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As a fruit with high economic value, strawberry has a short ripeness period, and

harvesting at an incorrect time will seriously affect the quality of strawberries,

thereby reducing economic benefits. Therefore, the timing of its harvesting is

very demanding. A fine ripeness recognition can provide more accurate crop

information, and guide strawberry harvest management more timely and

effectively. This study proposes a fine recognition method for field strawberry

ripeness that combines deep learning and image processing. The method is

divided into three stages: In the first stage, self-calibrated convolutions are added

to the Mask R-CNN backbone network to improve the model performance, and

then the model is used to extract the strawberry target in the image. In the

second stage, the strawberry target is divided into four sub-regions by region

segmentation method, and the color feature values of B, G, L, a and S channels

are extracted for each sub-region. In the third stage, the strawberry ripeness is

classified according to the color feature values and the results are visualized.

Experimental results show that with the incorporation of self-calibrated

convolutions into the Mask R-CNN, the model’s performance has been

substantially enhanced, leading to increased robustness against diverse

occlusion interferences. As a result, the final average precision (AP) has

improved to 0.937, representing a significant increase of 0.039 compared to

the previous version. The strawberry ripeness classification effect is the best on

the SVM classifier, and the accuracy under the combined channel BGLaS reaches

0.866. The classification results are better than common manual feature

extraction methods and AlexNet, ResNet18 models. In order to clarify the role

of the region segmentation method, the contribution of different sub-regions to

each ripeness is also explored. The comprehensive results demonstrate that the

proposed method enables the evaluation of six distinct ripeness levels of

strawberries in the complex field environment. This method can provide

accurate decision support for strawberry refined planting management.
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1 Introduction

Strawberries, being a typical non-climacteric fruit, can continue

to ripen after being picked, but their edible quality does not improve

with further ripening (Chen et al., 2014; Van de Poel et al., 2014).

Once strawberries begin to bear fruit, they typically take 20-30 days

to reach full ripeness. Furthermore, the transition from the white

ripe stage to the fully ripe stage takes only about 7 days for

strawberries. Therefore, an efficient and accurate method for

assessing strawberry ripeness would align with practical

requirements. The traditional manual observation method is

characterized by low work efficiency, poor accuracy and

significant variability, rendering it inadequate to meet the

demands of efficient detection. Despite the high accuracy of the

sensor detection method, its requirement for professional operation

and low efficiency make it unsuitable for large-scale detection

(Moghimi et al., 2010; Abbaszadeh et al., 2014; Aghilinategh

et al., 2020). Therefore, it is of great significance to study an

efficient and accurate strawberry ripeness judgment method in an

unstructured environment for strawberry harvest management.

However, the field environment where strawberries grow is

characterized by leaf occlusion and fruit overlapping, presenting

challenges in accurately recognizing the ripeness of strawberries.

With the advancement of new information technology and the

promotion of technical methods, machine learning (ML) and deep

learning (DL) have made significant strides in scene recognition and

object classification. Considering their characteristics of faster

detection, better generalization, and stronger robustness, these

methods have also emerged as a research hotspot in strawberry

detection and recognition (Yu et al., 2019; Pérez-Borrero et al., 2020;

Le Louëdec and Cielniak, 2021). The current strawberry ripeness

detection method predominantly revolve around the integration of

ML, DL, and hyperspectral imaging techniques. Zhang et al. (2016)

used PCA to obtain optimal wavelengths from hyperspectral images,

and then extracted texture features from the optimal wavelength

images. They finally obtained the best strawberry ripeness

classification in SVM with the combined information of the best

wavelength and texture features. Shao et al. (2020) extracted effective

wavelengths for field and outdoor hyperspectral strawberry images,

respectively. Finally, their PLS-DA and LS-SVM classifiers achieved

between 91.7% and 96.7% accuracy in field strawberry ripeness

classification. Su et al. (2021) established a 1D residual network

and a 3D residual network to process 1D and 3D strawberry

hyperspectral data. The accuracy of ripeness classification exceeded

84% in both networks. Raj et al. (2022) obtained over 98% ripeness

classification accuracy when using the full spectrum data of

strawberries as the input data of SVM. Furthermore, they

developed a strawberry water content index based on a portion of

the spectral data from the band, achieving the highest accuracy of

71.2% when using the water content index as input data.

Additionally, there have been studies exploring the utilization of

image processing techniques in conjunction with deep learning for

strawberry ripeness detection. Fan et al. (2022) used a dark channel

enhancement algorithm to preprocess strawberry images taken at

night, and finally achieved a ripeness recognition accuracy of over

90% on YOLOv5. Despite achieving some results in strawberry
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ripeness estimation, hyperspectral imaging is known for its high

cost and inconvenience in practical usage. Moreover, its application is

primarily limited to indoor environments, making it challenging to

fulfill the requirements of real-time detection in the field.

According to the characteristics of strawberry at different

ripeness stages, most of the above studies have categorized

strawberry ripeness into 2-3 levels. However, the classification of

2-3 levels is rough and cannot provide an accurate decision-making

basis for strawberry harvesting management. On the one hand,

foliar fertilizer spraying before strawberry ripening can increase the

firmness of strawberries at harvest and prolong the storage time (He

et al., 2018). This necessitates the identification of early ripeness in

strawberries to determine optimal timing for fertilization. On the

other hand, for the two different modes of on-site sales and off-site

sales, it is necessary to identify the harvest ripeness of strawberries

in the later stage to determine the harvest time. Therefore,

considering the current large-scale strawberry cultivation, there is

a need for finer ripeness grading to offer precise decision support for

strawberry harvesting management.

