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The presence of lung metastases in patients with primary malignancies is an

important criterion for treatment management and prognostication. Computed

tomography (CT) of the chest is the preferred method to detect lung metastasis.

However, CT has limited efficacy in differentiating metastatic nodules from

benign nodules (e.g., granulomas due to tuberculosis) especially at early stages

(<5 mm). There is also a significant subjectivity associated in making this

distinction, leading to frequent CT follow-ups and additional radiation

exposure along with financial and emotional burden to the patients and family.

Even 18F-fluoro-deoxyglucose positron emission technology-computed

tomography (18F-FDG PET-CT) is not always confirmatory for this clinical

problem. While pathological biopsy is the gold standard to demonstrate

malignancy, invasive sampling of small lung nodules is often not clinically

feasible. Currently, there is no non-invasive imaging technique that can reliably

characterize lungmetastases. The lung is one of the favored sites of metastasis in

sarcomas. Hence, patients with sarcomas, especially from tuberculosis prevalent

developing countries, can provide an ideal platform to develop a model to

differentiate lung metastases from benign nodules. To overcome the lack of

optimal specificity of CT scan in detecting pulmonary metastasis, a novel artificial

intelligence (AI)-based protocol is proposed utilizing a combination of

radiological and clinical biomarkers to identify lung nodules and characterize it

as benign or metastasis. This protocol includes a retrospective cohort of nearly

2,000–2,250 sample nodules (from at least 450 patients) for training and testing

and an ambispective cohort of nearly 500 nodules (from 100 patients; 50
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patients each from the retrospective and prospective cohort) for validation.

Ground-truth annotation of lung nodules will be performed using an in-

house-built segmentation tool. Ground-truth labeling of lung nodules

(metastatic/benign) will be performed based on histopathological results or

baseline and/or follow-up radiological findings along with clinical outcome of

the patient. Optimal methods for data handling and statistical analysis are

included to develop a robust protocol for early detection and classification of

pulmonary metastasis at baseline and at follow-up and identification of

associated potential clinical and radiological markers.
KEYWORDS
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1 Introduction

The presence of lung metastases in patients with solid tumors is

considered as an important criterion to direct appropriate

treatment management and to further prognosticate. Computed

tomography (CT) is the standard of care to detect pulmonary

metastases and for staging of cancers (especially for intermediate-

or high-grade tumors). Indeterminate pulmonary nodules are a very

common finding and are often encountered in such clinical

scenarios. However, CT is not very appropriate in differentiating

metastatic nodules from benign nodules. This issue is even more

glaring in developing countries in Asia and Africa where

tuberculosis is highly prevalent, and it can be challenging, if not

impossible, to differentiate tubercular granuloma from metastatic

nodules. The benign and the malignant nodules, especially those at

early stages (<5 mm) show very close resemblance to each other and

there is a significant subjectiveness involved in making this

distinction, requiring frequent follow-up imaging. This leads to

increased financial and emotional burden over the healthcare

facility and patients as well as unnecessary radiation exposure to

patients. Even with the advent of 18F-fluoro-deoxyglucose positron

emission technology-computed tomography (18F-FDG PET-CT),

while extrapulmonary metastases may be additionally detected (1),

the lung nodule conundrum remains a clinical problem. This is

because not all metastatic nodules show FDG uptake on PET-CT,

and at the same time, active benign nodules such as granulomas

might show FDG uptake (1). In addition, small nodules (<5 mm)

cannot be reliably evaluated using 18F-FDG PET-CT. Hence,

currently there is no non-invasive imaging technique that can

reliably characterize the malignant potential of lung nodules.

Lung is one of the favored sites of metastasis in sarcomas and

62%–83% of patients present with lung metastases during their entire

disease course, with lung also being the most common site of relapse

(2–6). Among patients with sarcomas of extremity, approximately

20% of patients develop isolated pulmonary metastasis at some point

in their disease progression (2, 3). In patients who have multiple lung

nodules detected with CT, 73% are reported to be metastases (7, 8).
02
Hence, patients with sarcomas, especially those from low- to

medium-income countries (LMICs), can provide an ideal platform

to develop a model to differentiate metastases from benign nodules in

the lung. Various consensus clinical guidelines exist for defining

pulmonary nodules as metastatic. The Children Oncology Group

definition of evident metastatic disease differs according to sarcoma

type and is an area of constant evolution (9), which is left to the

discretion of the treating physician (9, 10). For the subcentimeter

lesions, optimal management remains unclear (11). The availability of

thin slice CT technology introduced further uncertainty by detecting

nodules <5 mm in diameter, thereby increasing the frequency of

positive tests (12). There is no accurate non-invasive modality to

determine the malignant potential of such smaller pulmonary

nodules, and invasive biopsy of these small nodules is often not

feasible. Moreover, in daily practice, overlapping radiologic features

of metastases are frequently encountered, which makes distinction

from other non-malignant pulmonary diseases difficult. For example,

osteosarcoma metastases may appear as benign calcified pulmonary

nodules, though as many as 40% of osteosarcoma lesions are not

calcified and unusual forms of metastasis are also observed (7, 13).

