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martinai@met.no

RECEIVED 01 March 2023

ACCEPTED 27 July 2023
PUBLISHED 21 August 2023

CITATION
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Forecast uncertainty and
ensemble spread in surface
currents from a regional
ocean model

Martina Idžanović*, Edel S. U. Rikardsen and Johannes Röhrs

Division for Ocean and Ice, Norwegian Meteorological Institute, Oslo, Norway
An operational ocean Ensemble Prediction System (EPS) for the coastal seas off

Northern Norway is evaluated by comparing with high-frequency radar current

speed estimates. The EPS is composed of 24 members for which the ocean

current is not perturbed nor constrained but forced with an atmosphere

ensemble. The ocean ensemble spread stems from (i) accumulated differences

in wind-forcing history and (ii) constraints of sea surface temperature by data

assimilation. The intention of the ensemble is to reflect the actual uncertainty in

initial conditions, which are largely unknown in terms of mesoscale circulation.

We find a low but pronounced predictive skill in surface currents along with a

good statistic skill. Additionally, current speeds show deterioration of the

validation metrics over the forecast range. Further, high-resolution wind

forcing seems to provide better forecast skill in currents compared to lower

resolution forcing. In general, the ensemble exhibits the ability to predict

forecast uncertainty.

KEYWORDS

surface currents, regional ocean forecasting, ensemble prediction systems, forecast
uncertainty, high-frequency radar
1 Introduction

Surface currents are a pertinent ocean state variable for applications in marine

ecosystems, offshore industries, and shipping. Forecasting of surface currents is

particularly demanded in coastal seas, where considerable damage can be done by

transported pollutants (e.g. Strand et al., 2020; Prasad et al., 2022). Risk assessments,

ecosystem models, and impact studies require statistical descriptions of the current field,

while emergency response situations require short-term forecasts (Christensen et al., 2018;

Röhrs et al., 2023b).

Observation methods provide patchy coverage of surface currents with various

representations of currents (e.g. Idžanović et al., 2017; Isern-Fontanet et al., 2017), while

ocean general circulationmodels (OGCMs) can predict currents covering full spatial domains

but suffering from intrinsic chaotic variability (Lorenz, 1969; Nonaka et al., 2016). Hence, a
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weakness in state-of-the-art OGCMs is that mesoscale current fields

exhibit very limited predictability. Precise statistic skill in models

satisfies some applications, whereas near-real-time decision making

demands predictive model skill. Given deliberate model

configuration, the statistic skill is generally achieved in operational

models, but predictive skill requires constraints by observations

(Jacobs et al., 2021). Ensemble Prediction Systems (EPS) are

common means to predict model uncertainty, allowing to assess

whether a forecast is reliable or not (Tilmann and Raftery, 2005;

Pinardi et al., 2011; De Dominicis et al., 2016). EPSs can then be used

to identify predictable features in ocean forecasts thereby adding

value to forecast systems (Thoppil et al., 2021). Yet, it is necessary to

show that the used ensemble reflects the uncertainty of the model in

terms of verifying observations. Responding to a growing demand for

high-resolution current forecasts in operational oceanography, we

investigate the capability of a regional ocean EPS to quantify its

uncertainty in current predictions.

Given appropriate accuracy in initial conditions and model

resolution, deterministic forecasting of mesoscale circulation has

been shown to be possible (Jacobs et al., 2014), but observations are

often too sparse to encompass the full initial state. Certain degree of

predictability may also prevail due to coastal constraints and

dominant wind forcing (Kim et al., 2009; Cucco et al., 2016; Lima

et al., 2019), e.g. during triggering of inertial waves and strong drift

currents (Christensen et al., 2018). While only the flow features on

constrained scales contain deterministic forecast skill, Jacobs et al.

(2021) show that OGCMs may skillfully predict uncertainty on

smaller scales if statistic skill is present at those scales.

Data assimilation techniques play a key role to provide initial

conditions for models. While model resolution has been

subsequently increased in recent years, observation networks have

not followed to provide the same level of detail to constrain high-

resolution circulation patterns. Hence, smaller scales in high-

resolution ocean models are typically not constrained by

observations. Models with high resolution have larger errors than

their low-resolution counterparts (Sandery and Sakov, 2017).