Based on the above analysis, combined with deep learning

technology and image processing technology, this paper proposes

a strawberry ripeness recognition method combined with Mask R-

CNN and region segmentation. This method not only enhances the

segmentation accuracy of strawberries in complex field

environments but also accurately estimates six distinct levels of

ripeness, providing richer and more detailed information about

strawberry maturation.
2 Materials and methods

2.1 Dataset

2.1.1 Image acquisition
In order to improve the robust performance of the model in

various environments, the strawberry images for this study were

acquired in two batches to increase data diversity. The first shot was

taken on January 7, 2022 in a strawberry plantation in Changping

District, Beijing, China, from 10:00 to 14:00, and the local weather

was sunny and cloudless. The device used is an MI 8 smart mobile

phone with a SONY IMX363 lens. The second shot was taken on

February 9, 2023 in a strawberry plantation in Pinggu District,

Beijing, China, from 13:00 to 17:00, and the local weather was

cloudy. The device used is a MI 12X smart mobile phone, and the

lens is SONY IMX766. The distance from the lens to the strawberry

ridge was 0.2-0.3 m for each shooting, and finally 500 pictures with

a size of 4032×2268 pixels and 700 pictures with a size of 4096×2304

pixels were obtained respectively. The pictures include images

under different lighting conditions such as normal, frontlighting,

and backlighting, as shown in Figure 1A. We compressed all images

to a size of 1280×720 pixels to reduce computational cost.

2.1.2 Dataset partitioning and annotation
The strawberry datasets were divided into two parts: instance

segmentation dataset and image classification dataset. For the

instance segmentation dataset, the initial images were randomly
frontiersin.org
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divided into 860 images for training set, 100 images for validation set,

and 240 images for test set. Each strawberry contour was annotated

with labelme annotation tool. For the image classification dataset, the

dataset consisted of a series of strawberry patches. The training set

comprised a total of 2172 strawberry patches, which were manually

cropped from the training set of the instance segmentation task. The

test set consisted of a total of 651 strawberry patches, which were

detected by the instance segmentation model from the test set of the

instance segmentation task.

Efficient and accurate decision-making is crucial for the

management of large-scale strawberry harvesting in order to

enhance economic benefits. This necessitates a more precise

classification of strawberry ripeness to meet the requirements of

the industry. Based on the physiological changes (Azodanlou et al.,

2004; Zhang et al., 2011) and color representation of strawberries

during the ripening process, the strawberry ripeness has been

categorized into six levels: White, Breaking, Turning-1, Turning-

2, Ripe and Full ripe. At White the fruit is light green, and it is

basically no longer growing. At Breaking the fruit is one-fifth red

and begins to enter the color changing period. It is suitable to apply

foliar fertilizer to improve the hardness of the strawberry when it is

mature. Turning-1 is two-fifths red strawberry, and Turning-2 is

three-fifths red strawberry. At Ripe the strawberry is approximately

four-fifths red, indicating it is ready for harvest, particularly for off-

site sales. At Full ripe the strawberry is dark red and is completely

ripe. Completely ripe strawberries offer the best taste but are not

ideal for storage and transportation. Therefore, the Full ripe stage is

considered the harvest period for local sales. The patches of

strawberries with different ripeness are shown in Figure 1B. The

details of the dataset are shown in Table 1.
2.2 Annotation validation

The strawberry ripeness labels are manually annotated, and the

quality of the annotation results directly impacts the effectiveness of
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subsequent classification. Therefore, it is necessary to verify the

accuracy of manual labels. Uniform Manifold Approximation and

Projection for Dimension Reduction (UMAP) is a nonlinear data

dimensionality reduction algorithm (McInnes et al., 2018). It can

map the structural features of high-dimensional space xi to low-

dimensional space yi for representation, and preserve the global

structure of the data well. Through low-dimensional data

visualization, potential relationships among raw data can be

observed. We input the strawberry patches into UMAP for

dimensionality reduction, and then observe the distribution

of strawberries.

Let X = fx1,  …,   xNg be the input data set. First, we use the

nearest neighbor or approximate nearest neighbor algorithm to

obtain the k nearest neighbor set fxi1,  …,   xikg, and then for each

xi, we use Eq. (1) and (2) to find the nearest neighbor distance ri and
the normalization factor si.

ri = min d(xi, xij)j1 ≤ j ≤ k, d(xi, xij) > 0
� �

(1)

o k
j=1
exp(

−max(0, d(xi, xij) − ri)
si

) = log2(k) (2)
TABLE 1 Strawberry ripeness classification dataset.

Ripeness category #Training set #Test set

White 603 178

Breaking 313 83

Turning-1 230 61

Turning-2 230 64

Ripe 359 116

Full ripe 437 149

Total 2172 651
fr
B

A

FIGURE 1

(A) Initial images. (B) Images of strawberries at different ripeness. From left to right: White, Breaking, Turning-1, Turning-2, Ripe and Full ripe.
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In high-dimensional space, the distance probability is expressed

as Eq. (3) and (4).

pi ∣ j = exp(
−max(0, d(xi, xij) − ri)

si
) (3)

pij = pi ∣ j + pj ∣ i − pi ∣ jpj ∣ i (4)

In the low-dimensional space, the distance probability is

expressed as Eq. (5), where yi, yj are low-dimensional space data,

a≈1.93, b≈0.79 are hyperparameters.

qij = (1 + a(yi − yj)
2b)−1 (5)

Finally, a low-dimensional representation of UMAP is obtained

by minimizing the cross-entropy cost function, which can be

expressed as Eq. (6).

CE(X,Y) =oioj
pij(X)log

pij(X)

qij Yð Þ

 !
+ 1 − pij(X)
� �

log
1 − pij(X)

1 − qij(Y)

 !" #

(6)

After resizing the strawberry patches to a size of 30×40 pixels,

the pixel values of each patch were inputted into UMAP as the

original high-dimensional data for 1000 iterations. The algorithm

was implemented by umap of the python third-party tool library.