To overcome the lack of optimal specificity of CT scan in detecting

metastasis, it is imperative to develop a non-invasive imaging-based

computational model to differentiate pulmonary nodules between

benign and malignant etiologies. A lot of work has been reported for

the detection and classification of primary lung cancer using machine

learning (ML) and deep learning (DL) (14–20); however, predicting the

malignant potential of the lung nodules in clinical scenarios of possible

metastases from solid tumors is still an unmet need. Therefore, in this

protocol study, we are proposing to utilize ML/DL techniques to

identify lung nodules and develop a prediction model to characterize

them as benign nodules or malignant lungmetastases. The objectives of

the proposed protocol are as follows: (a) identification of clinical and

radiological markers for differentiation of lung metastases from benign

lung nodules; (b) training and testing of classification model for lung

metastases using retrospective training cohort; and (c) clinical

validation of the developed classification model using both

retrospective and prospective validation cohort.
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2 Methods and analysis

2.1 Literature review on application of
machine learning- and deep learning-
based techniques for lung nodule
characterization

Numerous studies have been reported for classification of

primary lung cancer and benign lung nodules using ML/DL

techniques (14–20). Extraction of effective discriminative features

for lung nodule characterization is challenging due to complex

anatomical structures in thoracic CT images. Many reported

methods have shown improved classification performance toward

this direction, and strategically, these methods can be categorized

into two groups: traditional ML-based methods using feature

engineering and DL-based methods.

The former methods employ feature engineering to extract

various handcrafted features, like size, shape, margin, intensity,

and statistical textural features in ROIs; next, identify effective

discriminating features applying feature selection strategies (21,

22) and finally develop a classification model using ML algorithms,

viz., logistic regression (LR), support vector machine (SVM), K-

nearest neighbors (KNN), random forest (RF), linear discriminant

analysis (LDA), deep neural network (DNN), and Adaboost (14–

17). Various shape, margin, intensity, and textural features using

GLCM in 2D axial plane and 3D volume of lung nodule (23–28),

textural features using phylogenetic diversity (25), and wavelets (29,

30) were used to classify malignant and benign lung nodules using

SVM, LDA, DNN, and naïve Bayes classifiers. Textural features

using local binary pattern (LBP) and discrete cosine transform were

extracted and used to train SVM and KNN models for lung nodule

characterization (31). Shape, intensity, statistical textural features

using GLCM, Gabor filters, and LBP were used to train RF models

to classify lung nodules as malignant and benign (32, 33), and SVM,

KNN, and LR models were used to classify different nodule types

like solid, semi-solid, and ground-glass, respectively. A comparative

study evaluating various ML models showed that an ensemble

classifier combining SVM and RF produced the best classification

performance for malignant nodules compared to KNN, LDA, and

AdaBoost using shape, size, and texture-based features (34).

Similarly, morphological and statistical features were applied to

an ensemble of three classifiers utilizing multilayer perceptron

(MLP), KNN, and SVM to classify benign or malignant lung

nodules (35).

While handcrafted features need expert domain knowledge for

pulmonary CT images, DL does not require explicit features

extraction; it reveals intrinsic structural properties in input data

by applying brain-inspired computing and has showed notable

improvement in medical image analysis (18–20). Various

frameworks based on convolutional neural networks (CNNs)

have been developed for lung nodule detection and an elaborated

review can be found in Refs (36–39). Applying reinforcement

learning, region proposal network (40), faster region-based CNN

(41), various advanced CNN models (42–45), and ensemble

learners using multiple CNN models (46) have been designed for

lung nodule detection and false-positive reduction. CNN-based
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dense convolutional binary-tree networks (47) and spatial