Spatial smoothing of surface currents reduces the error in drift

forecasts, but in practice, removes variability in the non-constrained

scales (Dagestad and Röhrs, 2019).

In this paper, we address surface currents of a regional OGCM,

in which ocean currents are not actively constrained by assimilation

of either satellite altimetry or high-frequency (HF) radar

observations. Instead, HF radar radial currents are being used to

assess the modeled current fields in terms of a single observed

quantity. In addition, we assess the ensemble spread of an associated

EPS and test the hypothesis that the EPS can quantify probabilities

that certain radial current speeds are exceeded. The main question

is to what extent do we expect predictability in radial currents from

regional ocean models that do not assimilate currents or have few

observations of currents.

Section 2 provides a description of data and methodologies used

in this study. In section 2.1, we describe the validation data set and

give an overview of the model set-up in section 2.2. The validation

metrics for radial currents is presented in section 2.3. In section 3,

we assess the modeled surface currents by looking into their flow

patterns as well as the ensemble spread and its reliability. Finally, we
Frontiers in Marine Science 02
discuss the results and give some concluding remarks on regional

ocean modeling in section 4.
2 Data and methods

2.1 High-frequency radar data

Surface current retrieval from land-based HF radars was

developed in the 1970s. The capacity of HF radars to measure

currents at high spatial and temporal resolution over relatively large

coastal areas make them a convenient system for operational

purposes. Their signals are unaffected by rain, snow, wind, and

other atmospheric events, but are affected by external interference

(Isern-Fontanet et al., 2017). HF radars complement satellite

altimetry observations which are limited to larger scales and

suffer limitations when approaching the coast (Vignudelli et al.,

2019), and represent an alternative to fill data gaps in data

assimilation schemes (e.g. Gopalakrishnan and Blumberg, 2012).

HF radars exploit the Bragg resonance phenomenon to map

ocean surface currents, wave fields, and increasingly winds in

coastal areas (Hernandez-Lasheras et al., 2021). The basic

mechanism of an HF radar system is the analysis of the

backscattered radio wave to calculate surface currents. Emitted

electromagnetic waves are backscattered by surface waves of

exactly half the HF radar wavelength. Radial velocities (velocities

towards or away from the antenna) are derived from the Doppler

shift due to the difference between the theoretical and measured

Bragg frequency (Barrick and Weber, 1977). E.g., at an operating

frequency of around 13.25 MHz the measurement depth is

approximately 0.9 m (Stewart and Joy, 1974). Accuracy of the

radar-derived velocities has been shown to be typically in the range

of 3-12 cm/s (Laws et al., 2011). Due to the complexity of the

measurement principle, HF radar-based current data require careful

interpretation. Nevertheless, HF radars have become one of the

most important sources of surface current data in operational

oceanography due to their ability to cover extended areas with

high temporal resolution and to resolve a variety of ocean processes

(e.g. Shay et al., 1995; Gough et al., 2010; Gurgel et al., 2011;

Kirincich et al., 2013). Many studies in recent years focus on using

HF radar-derived surface currents as sources for data assimilation

(e.g. Oke et al., 2002; Barth et al., 2008), and in addition show good

correlations for radial velocities and total vectors measured by HF

radars and ADCPs (Cosoli et al., 2010).

In the present study, we use data from the CODAR SeaSonde

instrument, operated by the Norwegian Meteorological Institute on

the Fruholmen island (Figure 1) since October 2016 (B. Meldal-

Johnsen, personal communication, 2022). The HF radar on

Fruholmen emits at a central frequency of 4.453 MHz, reaching

distances up to 180 km, with a range resolution of around 5 km. We

used hourly radial velocities covering the period from mid-

November to end of December 2021. Prior to conducting the

analysis, some editing and quality assessment of the HF radar

observations was performed. First, observations flagged as outside

angular filter area were removed. In addition, spikes in the HF radar

time series exceeding 0.75 m/s over an hour were removed (A. K.
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Sperrevik, personal communication, 2022). On average, around