The size of local neighborhood and effective minimum distance

were respectively set to 25 and 0.4 for iteration. By reducing the

initial data to three-dimensional space through the UMAP

algorithm, we can observe the distribution of strawberries with
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different ripeness levels (Figure 2). Strawberries at different ripeness

levels exhibit distinct boundaries and tend to cluster together based

on their ripeness. This observation confirms the correctness of

strawberry image annotation to a certain extent. But some points

have large deviations, and we checked the strawberry patch

annotations corresponding to these points. Then based on this

result, the annotations of some images in the dataset were modified

to improve the quality of manual annotations, making them more

suitable for subsequent training tasks.
2.3 The overall processing flow of
strawberry image

The image processing flow is shown in Figure 3. First, the initial

image is input into the Mask R-CNN network for strawberry

instance segmentation, which generates a mask map. Next, each

strawberry instance is segmented using the corresponding mask and

divided into four sub-regions to extract features. Finally, the

extracted feature values are input into a classifier to determine the

ripeness level, resulting in the final visualization on the initial image.

The ripeness detection of strawberries can be completed through

the above three steps.
2.4 Strawberry detection model

Convolutional neural networks have strong feature extraction

capabilities. However, in common convolution operations, the
FIGURE 2

3D visualization of partial data sets on UMAP. 0 to 5 indicates increasing ripeness.
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convolution is typically performed using multiple sets of

convolution kernels of the same size, and the individual channels

are then summed to obtain feature maps. The common convolution

operation mode is the same, resulting in a limited richness of the

learned feature representation. Therefore, the final segmentation

results may exhibit shortcomings such as unclear object edges and

incomplete segmentation of large objects (Pérez-Borrero et al.,

2020). However, the utilization of self-calibrated convolutions can

to a certain extent mitigate the above target segmentation issues.

The Mask R-CNN instance segmentation model with self-calibrated

convolutions will be explained in detail below.

2.4.1 Self-calibrated convolutions
A larger receptive field means that CNN can extract richer

semantic information. In the traditional convolution process, the

convolution kernels in same size result in fixed receptive fields, which

may lack the capability to capture higher-level semantic information

from a larger receptive field. The idea of self-calibrated convolution is

to use deep features with a larger receptive field (such as strawberry

advanced global information) to calibrate shallow features with richer

position information (such as strawberry shape contour information)

(Liu et al., 2020). The conventional convolutional layer applies a

convolution operation to the feature map using a set of convolution

kernels (K) of identical size. The self-calibrated convolution

technique involves dividing the set of convolution kernels (K) into

four parts, K1, K2, K3, and K4, and each part performs distinct

convolution operations. Assuming that the number of input and

output channels is the same, and the shape of K is (C, C, w, h), then

the shape of K1 to K4 is (C/2, C/2, w, h). The details are shown in

Figure 4. The input feature maps are divided into two parts, Part A

and Part B. The K2 branch feature maps are first down-sampled to

make it have a larger receptive field, and then convolution operation

and up-sampling are performed with K2. Subsequently, the
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upsampling results are added to the feature maps of part B, and

these results are then mapped to a weight value ranging from 0 to 1.

This weight value assists in the convolution operation of the K3

branch, thereby achieving the goal of calibration. Finally, Part A and

the calibrated Part B are concatenated after K1 and K4 convolution

operations to obtain the final output feature maps.

The self-calibrated convolutions can effectively expand the

receptive field and make the target positioning more complete

and accurate without introducing additional parameters and

complexity. The growth of strawberries in the field is influenced

by a multitude of environmental factors, which often leads to

variations in their sizes. The receptive field of common

convolution is fixed and cannot adapt to changes in strawberry

size. To address this limitation, the self-calibrated convolutions

module is introduced to enhance the feature extraction results.

2.4.2 Mask R-CNN combined with
self- calibrated convolutions

Mask R-CNN (He et al., 2017) is a convolutional neural

network designed for instance segmentation tasks, and it can

segment fruits from complex natural environments (Ge et al.,

2019; Yu et al., 2019; Huang et al., 2020). Mask R-CNN uses

ResNet50/ResNet101 (He et al., 2016) as the backbone network

and FPN (Lin et al., 2017) as the neck. Its head is the Faster R-CNN

(Ren et al., 2017) head and adds a Mask head branch for pixel-level

image segmentation. In order to reduce the computational cost,

ResNet50 is selected as the backbone network. The Mask R-CNN

network structure is shown in Figure 5A.

To enhance the performance of Mask R-CNN and achieve more

accurate strawberry segmentation, the aforementioned self-calibrated

convolutions are integrated into the original network. ResNet50 is

constructed by stacking multiple building blocks, which consist of

convolutional blocks and identity blocks. The architectural details of
FIGURE 3

Flow chart of strawberry image processing.
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ResNet50 can be found in Figure 5B. It is worth mentioning that in

Figure 5B, the last average pooling layer and fully connected layer of

the original ResNet50 architecture are omitted. Convolutional block

has a structure similar to identity block, which consists of a series of

1 × 1 convolution and 3 × 3 convolution, but the former has onemore

1 × 1 convolution calculation in upper branch, as shown in Figure 5C.

The self-calibrated convolution module can improve the network

feature extraction results, so the convolution calculation of 3 × 3

convolution layers in all building blocks are replaced by self-

calibrated convolutions.

2.4.3 Model training
The training of DL model performed under the environment of

Intel(R) Core(TM) i7-10700KF CPU @ 3.80GHz, 10 GB NVIDIA

GeForce RTX 3080 GPU and 32 GB of RAM. The network was built

through MMDetction open source tool library on the basis of PyTorch

DL framework. In the training process, the horizontal flip data

augmentation was performed randomly to prevent overfitting. The

SGD optimizer was used for back-propagation to update the network

parameters. The learning rate decay strategy was applied in the model

training, and the learning rate was multiplied by 0.1 at the 15th, 20th,

and 25th epoch to gradually reduce the learning rate. The model had

been converging when the epoch was set as 30, so we saved the training

results of each epoch and selected the best one on the validation set as

test model. The specific hyperparameters are shown in Table 2.
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2.5 Feature extraction method

First, the RGB images were converted to HSV and Lab color

spaces, and the color features of strawberry patches were counted.

