided supporting evidence for three
promising candidate genes which dysfunction may result in a male infertility
disorder.
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1 Introduction

Male infertility is a worldwide health problem affecting about 7% of adult human males
(Krausz and Riera-Escamilla, 2018). Despite the considerable research effort, in a large
proportion of infertile males the cause of their infertility is unknown (idiopathic), whereas
genetic factors have been considered as a major contributing cause for them (Hwang et al.,
2010).
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TABLE 1 Clinical characteristics of patients included in the transcriptome profiling study.

Patient Clinical findingsa Testicular
volume (mL)

FSH level
(IU/l)

Sperm
counta

Sperm
motilityb

Histologyb Johnsen’s
score

1 bilateral epididymal
enlargement

12/13 3,7 3 2 normal spermatogenesis 10

2 bilateral epididymal
enlargement

25/28 4,75 3 2 normal spermatogenesis 9

3 bilateral epididymal
enlargement

13/16 3,2 3 2 normal spermatogenesis 9

4 bilateral epididymal
enlargement

22/25 7,02 3 2 normal spermatogenesis 9

5 CABVD 14/14 3,63 3 2 normal spermatogenesis 9

6 CABVD 28/28 1,68 2 0 normal spermatogenesis 9

7 enlarged right
epididymis

15/15 8,3 3 2 Hypospermatogenesis,
mononuclear infiltration

9

8 enlarged right
epididymis 8 years after

15/15 2,2 3 2 hypospermatogenesis 9

9 no enlargement 25/25 1,79 2 1 hypospermatogenesis 9

10 enlarged right
epididymis

30/30 1,27 2 2 hypospermatogenesis, EMA 9

11 NA NA NA 0 0 LMA 6

12 no 15/15 12,5 0 0 SCOS, EMA,
hypospermatogenesis

5

13 no 20/20 14,2 0 0 SCOS, EMA 5

14 no 12/15 12,8 0 0 SCOS, EMA 5

15 no 8/10 13 0 0 SCOS, EMA 5

16 hypogonadism 1/1 82 0 0 SCOS, EMA 2

17 hypogonadism 6/4 59,8 0 0 SCOS, LCH 2

18 no 15/15 44 0 0 SCOS, EMA 2

19 8/10 28,7 0 0 SCOS, EMA 1

20 hypogonadism 2/2 36,4 0 0 SCOS, LCH 1

aCABVD, congenital bilateral absence of vasa deferentia.
bEMA, early maturation arrest; LMA, late maturation arrest; LCH, Leydig cell hyperplasia; NA, not available.

a0 = no sperm; 1 = rare; 2 = low; 3 = numerous. b0 = immotile; 1 = non-progressively motile; 2 = progressively motile.

TABLE 2 Description of datasets included in the meta-analysis.

Dataset
accession

Number of
samples—azoospermia

Number of samples—obstructive
forms of infertility

Array platform Number of probes
on the array

GSE145467 (our
study)

10 10 Agilent-014850 Whole Human
Genome Microarray 4 × 44K G4112F

~19.596 probes

GSE9210 47 11 Agilent-012097 Human 1A
Microarray (V2) G4110B

~22000 probes

GSE4797 5 18 GE Healthcare/Amersham
Biosciences CodeLink™ UniSet
Human 20K I Bioarray

~23000 probes

GSE45885 27 4 Affymetrix Human Gene 1.0 ST
Array

~28132 probes
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Studies of animal models have identified hundreds of genes that
influence reproduction and have uncovered various pathogenic
pathways that could affect infertility in humans. Still, only a few
mutations in human genes have been associated with male infertility
(Jamsai and O’Bryan, 2010; Massart et al., 2011). One probable
explanation is that for many years genetic research on male
infertility involved the targeted sequencing of individual genes in
cohorts of infertile men and fertile controls with a limited number of
whole-exome sequencing studies performed in the last few years
(Fakhro et al., 2018; Hodžić et al., 2020).

Human spermatogenesis is a complex process; therefore, these
targeted approaches proved ineffective in identifying genetic
variants responsible for infertility. Global gene-expression
profiling has been used extensively in studying complex diseases
and have already demonstrated potential for identifying genomic
features associated with various diseases (Cookson et al., 2009).
Contrary to rodent models and other pathologies in humans,
attempts to perform similar investigation in the field of male
infertility have been limited due to various restrictions (e.g.,
restrictions to human testis tissue).