2000 observation points per hour were available in the selected

area. The HF radar data is available through THREDDS.
2.2 Barents-2.5 Ensemble
Prediction System

Barents-2.5 is a coupled ocean and sea-ice model covering the

coast off Northern Norway, the Barents Sea, and Svalbard

(Figure 1A). The model is implemented at the Norwegian

Meteorological Institute and used as input for trajectory modeling

during search-and-rescue operations and tracking of marine

pollution. The model code is based on the METROMS framework

(https://doi.org/10.5281/zenodo.5067164), which implements the

coupling between the ocean component ROMS and the sea-ice

component CICE (Fritzner et al., 2018; Fritzner et al., 2019). The

Regional Ocean Modeling System (ROMS) solves the Reynolds

averaged, hydrostatic primitive equations using a bottom-following

coordinate system with free surface (Shchepetkin and McWilliams,

2005). Barents-2.5 has a horizontal resolution of 2.5 km with 42

stretched bottom following vertical layers, where the thickness of

the uppermost layer varies between 0.5 m and 1 m. Turbulent

mixing is parameterized using prognostic equations for turbulent

kinetic energy and a generic length scale (Umlauf and Burchard,

2005). Further details on the model configuration and validation of

sea-ice concentration and sea surface temperature fields can be

found in Röhrs et al. (2023a).

The operational model set-up of Barents-2.5 consists of an

ensemble with 24 members of ocean and sea-ice states with a

forecast period of 66 hours. The Barents-2.5 EPS includes daily

assimilation cycles as well as updates of atmospheric files four times
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a day (six members are respectively updated at model hours 00:00,

06:00, 12:00, and 18:00). Surface forcing for four reference members

is provided by AROME-Arctic (Müller et al., 2017; Køltzow et al.,

2019), a regional weather forecast model on the same domain and

resolution as Barents-2.5. The latter 20 ensemble members are

forced by random ensemble members from the integrated forecast

system (IFS) by the European Centre for Medium Range Weather

Forecasts (ECMWF), with a horizontal resolution of around 10 km.

The operational archive of the Barents-2.5 EPS is available through

THREDDS. Figures 1B–E show snapshots of surface currents from

four random Barents-2.5 EPS members on 2021-11-15 18:00.

Satellite observations of sea surface temperature and sea-ice

concentration as well as in-situ observations of temperature and

salinity are assimilated into the model system using an Ensemble

Kalman Filter (EnKF) data assimilation scheme (Evensen, 1994).

Each forecast cycle is initialized with pre-existing model spread

from the previous forecast cycle. No additional perturbation is

imposed on the members. The EnKF data assimilation scheme

reduces the ensemble spread of sea surface temperature and sea-ice

concentration and to some extent hydrography when in-situ

observations are available. No spread reduction nor perturbation

is applied onto the mesoscale current fields. Each member retains its

current field through the assimilation cycles, enabling the members

to freely develop over time, and hence reflecting the uncertainty in

initial conditions for each forecast cycle.

For this study, we used hourly surface current fields of all 24

ensemble members. In order to achieve the same effective resolution

as of the HF radar, a smoothing from 2.5 km to 5 km of the model’s

current fields was performed by applying a two-dimensional (2D)

3-by-3 box filter. Next, the directional current components u and v

from Barents-2.5 EPS were rotated from the model grid onto north/

east directions and interpolated by nearest neighbor to HF radar
FIGURE 1

(A) Barents-2.5 EPS domain and location of the HF radar. Sea surface height (in m) with 0.2 m red contour lines from the model, as well as positive
and negative radial velocities (in m/s) observed by the HF radar. (B–E) Surface current speed (yellow-green shading) and sea surface height (0.1 m
red contours) from four random Barents-2.5 EPS members. All figures are snapshots on 2021-11-15 18:00.
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positions. Finally, u and v were projected onto the HF radar’s

bearing direction b as

uc

υr

" #
=

cos b − sin b

sin b cos b

" #
u

υ

" #
(1)