Then the change relationship between the color mean of each

channel and the ripeness level can be observed in Figure 6. The

ordinate in the figure represents the mean value of strawberry

foreground pixels, and the abscissa from 0 to 5 represents the

gradually increasing ripeness. It can be seen from the figure that the

average color values of channels B, G, and L show an obvious

decreasing trend with the increase of strawberry ripeness. The mean

color values of channels a and S increased significantly with the

increase of ripeness. There is a certain correlation between the color

feature value of strawberry and its ripeness, among which the

channel a is the strongest, but the channels R, b, H, and v are not

obvious enough. Channels B, G, L, a, and S are selected for

strawberry color feature extraction based on region segmentation

to reduce computational complexity and eliminate noise

interference in other data.

To extract strawberry features effectively, the strawberry is

divided into four sub-regions, and the color mean of each region

is extracted as the color feature of the strawberry. Before feature

extraction, it is necessary to divide and mark the strawberry, which

can be accomplished through the following steps. The specific

process is shown in Figure 7A.
FIGURE 4

Self-calibrated convolutions structure.
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Step 1: Determine the strawberry centroid. After processing the

original image with Mask R-CNN, a masked binary image of

strawberry will be generated. The mask coordinate (xi, yi) and Eq.

(7) are used to determine the center of mass coordinate C (x0, y0) of

strawberry.

x0 = oN
i=1

pixi

oN
i=1

pi

y0 = oN
i=1

piyi

oN
i=1

pi

8>><
>>: (7)

where N is the total number of strawberry pixels, and pi is the

value of the i-th pixel.

Step 2: Find the longest line segment through the centroid. The

outer contour point Pi of the strawberry binary image can be
TABLE 2 Hyperparameters of model training.

Hyperparameter Value

Learning Rate 0.02

Momentum 0.9

Optimizer SGD

Batch Size 3

Epoch 30

Wormup Iterations 500

Decay Steps(epoch) [15,20,25]
B

C

A

FIGURE 5

(A) Mask R-CNN network architecture. (B) ResNet50 network architecture. (C) Building block architecture.
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expressed as f(xi, yi) ∣ 1 ≤ i ≤ Mg, and by traversing each outer

contour point, M straight lines passing through the centroid C (x0
, y0) can be obtained, which can be expressed as f(x, y) ∣Aiy + Bix +

Ci = 0, 1 ≤ i ≤ Mg. These lines are traversed, and the distance from
each contour point to the line is obtained using Eq. (8). Find the

contour point Pi’ at the minimum distance and use it as another

approximate intersection of this line with the contour. When the

minimum distance is 0, it indicates that the point is on the line

(excluding the contour points that construct the line). This results

in a total ofM approximate intersections. Finally, each line has two

intersections with the strawberry outline. The farthest set of

intersection points are connected and used as the longest line

segment PP’ through the strawberry’s centroid.

d =
Aixj + Biyj + Ci

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
i + B2

i

p , (1 ≤ i ≤ M, 1 ≤ j ≤ M) (8)

Step 3: Find three vertical lines to divide the longest line

segment into four equal parts. We can easily find the three

coordinate points a, b, c on the line segment PP’ such that PP’ is

divided into four equal parts. Then through these three points, three

vertical lines la, lb, lc perpendicular to the line segment PP’ are

obtained. Each vertical line approximately intersects with the

strawberry contour at two points, which can be obtained by

calculating the approximate intersection point in step 2.

Step 4: Area marking. The three sets of intersection points in

step 3 are connected respectively, and the strawberry is divided into

four sub-regions. The centroid coordinate C of each sub-region is

calculated separately by Eq. (7). The sub-regions are sorted from

bottom to top according to the value of y0 and marked as R1, R2, R3,

R4. The purpose of region marking is to enable subsequent feature

extraction in this order.

Figure 7B shows some examples of results after the strawberry

region is automatically divided. It can be seen that each sub-region

of strawberry is well segmented by three line segments, and the four

sub-regions are correctly marked in order.
2.6 Classification method

According to the extracted strawberry features, selecting a

classifier that matches the data type can maximize the
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classification effect. Strawberry features are high-dimensional data

and have nonlinear characteristics. To fully leverage the

performance of the classifier and enhance the accuracy of

ripeness classification, the SVM (Support Vector Machine) was

considered first. SVM is a linear classifier suitable for processing

high-dimensional data. Due to its advantages of fast training speed,

high accuracy, and good robustness, SVM has gained extensive

usage in the field of image classification (Tu et al., 2018; Dhakshina

Kumar et al., 2020). For comparison, we tried other classic machine

learning methods, including LR (Logistic Regression), KNN (K-

Nearest Neighbors), RF (Random Forest), and finally obtained the

best classifier by comparative analysis. We used 5-fold hierarchical

cross-validation and grid search methods to optimize the

parameters of these classifiers. The optimized parameters were

used as the final parameters of the model (Table 3).
3 Results

3.1 Evaluation methods

For segmentation tasks, we will compare the segmentation effects

of Mask R-CNN’s backbone network before and after adding self-

calibrated convolutions. For the task of strawberry ripeness

classification, we will evaluate the classification performance of

different classifiers using various combinations of color channels.

Subsequently, we will identify the optimal classifier based on the

results. Then we will use the optimal classifier to evaluate the

classification effect of different feature extraction methods to illustrate

the superiority of our proposed feature extraction method. Finally, the

proposed method will be compared with the common CNN.

The following is an introduction to the model evaluation

indicators. AP, AP.50, AP.75 are used to evaluate the segmentation

effect of the model. F1 and accuracy are used to evaluate the

classification performance of the classifier. AP represents the mean

of the average precision under 10 IoU thresholds from 0.50 to 0.95

with 0.05 intervals, which is the most important evaluation metric for

MS COCO competition. AP.50 represents the average precision when

IoU=0.50, and AP.75 represents the average precision when

IoU=0.75. IoU is the intersection and union ratio of the mask area.