A fewmicroarray studies have been performed previously and have
provided valuable insights into the complexity of spermatogenesis by
identifying numerous testis expressed and testis-specific genes in
humans (Feig et al., 2006; Ellis et al., 2007; Spiess et al., 2007; Okada
et al., 2008). However, individual studies are usually not reproducible,
and comparing studies with different designs may conceal the specific
mechanisms underlying infertility. Kui et al. (2019) integrated results
from different microarray data sets and focused on differentially
expressed genes enriched in four divided pathological phenotypes
(Kui et al., 2019). Furthermore, we hypothesized that integrating the
data extracted from the transcriptomic level with the data originating
from the genomic level could led us to identify potential biomarkers for
male infertility. Namely, like all “omic” approaches, findings of rare,
potentially pathogenic variants in infertile men need further evidence to
distinguish the real signal from noise.

For this purpose, we performed global gene expression profiling
on human testis samples in patients with severely impaired and

normal spermatogenesis. In addition to our study, we systematically
reviewed overlapping genes from comparable previous studies. We
identified genes demonstrating differential expression and rare
potentially pathogenic variants as a final step.

2 Materials and methods

2.1 Ethics statement

The study was approved by National medical ethics committee
(reference number: 73/05/12). All patients gave informed written
consent to participate in the study.

2.2 Testicular biopsy samples

All biopsy samples were obtained from patients attending the
outpatient infertility clinic of the Andrology Centre, Department of
Obstetrics and Gynecology in Ljubljana. The study population
comprised ten patients with non-obstructive azoospermia and ten
patients with obstructive azoospermia (controls).

Testicular biopsies were performed under local anaesthesia.
Following unilateral hemiscrototomy, a small testicular incision was
made and at least two samples of testicular tissue were taken from each
testis. The first sample was fixed in Bouin’s solution, routinely
embedded in paraffin, and cut at a section thickness of 5 μm. The
sections were stained with HE, PAS and van Gieson–Weigert. A
systematic histological evaluation was performed under light
microscopy. More than 100 seminiferous tubules were scored for
each patient. The results were expressed as a relative number of
tubules showing Sertoli cells, spermatogonia, spermatocytes, round
and elongated spermatids, and spermatozoa. All examinations were
made by the same observer (J.S.). The diagnoses were as follows:
10 patients with normal spermatogenesis, 2 with early and late
maturation arrest and 8 with Sertoli-cell-only syndrome (SCOS).
Before sperm recovery, medical history was established, testicular

FIGURE 1
Venn diagram of the most significant downregulated (A) and upregulated genes (B) genes among all studies (p value less than 0.0001).
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volume measured and serum FSH level was assessed. The clinical
characteristics of patients are presented in Table 1.

2.3 RNA isolation

Total RNA was isolated from frozen testis biopsy samples by using
the TissueLyserLT (Qiagen) apparatus and RNeasy Plus Micro kit
(Qiagen) according to the manufacturer’s instructions. About
3.5–4.5 mg weight of tissue was disrupted and homogenized in 2 mL
centrifuge tubes containing 5-mm stainless steel beads and lysis buffer
(Buffer RLT plus) at a frequency of 50 Hz for 10 min in a TissueLyser
device. Homogenate was subsequently centrifuged for 3 min, collected
and eluted in a gDNA eliminator spin column. Ethanol was added to
the flow-through to provide appropriate binding conditions for RNA
and samples were then applied to an RNeasy MinElute spin columns,
where total RNA was bound to the membrane and contaminants were
efficiently whashed away. RNA was then eluted in 14 µL of water. RNA
concentrations were determined using NanoDrop 2000C
Spectrophotometer (Thermo Scientific) and RNA quality was
verified by Agilent Bioanalyzer 2,100 (Agilent Technologies).

2.4 Microarray experiment and data analysis

The measure of expression was performed on isolated RNA from
biopsy samples of patients with obstructive and non-obstructive
azoospermia using Agilent Whole Human Genome 4 ×
44 microarrays (Agilent design id: 14850). Gene expression platform
contains 264 × 10 biological probes, targeting altogether 19.596 unique
mRNA sequences according to NCBI Reference HumanGenome Build
version 33. Sample preparing, labeling and amplification RNA (Low
Input Quick Amp Labeling Kit, two color, Agilent Technologies),
hybridization, washing and scanning were performed according to
the manufacturer’s recommendations (Agilent Technologies).
Differential gene expression was measured in relation to the
Agilent’s Universal Human Reference RNA and each experimental
sample was hybridized against this common reference sample.

After hybridization, microarray slides were scanned using Agilent
High Resolution Microarray Scanner System, using the
manufacturer’s recommended scanning settings. Subsequently,
microarray features were extracted using Agilent Feature
Extraction software v10.7.3.1. Post-processing steps included intra-
array lowess and inter-array quantile normalization to correct for
potential bias resulting from differential stability of cyanine dyes.
Fluorescent values were offset by 100 units to reduce the anomalous
dispersion of fold change (FC) values at lower signal intensities. MA
and multidimensional scaling (MDS) plots were inspected for each
array to detect any systemic error resulting from the preceding steps.