pyramid dilated network (48) were developed to derive useful

features from image data to discriminate malignant pulmonary

nodules from benign nodules. Optimal Ensemble framework

combining multiple CNN models using ResNet, AlexNet,

DenceNet, InceptionNet, and SqueezeNet (49–53), transfer

learning-based system (54–57), and hybrid CNN-based system

(58–62) have been reported for classifying malignant and benign

lung nodules. A research group proposed multi-view collaborative

deep CNN models for incorporating prior knowledge about the

association of nodule’s malignancy and its heterogeneity (49) and

further showed learning from ambiguous labels for more accurate

lung nodule malignancy prediction (51). 3D Deep CNN and SVM

with multiple kernel learning algorithms was proposed to fuse the

DL features with clinical information for lung nodule diagnosis

(61). 3D CNN and RF were used to combine CT imagery with

biomarker annotation and volumetric radiomics features for lung

nodule malignancy prediction (62). CNN with adaptive

morphology and textural features (63), 3D segmentation attention

network-based systems integrating asymmetric convolution with a

gradient boosting machine (64), and 3D non-local network-based

systems incorporating channel attention and adaptive network

growth algorithm (65) were reported for lung nodule

classification. Lung nodule classification was performed using

features learned from two deep 3D customized mixed link

network with gradient boosting machine (66). Studies have shown

improved classification accuracy for malignant nodules using

optimal deep feature selection from different CNN-based

convolution layers and fusion of the deep features for the final

classifier (67–69). A multi-scale cost-sensitive neural network was

proposed to mitigate the issue of insufficient labeled data and class

imbalance (70). A soft activation mapping-based method meta-

learning scheme was reported for interpretable lung nodule

classification (71) and a meta ordinal set was further generated by

the same research group by developing meta ordinal weighting

network to explore the ordinal relationship between the data for

lung nodule classification (72). Recently, DL models based on

transformers (73, 74) or combined with CNN and transformers

(75, 76) have been successfully applied for lung nodule detection

and classification. A self-supervised region-based 3D transformer

model was developed to identify lung nodules among a set of

candidate regions (73). A local focus scheme was incorporated into

a deformable dilated transformer to develop a multi-granularity

dilated transformer to focus on the more discriminative local

features to classify lung nodules in CT scans (74). TransUnet was

developed based on the transformer to encode feature

representations of input CT scans and the Unet network to

decode the hidden feature for outputting the final classification

results (75). Res-Trans was developed using convolutional

operations to extract local features and transformer blocks with

self-attention to capture global features (76).

Few research gaps have been identified from the above literature

survey for lung nodule characterization. Firstly, all the studies

reported development of detection and classification models for

primary lung cancer nodules, while characterizing metastatic lung

nodules, which are also prevalent among patients with various
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primary cancers, have not or rarely been explored. Secondly, it has

been observed that clinical features, which are also informative for

lung nodule characterization (6, 77, 78), have not been utilized by

most of the reported ML and DL methods. Thirdly, temporal

changes in lung nodules during treatment, which may be

captured by radiological and/or radiomics features from follow-

up CT scans and might be useful for predicting malignancy at early

stage, have not been considered by the earlier studies. Fourthly,

most of the studies have used publicly available retrospective

thoracic CT datasets for training and validation of the proposed

models; however, prospective datasets may be better suited to test

the generalizability of the model’s performance. These issues have

been addressed in the current study protocol.
2.2 Study design

It is an ambispective cohort study with a retrospective training

cohort and a prospective validation cohort. Patients with bone and

soft tissue sarcomas who registered for treatment between January

2011 and December 2023 in the Medical Oncology Clinic of Dr.

B.R.Ambedkar Institutional Rotary Cancer Hospital (IRCH), All

India Institute of Medical Sciences (AIIMS) New Delhi, India will

be included in this study. CT scans at baseline and follow-up with

the presence of lung nodules and clinical data available in

institutional databases will be used as training and testing datasets

for the proposed classification model. For the validation cohort,

patients with bone sarcomas and soft tissue sarcomas will be

prospectively recruited from the Medical Oncology Clinic of Dr.

B.R.A. IRCH, AIIMS New Delhi, India and these prospectively

performed CT scans and prospectively collected clinical data will be

used for the validation of the proposed classification model.
2.3 Sample size

For a two-class classification problem, considering a group ratio

of 1:1, to achieve an area under the receiver operating characteristics

curve of 0.8 with a 20% absolute error margin in a two-sided 95%

confidence interval, a minimum of 34 samples will need to be

investigated. However, for supervised learning models, studies have

shown that increasing sample size beyond 1,000/class demonstrated

no further significant improvements in the overall classification

accuracy (79). For any patient, each annotated nodule in the lung

will serve as a sample in the training/testing process during model

development. In the proposed model, CT scans of a minimum of

500 patients will be used retrospectively, and considering an average

of 5 nodules (range: 1–10) per CT scan, a minimum of ~2,500

samples of lung nodules will be annotated. For validation of the

proposed model, CT datasets of a minimum of 50 patients will be

prospectively collected. For the development of the proposed

prediction model, retrospective CT datasets will be analyzed, and

for validation of the proposed model, both retrospective and

prospective CT datasets will be analyzed. A total of 2,000–2,250

sample nodules from at least 450 patients from the retrospective

cohort will be used for training and testing the prediction model for
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characterizing lung metastases of sarcoma. Nearly 250 nodules from