The average precision is the area under the P-R curve, which can be
FIGURE 6

Mean values of different color spaces. 0 to 5 indicates increasing ripeness.
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obtained from Eq. (9). P(r) is the P-R curve obtained from precision

and recall. TP represents the number of positive samples correctly

predicted. TN represents the number of negative samples correctly

predicted. FP represents the number of positive samples that were

incorrectly predicted. FN represents the number of negative samples

that are incorrectly predicted.

Precision = TP
TP+FP

Recall = TP
TP+FN

Average Precision = ∫ P(r)dr

8>><
>>: (9)

F1   Score = 2�Precision�Recall
Precision+Recall

Accuracy = TP+TN
TP+TN+FP+FN

(
(10)
3.2 Detection performance of instance
segmentation model

To assess the impact of the Mask R-CNN model improvement,

we conduct a comprehensive comparison by considering the
Frontiers in Plant Science 09
training phase, testing phase, and the final strawberry

segmentation results. This allows us to observe the effectiveness of

the model before and after the proposed enhancements. The loss

curve and training error curve of the model are shown in Figure 8. It

can be seen from the figure that the loss of the model begins to

stabilize around 25 epochs, and the model has converged at 30

epochs. After incorporating self-calibrated convolutions to the

original ResNet50 backbone network, the model exhibits lower

loss during convergence, indicating an improved fit of the model.

Additionally, it is evident that the training error of SCNet50, after

incorporating self-calibrated convolutions, is lower than that of

ResNet50. This demonstrates that the inclusion of self-calibrated

convolutions leads to an improvement in model accuracy to a

certain extent.
During the training process, the best performing model on the

validation set was saved. Then the final performance of the model was

verified on the test set. The test results of the model are shown in

Table 4. Mask R-CNN utilizing SCNet50 as the backbone network

exhibits a higher average precision compared to using ResNet50. The

AP of SCNet50 reaches 0.937, which is 0.039 higher than that of

ResNet50, and the AP.50, AP.75 are also improved by 0.021 and

0.032, respectively. But in inference speed, the FPS of SCNet50 is

reduced, which is within our allowable range. The feature extraction

ability of ResNet50 is improved after adding self-calibrated

convolutions. Not only did the model perform better on training, it

also performed well on testing. This indicates its strong generalization

ability, but at the same time it also increases a certain time cost.
The final segmentation results of strawberry are shown in Figure 9.

The strawberry marked by the yellow box in the first row of picture has

missed detection. The reason may be that the surrounding background

color is similar to the strawberry. The strawberry in the picture on the

right is successfully detected because SCNet50 extracts richer semantic

information. It is still capable of identifying the target even in cases
TABLE 3 The main parameters of the different classifiers.

Classifier Param

LR ‘c’: 0.7, ‘solver’: ‘newton-cg, ‘penalty’: l2

KNN ‘n_neighbors’: 12

RF ‘max_depth’: 20, ‘n_estimators’: 35

SVM ‘C’: 10, ‘kernel’: ‘rbf’, ‘gamma’: 0.0005
* ‘c’: reciprocal of penalty term coefficient, ‘penalty’:penalty item, ‘solver’: optimization
method, ‘n_neighbors’: number of neighbors, ‘max_depth’: decision tree maximum depth,
‘n_estimators’: number of decision trees, ‘C’: penalty coefficient, ‘kernel’: kernel function,
‘gamma’: gamma coefficient.
BA

FIGURE 7

(A) Flow chart of strawberry region segmentation. (B) Example of strawberry region segmentation results.
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where the background and the target have similar colors. In the second

row of the figure, the overlapping strawberries marked by the yellow

box on the left are not completely segmented. In the third row of the

picture, the strawberry marked by the yellow box on the left is

incorrectly identified as part of the strawberry because the strawberry

is occluded by the leaf. These erroneous segmentations will have an

impact on subsequent strawberry ripeness classifications. From

Figure 9D, it can be observed that the aforementioned erroneous

segmentations have been effectively improved, and overall, the edges of

the strawberries are more detailed. By adding self-calibrated

convolutions, the model has a larger receptive field and can generate

richer feature representations, making target positioning

more accurate.

To further analyze the model’s robustness against occlusion, we

have compared the strawberry segmentation accuracy under different

occlusion areas (Table 5). We manually counted the number of

strawberries covered by stalks, leaves, and other strawberries in the

test set, dividing them into two categories: 0-20% and 20-50% based

on occlusion area. As shown in Table 5, SCNet50 demonstrates

higher accuracy in segmenting strawberry when faced with occlusion

interference, particularly under the 20-50% occlusion area where its

mean IoU improves by 0.056 compared to ResNet50. Examples of the

segmentation results can be found in Figure 10.
3.3 Strawberry color feature extraction

We employ the approach outlined in Section 2.5 to extract the

color features of strawberries. By calculating the color mean of each

sub-region in each channel, we can observe the trends and
Frontiers in Plant Science 10
variations in these color features. The results are shown in

Figure 11. The ordinate in the figure represents the average pixel

value of the strawberry sub-region, and the abscissa from 0 to 5

represents the gradually increasing ripeness. With the change of

sub-regions R1 to R4, the color feature values in channels B, G, L

show an increasing trend at the same ripeness stage, and show a

decreasing trend in channels a and S. In addition, the color feature

values of the B, G, and L channels have similar trends with ripeness.