The raw data are deposited in NCBI’s Gene Expression Omnibus
(Edgar et al., 2002) and are accessible through GEO Series accession
number GSE145467 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE145467).

Results were statistically analyzed using a linear model fit in
limma package for Bioconductor in an R statistical environment. To
account for multiple testing, obtained significance values were
corrected using the Benjamini-Hochberg method, and the
adjusted significance threshold was set at <0.05.

2.5 Systematic review

To identify overlapping genes from studies that could be included
in the systematic review, a PubMed search (www.ncbi.nlm.nih.gov/
pubmed/) until June 2022 was performed using the search strings:
‘male infertility’ AND ‘human spermatogenesis’ AND ‘gene
expression’ AND ‘testis’. The systematic review was conducted
according to the Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) statement (Moher et al., 2009). The
following criteria were used: (a) comparable disease states as in our
experiment, (b) the same tissue samples, (c) common reference design
approach towards measuring differential expression in the microarray
experiment and (d) availability of raw datasets at either GEO or
ArrayExpress repositories.

All the steps described in the following sections were performed
in using R statistical language version 2.9.2, using Bioconductor
environment.

Due to the differences in methodology and statistical analyses
among the 3 studies, FDR values were not used, and instead,
differentially expressed transcripts with p < 0.001, were used for
the comparisons. Shared differentially expressed genes were
visualized using an online VENN tool, available from the VIB/
UGent Bioinformatics & Systems Biology (http://bioinformatics.
psb.ugent.be/cgi-bin/liste/Venn/calculate_venn.htpl).

To gain more insight into key processes that may possibly
explain functional differences among the testicular samples from
severely impaired and normal spermatogenesis types, we carried out
functional annotation analysis of the top overlapping differentially
expressed genes, attaining adjusted p-values below 0.001 and using
hypergeometric test, based on genes’ relation to GeneOntology (GO
Biological Process 2021; https://maayanlab.cloud/Enrichr/) and
KEGG terms (KEGG 2021 Human, https://maayanlab.cloud/
Enrichr/).

2.6 Common genes identified in both
transcriptomic and sequencing studies
searching for monogenic etiology of male
infertility

To provide additional support for identified genes from
transcriptomic studies, we searched for overlapped differentially
expressed genes with evidence to be putative candidates for the
monogenic aetiology of male infertility. For this purpose, we have
used the selected genes from a systematic review of next-generation
sequencing studies, identifying rare, potentially pathogenic variants
published recently (Houston et al., 2021). We have included genes
moderately, strongly, or definitively linked to male infertility
phenotypes and genes with limited evidence. We have excluded
genes scored as “no evidence”.

3 Results

3.1 Global gene-expression profiling

Using Agilent Whole Human Genome 4 × 44 microarrays
(Agilent design id: 14850), we analyzed global gene expression
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changes in testis biopsy samples from 10 subjects with severely
impaired spermatogenesis and 10 with normal spermatogenesis.
Excluding one sample identified as an outlier left 19 samples for
analysis. With a strict statistical criterion (adj. p < 0.001), we
identified more than 1801 differentially expressed genes. Of these
1801, 781 were downregulated and 1,020 were up-regulated.

3.2 Systematic review and gene set
enrichment analyses

Among the identified 628 articles, transcriptomic profiling of the
human testis was identified in 10 articles. Of these 10 articles, only
three previously performed transcriptomic studies have met
inclusion criteria. Therefore GEO datasets with accession
numbers GSE9210, GSE4797 and GSE45885, in addition to our

own microarray results, were finally included in the analysis. Details
on the three studies included in the systematic review are given in
Table 2.

Aiming to identify the specific mechanisms underlying
infertility, we focused on overlapping genes among four analyzed
studies. With a strict statistical criterion (p < 0.001), we successfully
identified a signature comprised of 257 shared genes (144 down-
regulated and 113 up-regulated) with changed expression in infertile
men (Figures 1A, B). However, one study did not successfully pass
through this sorting criterion. Considering good overlap between
the other three studies, the possible reason for this deviation could be
in the small set of control samples.

Top biological processes according to GO enriched with
common genes across all studies were genes related to collagen
fibril organization and spindle and mitotic assembly checkpoint
signaling, while according to KEGG pathways, common genes

BAR GRAPH 1
Gene set enrichment analysis of common down-regulated and up-regulated genes across all four studies using GENE ONTOLOGY (biological
process) [(A) up-regulated, (B) down-regulated].
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across all studies were genes related to ovarian steroidogenesis and
p53 signaling pathway (Bar Chart 1 and Bar Chart 2).