where uc and vr are the cross and radial current components,

respectively. In the following, we are comparing the ocean model

with HF radar in terms of the observed quantity - radial current

speed vr.
2.3 Validation metrics for radial currents

In this study, we assess the skill in surface current forecasting

and its uncertainty. In addition to root-mean-square error (RMSE),

mean absolute error (MAE), and spatial correlation, we show the

2D histogram and quantile-quantile graphs of modeled and

observed radial currents. 2D histograms are a useful tool to

analyze the relationship between two variables that have a large

number of values, while quantile-quantile graphs compare

distributions of two variables. If the two distributions being

compared are identical, the quantile-quantile will lay on a

diagonal. Further, we use reliability diagrams to test how well

Barents-2.5 EPS predicts probabilities of certain events as well as

rank histograms to assess the reliability of the ensemble and

diagnose errors in its mean and spread (WMO, 2012; Wilks, 2019).

In order to create a reliability diagram, probabilities for the

occurrence of a defined event are binned into discrete classes from

zero to one. For each probability class, the fraction of times the

event is observed, defined as observed frequency, is plotted against

the corresponding forecast probability originating from the

ensemble. Perfectly reliable probabilities of occurrence lie on the

diagonal. Rank histograms are generated by repeatedly tallying the

rank of the observation relative to values from the ensemble sorted

from lowest to highest (Hamill, 2001). If the observation is smaller

than all m ensemble members, its rank is i=1; if it is larger than all

ensemble members, its rank is i=m+1. A too large ensemble spread

will produce an “inverted U-shape” rank histogram where

frequencies of the observations are overpopulating the middle

ranks. Contrary, in an ensemble with too little spread,

observations are too frequently an outlier among the collection of

m+1 values, so the extreme ranks are overpopulated; and occur too

rarely as middle values, so the central ranks are underpopulated. If

the ensemble forecasting system is reliable, observations are

indistinguishable from any other ensemble member and the rank

histogram will appear flat.

Acknowledging the uncertainty in HF radar radial current

estimates, we note that observation errors may artificially result in

U-shaped rank histograms for an ensemble with appropriate

spread. To compensate for it, Saetra et al. (2004) suggest to add

normally distributed noise to the ensemble members, with a

standard deviation given by the observation errors. We defined

the total HF radar uncertainty, stotal, as a combination of two

quality parameters available for the HF radar observations, namely

the spatial quality of radial velocity, sespc, and the temporal quality

of radial velocity, setmp, given by
Frontiers in Marine Science 04
stotal =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s        2
espc + s          2

etmp :
q

(2)

In order to account for errors in the HF radar observations, we drew

a random number from a normal distribution with a standard

deviation based on stotal and added it to the modeled radial current

component vr.
3 Results and discussion

3.1 Skill in surface current forecasts

Figures 1B–E show the current pattern in the HF radar domain

for four exemplary members as a snapshot on 2021-11-15 18:00.

The members share major characteristics in the current field, such

as the Norwegian Coastal Current (NCC), tides, and wind-driven

currents. The NCC flows northward along the coast, and transports

fresh and nutrient water from river runoff and outflow from the

Baltic Sea. The strength of the coastal current and placement of

mesoscale eddies differ among the four realizations. We note that

the NCC is less emphasized for the member shown in Figure 1B

than for the other three members. This member is forced by

AROME-Arctic, while the other three realizations are forced by

randomly chosen IFS members.

The fact that HF radars observe the ocean’s surface layer at spatial

resolutions similar to high-resolution ocean models make HF radar-

derived radial currents comparable with radial currents in the

uppermost layer of the Barents-2.5 EPS. The validation against HF

radar data was carried out over the period of one and a half months,

from 2021-11-15 to 2021-12-31. Furthermore, we divided the forecast

range of 66 hours into three time spans: 0–24 hours, 24–48 hours, and

48–66 hours denoted in the following as +24h, +48h, and +66h,

respectively. A direct comparison between observed and modeled

radial current components is shown in Figure 2. Only the forecast lead

time of +24h is shown since 2D histograms and quantile-quantile

graphs for lead times +48h and +66h do not significantly differ. The

2D histogram shows little predictive skill but nonetheless a significant

correlation (r = 0.63). The quantile-quantile graph shows that there is

statistic skill in resolving a realistic distribution of current speed.