Among them, R1, R2, and R3 decrease with increasing ripeness,

while R4 gradually increases in the first three ripeness stages and

then gradually decreases in the last three ripeness stages. Channel a

and S have a gradual rise in overall. Among them, R4 gradually

decreases in the first three ripeness stages in the channel S, and the

latter three ripeness stages gradually increases. As the strawberry

ripeness increases, we observe a systematic change in the color

feature values of the different sub-regions across each channel. This

consistent pattern proves beneficial for the effective functioning of

subsequent classifiers.
3.4 Classification of strawberry ripeness

The classification results of strawberry ripeness are shown in

Table 6. From the perspective of each color channel, Channel a

achieves the highest classification accuracy when considered

individually. Among the classifiers, SVM shows the best

performance with an accuracy of 0.850. It can be easily explained

from Figure 11. The color feature values of Channel a increase with

the ripeness, indicating a strongest correlation and providing

favorable conditions for classifier judgment. In the combined
FIGURE 8

Model training loss and training error. SCNet50 is the backbone network with self-calibrated convolutions.
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channels, as the number of channels increases, the accuracy of the

LR and SVM classifiers gradually increase. However, in the KNN

classifier, BGa, GaS, BGaS, and BGLaS under the combination

channels have decreased accuracy compared to Ga. This shows

that the features of the B, S, and L channel have a certain

interference effect on the classification effect of KNN. In the RF

classifier, the results of GaS have decreased compared to Ga, and the

results of BGLaS have decreased compared to BGaS. This indicates

that the feature information from the S and L channels is redundant

for the classifier, and including this data dose not lead to an

improvement in performance. When all channels are combined,

SVM achieves the highest classification accuracy of 0.866,

demonstrating its effectiveness in handling high-dimensional data.

The classification performance of RF is second only to SVM, with

an accuracy of 0.861 achieved using the BGaS channel. The

inaccurate classification may be due to abnormal distribution of

surface color in some strawberries or the strawberries not being in a

downward fruit-hanging posture overall. These will cause outliers in

feature extraction, which will lead to wrong classification.

Figure 12. is the confusion matrix when RF and SVM

respectively obtain the best results. Except in Breaking (label 1)

and Turning-1 (label 2), SVM is better than RF. According to the

above analysis, SVM is selected as the suitable classifier.
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The final detection results of strawberry ripeness is visualized

(Figure 13). It is worth mentioning that the probabilities in the

results represent SVM classification probabilities. It is important

to mention that in the left image of the second row, there was an

undetected green strawberry. This is because it is not considered

in the model training and does not belong to any of the six

ripeness categories. Strawberries can be detected in both

frontlighting and backlighting environments, as shown in the

first row of images. Even under slight occlusions, as depicted in

the second row, the strawberry ripeness level can still be

successfully identified. However, in the right image of the first

row, the strawberry is severely occluded, and the instance

segmentation model failed to detect the strawberry, resulting in

the inability to recognize its ripeness subsequently. In the last

image, the same strawberry was detected twice, resulting in

duplicate detections. This is because the strawberry is occluded

by the stalk, and the instance segmentation model mistakenly

recognizes it as two instances, causing subsequent tasks to treat it

as two objects for processing. In general, the overall performance

of the model is largely affected by the segmentation performance.

When the first-stage segmentation model failed to detect or

misdetected objects, the model was unable to predict strawberry

ripeness, so the predictions could not be reversed.
B C DA

FIGURE 9

Strawberry segmentation results. The yellow rectangles indicate the area to be compared. (A) Ground truth. (B) Initial images. (C) ResNet50 results.
(D) SCNet50 results.
TABLE 4 The test results of instance segmentation model.

Model Backbone AP AP.50 AP.75 FPS

Mask R-CNN
ResNet50 0.898 0.958 0.937 19.4

SCNet50 0.937 0.979 0.969 18.2
frontiers
SCNet50 is the backbone network with self-calibrated convolutions.
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3.5 The effect of different sub-regions on
classification results

Table 7 is the classification results of strawberry ripeness

under the SVM classifier based on the color features of different

sub-regions. In terms of the single sub-regions’ effects, except for

the B channel, R3 consistently exhibits the highest classification

accuracy. In terms of the combination effects of sub-regions, as

the number of sub-regions increases, the feature information is

more diverse and comprehensive. Consequently, this leads to

enhanced classification accuracy for each single channel. In

order to further analyze the specific contributions of each sub-

region to different ripening stages of strawberries, we extracted

the color feature values under the combined channel BGLaS.

Subsequently, we utilized the SVM classifier to classify the

ripeness. The number of correct classification labels was

counted, as shown in Table 8. First of all, the sub-region with

the highest classification accuracy is R3, which is 68.15%. This is

consistent with the result that R3 in Table 7 basically maintains

the highest accuracy in a single channel. In the White stage, the
Frontiers in Plant Science 12
accuracy of R2 demonstrates the highest performance, while in

the Breaking and Turning-1 stages, the accuracy of R1 exhibits

the highest level of accuracy. The classification effect of Turning-

2 mainly depends on R3, which contributes the most to the

classification effect of this stage. Ripe and Full ripe both bring the

most obvious classification effect under R4.

The increase of strawberry ripeness is basically accompanied

by the continuous expansion of the surface red area from bottom

to top, as shown in Figure 14. During the early stages of

strawberry ripeness, the red area is small. The color change

primarily occurs in the lower half of the strawberry, while the

color of the upper half remains relatively unchanged. Therefore,

the color differences of White, Breaking and Turning-1 in the

sub-regions R1 and R2 are relatively large, which is conducive to

the judgment of the three ripeness levels. In the later stages of

strawberry ripening, the lower half of the strawberry basically

turns red, and the green area of the upper half gradually

diminishes. This color difference is also helpful in judging the

ripeness of Turning-2, Ripe and Full ripe. Therefore, when

considering Table 8, it becomes evident that R1 and R2 play a

significant role in determining the first three ripeness levels. On

the other hand, R3 and R4 exhibit greater influence in discerning

the last three ripeness levels. In Table 8, the accuracy of each sub-

region of the White stage is higher, because the whole surface of

the strawberry in the White stage is light green. No matter under

which sub-region, its color value is obviously different from

other stages.
3.6 Comparison of different
classification methods

To validate the superiority of the proposed feature extraction

method, we compared it with the common manual feature

extraction methods. Typical manual feature extraction methods

can be divided into two categories: 1) taking each pixel as a feature

value; 2) taking the pixel mean of the foreground target as a feature

value. Table 9 shows the classification results of different strawberry

color feature extraction method. Method 1 is to resize the

strawberry block cropped by the rectangular frame to 30×40,

while method 2 is to take the mean value of the segmented

strawberry foreground pixels as the feature value. Table 9 clearly

demonstrates that the accuracy of the proposed method is higher

than other methods across all channels. The highest accuracies of

method 1 and method 2 are 0.811 and 0.826, which are 0.055 and

0.040 lower than the proposed method respectively. Method 1

primarily emphasizes full-image pixel classification, placing

excessive emphasis on pixel position information. This approach

may result in inaccurate classification, particularly when dealing
B C DA

FIGURE 10

Segmentation examples under different occlusion areas. (A) Ground
truth. (B) occlusion strawberries. (C) ResNet50 results. (D) SCNet50
results.
TABLE 5 Mean IoU comparison of models under different occlusion areas of strawberries.