50 patients from the retrospective cohort and 250 sample nodules

from 50 prospective cohorts comprising a total of 500 nodules will

be used exclusively for validating the proposed prediction model.
2.4 Data collection

Patients with bone and soft tissue sarcomas who registered for

treatment during January 2011 to December 2023 in the outpatient

department (OPD) of Dr. B.R.Ambedkar IRCH, AIIMS New Delhi,

India will be considered for inclusion in this project.

Inclusion criteria for the retrospective cohort (registered during

January 2011–December 2021) will be as follows: (a) patients with

biopsy-proven bone or soft tissue sarcoma and (b) having lung

nodule(s) in the chest CT scan at the time of presentation or in the

course of treatment. Exclusion criteria for the retrospective cohort

will be as follows: (a) patients who could not be adequately followed

up and decision about lung nodule(s)’s malignancy could not be

reached and (b) patients did not undergo chest CT scan in the

course of treatment.

For the prospective cohort (registered during January 2022–

December 2023), inclusion criteria will be as follows: (a) patients

with biopsy-proven bone or soft tissue sarcoma and (b) having lung

nodule(s) in the chest CT scan at the time of presentation. Exclusion

criteria for the prospective cohort will be as follows: (a) patient did

not undergo CT scan in the course of treatment, (b) patients whose

CT scan could not be retrieved, (c) refusal for informed consent,

and (d) patient for whom decision about the nature of the lung

nodule(s) could not be reached within the follow-up time. For the

prospective cohort, follow-up time will be at least 1 year or till

dropout due to death or other reason, whichever is earlier.

For the development of the proposed classification model, a

retrospective dataset of patients who registered during 2011–2018

will be used. For validation, a retrospective dataset of patients who

registered during 2019–2021 and a prospective dataset of patients

who will be recruited during 2022–2023 in the Medical Oncology

Clinic of Dr. B.R.Ambedkar IRCH, AIIMS New Delhi, India will

be used.
2.5 Ground-truth annotation and labeling
of lung nodules

2.5.1 Ground-truth region of interest for lung
nodule

Conventionally, the demarcation of ground-truth region of

interest (ROI) for lung nodules is performed by an expert

radiologist by freehand manual drawing of ROI on CT scan using

annotation software after thoroughly scanning the whole CT slices.

As manual annotation tasks are very tedious and time-consuming

for radiologists and due to severe workload and increased number

of scans, radiologists’ decision-making may suffer from human

error and inter- and intra-observer subjectivity. To mitigate these

challenges, a semiautomated segmentation of lung nodules

requiring only a minimal human input has been developed in-
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house at the Center for Biomedical Engineering, IIT Delhi, India.

Using the developed semi-automated segmentation tool,

demarcation of ground-truth ROI for lung nodules has been

initiated under the Department of Radiodiagnosis, AIIMS,

Delhi, India.

The developed lung nodule segmentation algorithm is based on

the region-growing method and morphological image processing

algorithms. It requires only manual input for selecting a seed-point

inside the nodule on a CT image and then performs automatic

segmentation of the nodule across the slices of the CT image.

The algorithm is capable of automatically segmenting out the lung

nodules having different shapes, sizes, locations, and characteristics

like solitary, juxta-pleural, ground-glass, and juxta-vascular nodules

and has shown promising results in limited datasets of 50 patients

for initial assessment. This segmentation tool will be used by the

radiologists for ground-truth annotation of lung nodules. Examples

of segmentation results for lung nodules using the developed

algorithm are shown in Figure 1. This segmentation will be

verified by two expert radiologists with 12 and 20 years of

experience, respectively. Any disagreements will be resolved by

mutual discussion to build a consensus.