Positive velocities above 0.5 m/s, i.e. currents heading away from the

HF radar, are underestimated to some extent while negative extreme

velocities are represented well by the model.

Figure 3 shows model validation statistics as a function of lead

time. In comparison to HF radar observations, all members show a

mean spatial correlation of 0.53, 0.52, and 0.51 for forecast lead

times +24h, +48h, and +66h, respectively. The mean bias is

approximately 2.6 cm/s for all lead times over all EPS members.

Regarding MAE and RMSE over all members, they are respectively

about 15.6 cm/s and 20.3 cm/s for +24h, and growing almost

linearly with time to approximately 15.9 cm/s and 20.6 cm/s for

+66h. In general, the mean spatial correlation decreases slightly

with increasing lead time; both mean RMSE and mean MAE

increase with increasing lead time. Considering only high-

resolution members forced by AROME-Arctic (dashed orange

lines in Figure 3), there is a tendency that mean RMSE and mean

MAE are lower for all lead times; no significant changes are notable
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Idžanović et al. 10.3389/fmars.2023.1177337
in the mean spatial correlation. This suggests that high-resolution

wind forcing (2.5 km resolution instead of around 10 km in the IFS)

provides better forecast skill relative to the analysis when

considering surface currents. Due to strong current signals along

the coast and the model being constrained by the coastline, the

agreement between observations and model is good. Winds are

updated for each forecast cycle in the model, maintaining the model

performance over short lead times. Sea surface temperature is

assimilated in Barents-2.5 EPS, which to a certain degree supports

the prediction of surface currents on meso and larger scales. E.g., sea

surface temperature could constrain the position of the NCC and

larger, long-lived eddy structures. Another constraint for the model

is prescribed by the bathymetry and coastline. Hence, it is expected

that the model performance might vary for other HF radar locations

and for different areas, e.g. the open ocean where HF radar

measurements are typically not available.
3.2 Prediction of uncertainty in
surface currents

Figures 4A, B show reliability diagrams for two forecast lead

times and for events that the radial current component exceeds 0.1m/

s, 0.2 m/s, 0.3 m/s, and 0.4 m/s. Overall, the model underestimates

low probabilities and overestimates high probabilities. For low values

of the radial current component, the model is more reliable when it

comes to high probabilities. When looking at more extreme values of

the radial current component, we note more of a linear behavior in

the reliability, but lack the extremes in high probabilities. For surface
Frontiers in Marine Science 05
currents above 0.3 m/s, when the model predicts a 90% probability of

occurrence we see that the observed speeds exceed this threshold in

only 75% of the same cases. Further, around 20% of the cases with

predicted forecast probability of 20% are observed to pass the

threshold of 0.3 m/s. The biggest discrepancy is for low current

speeds: when the model predicts a 20% chance to exceed 0.1 m/s,

more than 45% of the observed cases exceed the threshold. The

inclusion of the total observation error has a large impact, specifically

on low forecast probabilities for all thresholds. The “inverted S-

shaped” curves in Figures 4A, B are characteristic for ensembles with

too little spread.

The original and the corrected rank histograms presented in

Figure 4C indicate that the distribution appearing to result from a

lack of ensemble spread can be explained by observation errors. The

corrected graph shows a mostly flat distribution of observations

within the ensemble, which confirms that each member has a nearly

equal likelihood of occurrence. Possible reasons for the remaining

lack of extreme velocities, apart from insufficient ensemble spread,

is limited model resolution, lack of detail in the air-sea coupling in

the model, and spurious numerical diffusion. Rank histograms for

lead times from +24h to +66h do not significantly differ, indicating

that ensemble spread is maintained in the full forecast range.