Model Backbone 0~20% 20~50%

Mask R-CNN
ResNet50 0.896 0.849

SCNet50 0.918 0.905
fro
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with horizontally arranged strawberries that undergo deformation

during the resizing process. Method 2 primarily emphasizes

foreground pixel classification and relies on the color mean value

as a classification feature. However, it overlooks pixel position

information, which ultimately results in inaccurate classification.

While the color feature extraction based on region segmentation in

the proposed method takes into account both the positional

information of the red region as it changes with ripeness and the

pixel-level information. Therefore, the proposed method can obtain

more informative features for strawberry ripeness classification.

The fruit ripeness classification based on CNN is also a widely

adopted method. Therefore, we conducted a comparison between

the proposed method and commonly used CNN models. The

parameter settings of CNN model training are consistent. The

learning rate and batch size are 0.001 and 16, respectively. The

model uses the SGD optimizer and iterates for 30 epochs to train the

parameters. The learning optimization strategy adopts the

MultiStepLR method, and the learning rate decays at the 18th,

24th, and 27th epoch respectively. Gaussian blur and horizontal flip

data augmentation are randomly performed on the image during
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training. The experimental results are shown in Table 10. Except

that the F1 score of the proposed method is lower than AlexNet and

ResNet18 in the Turning-1 and Turning-2 stages, the rest of the

ripeness stages show better classification results. The classification

error rate of the proposed method is primarily concentrated in the

Turning-1 and Turning-2 stages, because there are more

strawberries in transitional ripeness stages between Turning-1

and Turning-2 stages. Their features are very similar, which can

easily result in the classification results to swing between these

two stages.
4 Discussion

In this study, we have developed a method that combines Mask

R-CNN and region segmentation to accurately assess the ripeness of

strawberries in the field. The method proposed in this paper is

compared with existing research work (Table 11). In most cases,

managing strawberry planting, including monitoring fruit growth

status and predicting fruit yield, needs to be done in a natural
FIGURE 11

Variation trend of color feature values in strawberry sub-regions. 0 to 5 indicates increasing ripeness.
TABLE 6 Classification accuracy of different color channels.

B G L a S Ga BGa GaS BGaS BGLaS

LR 0.651 0.768 0.693 0.842 0.704 0.840 0.850 0.849 0.854 0.857

KNN 0.645 0.783 0.724 0.844 0.696 0.839 0.828 0.829 0.823 0.819

RF 0.622 0.791 0.705 0.846 0.659 0.860 0.860 0.856 0.861 0.849

SVM 0.639 0.770 0.710 0.850 0.697 0.854 0.863 0.859 0.863 0.866
front
Values in bold mean the highest classification accuracy under single channel and combined channel among all classifiers.
iersin.org

https://doi.org/10.3389/fpls.2023.1211830
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2023.1211830
environment rather than indoors. In earlier studies, the majority of

research was conducted within the confines of an indoor setting.

This highly structured environment allowed for greater control,

thereby facilitating the extraction of strawberry features and

subsequent analysis(Zhang et al., 2016; Indrabayu et al., 2019; Su

et al., 2021). Compared to the unstructured outdoor environment,

the complexity of lighting, background similarity to fruit,
Frontiers in Plant Science 14
overlapping fruit, and fruit occlusion by plants are some of the

uncertain factors that can pose a challenge (Yu et al., 2019; Pérez-

Borrero et al., 2020). The presence of these phenomena poses a

challenge in precisely segmenting the target fruit from the

surrounding environment, thereby impacting the subsequent

research work. The significant improvement of AP in Table 4 is

specifically reflected in the model’s miss rate of strawberries and the
BA

FIGURE 12

(A) RF confusion matrix. (B) SVM confusion matrix. 0 to 5 indicates increasing ripeness.
FIGURE 13

The visualization results of strawberry ripeness detection.
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integrity of the segmentation mask. Thanks to the unique

architecture of self-calibrated convolution, the model shows the

potential of greater adaptability in the face of complex

field environments.

Strawberries undergo a brief veraison period and mature

rapidly. By utilizing a more comprehensive categorization of
Frontiers in Plant Science 15
ripeness stages, fruit farmers can obtain precise information on

fruit growth, enabling them to efficiently seize crop management

opportunities such as topdressing and harvesting. In this study,

strawberries were categorized into six ripeness levels, providing

more comprehensive information on their ripeness than previous

studies. Due to the large similarity between some categories (such as
TABLE 7 Classification results of different sub-regions under single channel.

R1 R2 R3 R4 R3R4 R1R3R4 R2R3R4 R1R2R3R4

B 0.488 0.493 0.481 0.487 0.588 0.630 0.625 0.639

G 0.601 0.604 0.621 0.593 0.694 0.766 0.768 0.770

L 0.524 0.539 0.553 0.551 0.639 0.682 0.699 0.710

a 0.590 0.642 0.710 0.690 0.776 0.846 0.840 0.850

S 0.510 0.521 0.522 0.502 0.625 0.693 0.671 0.697
fr
TABLE 8 Contribution of different sub-regions to each ripeness stage.