3.3 Common genes identified in
transcriptomic and next-generation
sequencing studies

The intersection of genes from transcriptomic studies and those
reported as candidates for monogenic aetiology revealed seven genes
linked with male infertility phenotype. CYP11A1, CYP17A1, RSPH3,
and TSGA10 genes were classified as confidently associated with the
phenotype (moderate, strong, or definitive), whereas AKAP4, CCIN,
NDNF present genes classified as limited evidence.

4 Disscusion

In the present study, we performed global gene expression
profiling on human testis samples in patients with severely
impaired spermatogenesis and systematically reviewed previous
transcriptomic studies to identify genes consistently differently
expressed across the studies.

To provide additional support, we searched for differentially
expressed genes with evidence to be putative candidates for the
monogenic aetiology of male infertility. The integratomic
approach revealed four genes classified as confidently causally
associated with phenotype, whereas another three present
candidate genes whose dysfunction may result in a male
infertility disorder.

BAR GRAPH 2
Gene set enrichment analysis of common down-regulated and up-regulated genes across all four studies using KEGG pathway functional
annotation [(A) up-regulated, (B) down-regulated].
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CYP11A1, CYP17A1 and RSPH3 were upregulated in patients
with normal spermatogenesis when compared to the patients with
impaired spermatogenesis.

Considering that CYP17A1 and CYP11A1 are required for
proper synthesis of androgens, noticed upregulation in patients
with impaired spermatogenesis could result from organism
efforts to maintain stability. Biallelic variants in CYP11A1 and
CYP17A1 gene can impair sexual differentiation caused by a
complete or partial loss of steroid hormone production. The
broad clinical spectrum has been reported in affected 46XY
males and may vary from normal genitalia and surgically
repairable defects, including cryptorchidism and hypospadias, to
complete feminization of external gonads, accompanied by adrenal
dysfunction (Sherbet et al., 2003; Rubtsov et al., 2009; Kok et al.,
2010; Parajes et al., 2012; Lara-Velazquez et al., 2017; Kolli et al.,
2019; Kallali et al., 2020). The broad phenotypic spectrum has been
reported for numerous genes, and in this manner, establishing a
specific genotype-phenotype relationship is not necessarily
straightforward. Variability in genotype-phenotype correlation
have been previously recognized in reproductive system
syndromes with endocrine disorders. One such example is the
NR5A1 gene, where pathogenic variants are associated with a
phenotypic spectrum ranging from disorders of sex development
to oligo/azoospermia (Domenice et al., 2016).

RSPH3 biallelic variants represent a recurrent genetic cause of
Primary ciliary dyskinesia (PCD) in human (Jeanson et al., 2015).
Although the RSPH3 gene is abundantly expressed in testicular tissue,
the phenotype of PCD-associatedmale infertility caused by the defect in
this ciliopathy-related gene has been rarely described (Wu et al., 2020).
Mutations in RSPH3 have been reported in a sterile PCD patient with
severe asthenoteratospermia characterized by multiple flagellar
malformations (Wu et al., 2020). However, the mutation in this
gene in association with non-obstructive azoospermia has not been
identified so far.

Based on our analyses, the expression levels of the TSGA10 gene
were downregulated across studies. It has been suggested that
decreased expression of TSGA10 is associated with the reduction
of autophagy process and increased ROS levels, which lead to aberrant
spermatid differentiation and maturation (Asgari et al., 2021). The
TSGA10 gene is involved in active cell division, differentiation and cell
migration and is highly conserved among different species (Behnam
et al., 2009). Functional analysis of the Tsga10 gene in knockout mice
demonstrated that TSGA10 contribute to the correct arrangement of a
mitochondrial sheath in spermatozoa, and its deficiency leads to male
infertility (Luo et al., 2020). Previous studies have reported a
homozygous mutation in this gene in patients with acephalic
spermatozoa (Sha et al., 2018; Ye et al., 2020).

According to the literature, there has been limited evidence for
the association of AKAP4, CCIN and NDNF genes with male
infertility. Two recently published studies identified a
homozygous missense mutation and a compound heterozygous
mutation of the CCIN gene in patients with teratozoospermia,
while a missense variant in the AKAP4 gene was associated with
morphological abnormalities of the sperm flagella phenotype (He
et al., 2023; Fan et al., 2022; Zhang et al., 2021). Both genes were
significantly downregulated in patients with impaired
spermatogenesis across included studies, making them interesting
candidates for future research of male infertility.

5 Conclusion

In the first step, we identified 257 differentially expressed genes,
which are according to KEGG, mainly involved in p53 signaling and
steroidogenesis pathways. In the second step we identified
seven genes demonstrating both differential expression and
evidence of rare, putative pathologic genetic variants
(CYP11A1,CYP17A1,RSPH3,TSGA10,AKAP4,CCIN, NDNF).
With the integratomic approach, we contributed to building
evidence for genetic etiology and mechanisms in male infertility.
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