A degree of model constraint is given by boundary conditions -

through atmospheric forcing and lateral constraints such as

coastlines and bathymetry. Kim et al. (2009) show that the wind

driven ocean circulation is fairly well predictable when initial

conditions are readily known. In addition, we argue that a degree

of predictability may already be achieved when lateral boundaries,

bathymetry, and wind-driven currents are a substantial part of the
FIGURE 2

2D histogram and quantile-quantile plot of modeled versus observed radial current components. Barents-2.5 EPS radial velocities are shown on the
vertical axis and HF radar radial velocities on the horizontal axis. N is the number of data points within each bin. The data cover the period 2021-11-
15–2021-12-31.
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total current. Also tidal and large scale circulation are already well

described in operational ocean models (Röhrs et al., 2023b). In fact,

Khade et al. (2017) find that forecast uncertainties in coastal regions

in the Gulf of Mexico are dominated by wind forcing rather than by

initial conditions. This is partly reflected in our study, as we identify

better forecast skill for short lead times, i.e. deteriorating skill in the

forecast range relative to the analysis. Close to the analysis time, the

model benefits from updated wind forcing. In addition, we see that

high-resolution wind forcing (AROME-Arctic) provides improved

forecast skill relative to the analysis, resulting in lower

errors (Figure 3).
4 Concluding remarks on regional
ocean modeling

Ensemble ocean forecasting from high-resolution coastal

models has great potential, e.g. in providing uncertainties in drift

modeling and for near-real-time decision making in maritime
Frontiers in Marine Science 06
operations that are affected by currents. The predicted probability

for critical conditions, such as surface current speeds above a given

threshold, can be taken into account in the planning phase and

during operations. Exact forecasts of current speed and direction

remain unfeasible due to the lack of predictive skill in high-

resolution ocean models. However, the ability to identify highly

probable situations from the model ensemble is what gives the

inherent usefulness of a well-balanced ocean EPS.

In this work, we have shown promising abilities of a regional

ocean ensemble for the Barents Sea to predict surface currents and

their uncertainty in the Norwegian coastal zone. The spatial

correlation between observed and modeled surface current speeds

shows a decreasing trend with increasing lead time; both mean

RMSE and mean MAE increase. Barents-2.5 EPS demonstrates to

have statistic skill, by providing the right magnitudes of radial

components of surface currents, but has low predictive skill. The

reliability diagrams as well as rank histograms show an absence of

extreme events in the surface current field, which in turn indicates a

lack of spread in the ensemble. Although the spread appears
A

B

C

FIGURE 3

(A) Spatial correlation, (B) root-mean-square error, and (C) mean absolute error between surface currents from HF radar and 24 Barents-2.5 EPS
members shown as a function of lead time for the period 2021-11-15–2021-12-31. Solid gray lines represent statistics of members forced by IFS
atmospheric files (low-resolution member). Dashed orange lines are ensemble members forced by the AROME-Arctic weather model (high-
resolution member). Solid blue and red lines represent mean values of all 24 members and of four high-resolution members, respectively.
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insufficient, the EPS maintains the same spread and ensemble

reliability over its full forecast range.

In regional ocean modeling, in addition to initial conditions,

both lateral constraints and atmospheric forcing at the surface are

necessary to predict surface current fields (Kim et al., 2009). We

want to stress that the initial conditions exhibit large uncertainty, as

no direct assimilation of currents takes place in the herein

considered model. In situations when coastlines, bathymetry, and

wind-driven currents are significant parts of the total current, a

degree of predictability seems to be achieved without direct

assimilation of currents. We confirm similar findings of Cucco

et al. (2016), seeing that ensemble members with higher resolution

wind forcing provide a better forecast skill in surface currents

relative to the analysis. The generally higher skill of atmospheric

weather prediction models compared to OGCMs propagates into

the forecast skill for coastal currents, particularly for situations of

strong surface currents driven by wind events.

In order to assimilate surface currents from HF radars and/or

satellite altimetry using variational or ensemble methods, a

precondition is to have statistical skill and bias-free background

state (Evensen, 1994; Moore et al., 2011). With statistic skill in

surface currents from an OGCM already present, higher predictive

skill is expected to result from assimilation of observations that
Frontiers in Marine Science 07
constrain current fields on local scales. In addition, observations of

the density – salinity and temperature – at depth help to prescribe

density fields that control the ocean’s baroclinic response to forcing.

Concurrent assimilation of both current and density fields has been

shown to greatly improve surface currents (Sperrevik et al., 2015)

and in particular Lagrangian drift trajectories (Sperrevik et al.,

2017). Combining those information will profoundly improve

predictive skill in surface currents on the regional scale in the

near future.
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