Class (number) R1 R2 R3 R4

White (178) 172(96.63%) 174(97.75%) 169(94.94%) 164(92.13%)

Breaking (83) 62(74.70%) 61(73.49%) 51(61.44%) 46(55.42%)

Turning-1 (61) 41(67.21%) 36(59.02%) 26(42.62%) 1(1.64%)

Turning-2 (64) 1(1.56%) 21(32.81%) 37(57.81%) 26(40.63%)

Ripe (116) 28(24.14%) 43(37.07%) 74(63.79%) 89(76.72%)

Full ripe (149) 124(83.22%) 127(85.23%) 124(83.22%) 136(91.28%)

Total (672) 428(63.69%) 437(65.03%) 485(68.15%) 433(64.43%)
Values in bold mean the highest classification accuracy in each ripeness stage.
FIGURE 14

Examples of sub-regions at different ripeness levels.
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Turning-1 and Turning-2), it is difficult for the classifier to

distinguish them, which eventually leads to a decrease in the

overall accuracy (Table 10). This phenomenon is also evident in

other studies on fruit ripeness. (Saranya et al., 2021; Chen et al.,

2022). Categorizing strawberries into 2 to 3 ripeness levels enhances

the distinctiveness of their characteristics, facilitating the classifier’s

judgment and contributing to the high accuracy achieved in

previous studies (Habaragamuwa et al., 2018; Shao et al., 2020;

Raj et al., 2022). However, the rough ripeness classification will

make the strawberry interval span larger. This often leads to missed

opportunities for timely topdressing during the intermediate stages

of ripeness and the optimal timing for harvest under various sales

patterns towards the end of ripeness. We devised a color feature

extraction method that incorporates region segmentation, along
Frontiers in Plant Science 16
with a classifier tailored to the feature data, resulting in precise

classification of strawberries into six ripeness levels. The method we

proposed not only enables the completion of multi-category

ripeness distinction, but also ensures high accuracy. This provides

important technical support for the precise harvesting operation

of strawberries.
5 Conclusion

This study presents a fine recognition method for assessing

strawberry ripeness, with the objective of addressing the current

issue of coarse classification and emphasizing indoor experimental

investigations. It can provide more accurate decision support for
TABLE 9 SVM classification accuracy of different feature extraction methods.

B G L a S Ga BGa GaS BGaS BGLaS

Method 1 0.612 0.745 0.676 0.762 0.676 0.811 0.806 0.800 0.799 0.796

Method 2 0.520 0.692 0.614 0.786 0.561 0.800 0.812 0.821 0.821 0.826

Proposed 0.639 0.770 0.710 0.850 0.697 0.854 0.863 0.859 0.863 0.866
front
Values in bold mean the highest classification accuracy for each method.
TABLE 10 Test results of different classification methods.

Ripeness category
AlexNet ResNet18 Proposed

P R F1 Acc P R F1 Acc P R F1 Acc

White 0.94 0.99 0.96

0.848

0.99 0.93 0.96

0.856

0.98 0.98 0.98

0.866

Breaking 0.86 0.75 0.80 0.73 0.94 0.73 0.83 0.81 0.82

Turning-1 0.69 0.74 0.71 0.79 0.69 0.79 0.67 0.77 0.72

Turning-2 0.69 0.72 0.72 0.72 0.61 0.72 0.70 0.62 0.66

Ripe 0.77 0.81 0.79 0.78 0.81 0.78 0.82 0.84 0.83

Full ripe 0.93 0.87 0.90 0.92 0.93 0.93 0.95 0.93 0.94
ier
Acc means accuracy.
TABLE 11 Comparison of different ripeness identification methods.

Source Classes Environment Model Results

Zhang et al. (2016) 3 Laboratory SVM Accuracy: over 85%

Habaragamuwa et al. (2018) 2 Field DCNN AP: 88.03%, 77.21%

Indrabayu et al. (2019) 3 Laboratory SVM Accuracy: 85.64%

Shao et al. (2020) 3 Laboratory, Field PLS-DA, LS-SVM Accuracy: 91.7% ~ 96.7%

Su et al. (2021) 4 Laboratory
1D ResNet,
3D ResNet

Accuracy: 86.03%, 85.29%

Fan et al. (2022) 4 Field YOLOv5 Accuracy: over 90%

Raj et al. (2022) 3 Laboratory, Field SVM Accuracy: over 98%, 71%

Ours 6 Field Mask R-CNN,SVM Accuracy: 86.6%
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strawberry harvest management. The achievement of fine recognition

of strawberry ripeness in the field involves three stages. The first stage

is to detect and segment strawberries from images with a deep

learning model. We added self-calibrated convolutions to Mask R-

CNN to improve the network segmentation effect, and the final AP

and AP.50 were 0.937 and 0.979, respectively. The second stage is

strawberry color feature extraction. Firstly, to extract relevant

features, the change trend of feature values with ripeness was

analyzed, leading to the selection of channels B, G, L, a, and S for

feature extraction. Subsequently, the strawberry was divided into four

sub-regions, and the feature values of each region were individually

extracted under the aforementioned color channels. The third stage is

ripeness classification. The feature values were input into different

classification models for ripeness classification, and finally achieved

the best results in the SVM classifier. The classification accuracy of

SVM is 0.850 under single channel a and 0.866 under combined

channel BGLaS. Through additional experiments, it was observed

that sub-regions R1 and R2 primarily play a role in identifying

strawberry ripeness in the White, Breaking, and Turning-1 stages.

On the other hand, sub-regions R3 and R4 demonstrated significant

contributions in identifying strawberry ripeness in the Turning-2,

Ripe, and Full ripe stages.

In summary, the incorporation of self-calibrated convolutions

enhances the model’s robustness in field environments, leading to

improved segmentation outcomes for strawberries. Additionally,

the color feature extraction method based on region segmentation

effectively captures the distinctive feature information among

strawberries of varying ripeness levels, thus enhancing the

classifier’s ability to differentiate between strawberries at different

stages of ripeness. The research findings demonstrate that this

method can accurately identify multiple levels of ripeness for

strawberries in field conditions, thereby providing more effective

guidance for strawberry harvest management.
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