2.5.2 Ground-truth labeling of lung nodule as
metastatic or benign

Ground-truth labeling of lung nodules as metastatic or benign

in CT scans will be performed based on a biopsy report if available
Frontiers in Oncology 05
or consensus decision depending on the clinical outcome of the

patient and/or radiological changes in follow-up scans as

summarized in Figure 2. At baseline imaging (prior to

administration of chemotherapy), if consensus opinion at baseline

suggests that the nodule can be clearly labeled as benign (no known

malignancy, presence of calcification within the nodule in a patient

with non-osteogenic sarcoma, history of tuberculosis, and presence

of other features of tuberculosis), it will be labeled as benign. The

label assigned at benign will be revised on the basis of follow-up

imaging. After 6–12 months, if a lung nodule designated as benign

at baseline remains stable, then it is assigned a definitive label of a

benign lung nodule. On the other hand, if a lung nodule designated

as malignant at baseline shows a size reduction after 6–12 months

without undergoing chemotherapy, it is also assigned a definitive

label of a benign lung nodule. If a malignant lung nodule at baseline

shows a size reduction after chemotherapy or shows a size increase

with or without chemotherapy, it is assigned a label of malignant

lung nodule after 6–12 months. In contrast, if a malignant nodule at

baseline remains stable during the next 6–12 months with or

without chemotherapy, it is considered as a stable nodule and

observed over the next 2–3 years for any change in size. If the size of

the stable nodule continues to be stable over this time with or

without chemotherapy, it is concluded as a benign nodule, likely

granuloma. If the size of the stable nodule changes after 2–3 years

whether being treated with chemotherapy or not, it is concluded

as malignant.
FIGURE 1

Segmentation results (red overlay) of lung nodules for a representative patient (25 years, male) with sarcoma.
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2.6 Workflow

The proposed study is composed of the following steps and

summarized in the flowchart in Figure 3:

a) Retrospective data collection

Screening of available retrospective CT scans and clinical data

of soft tissue sarcoma and bone sarcoma patients with known

clinical follow-up details registered at Dr. B.R.Ambedkar IRCH,

AIIMS New Delhi, India, between January 2011 and December

2021 will be performed. We anticipate that datasets of at least 500

patients will be collected.

b) Prospective data collection
Frontiers in Oncology 06
For validation of the proposed model, CT scans and clinical

data of nearly 100 patients will be prospectively collected at Dr.

B.R.Ambedkar IRCH, AIIMS New Delhi, India between January

2022 and December 2023.

c) Ground-truth preparation

Ground- truth annotation and collation of all individual CT

scans at baseline and follow-ups will be performed using the in-

house semi-automated lung nodule segmentation tool (Figure 1).

Ground-truth labeling of lung nodules as metastatic or benign will

be performed using histopathological results of biopsy or

metastatectomy (if available) or will be based on multi-

disciplinary opinion based on baseline and/or follow-up
FIGURE 3

Flowchart of the proposed study protocol.
FIGURE 2

Decision rule for malignant lung nodules depending on patient outcome and/or radiological changes.
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radiological findings along with the clinical outcome of the

patient (Figure 2).

d) Radiological feature extraction

Radiological characteristics of lung nodules will be reviewed on

CT scans at baseline and follow-up and relevant features like (i)

nodule size, (ii) nodule position, (iii) change of size during follow-

up, (iv) types of calcifications, (v) air bronchogram, (vi)

surrounding ground-glass opacity, (vii) surrounding fibrosis, (viii)

no feeding vessel sign, and (ix) bilaterality will be captured

and analyzed.

Extraction of various radiomics features from the annotated

ground-truth lung nodules will be performed to train the proposed

classification model for identification of lung metastasis. The

radiomics features consist of the following: (i) shape-based

features, (ii) first-order textural features from histogram, (iii)

second-order textural features from gray-level cooccurrence

matrix (GLCM), and (iv) higher-order textural features from

neighborhood gray-tone difference matrix (NGTDM) and run

length matrix (RLM) will be evaluated. A detailed tentative list of

radiomics features is listed in Table 1. Studies have shown that

handcrafted features from tissues surrounding the lung nodule

provide global representation of nodule CT images and can be

informative for lung nodule characterization (80, 81). Therefore, the

radiomics features in lung parenchyma surrounding the lung

nodule will also be evaluated and analyzed. Temporal changes in

semantic radiological and radiomics features in lung nodules will be

evaluated from follow-up CT images (if available) during treatment

and will be used along with baseline features. CT data are

intrinsically dependent on the protocol acquisition parameters
Frontiers in Oncology 07
and pixel values in CT data are directly related to the physical

characteristic of the tissues having different linear attenuation

coefficients. Therefore, harmonization processes will be applied

on extracted radiomics features to make them independent of

scanner-specific parameter dependencies.

e) Clinical features

The historical records of the eligible patient cohort will be

reviewed, and all the relevant clinical details including demographic

profile, histological variants, treatment details, and disease

outcomes will be captured and analyzed. Data pertaining to the

following clinical characteristics and laboratory parameters at

baseline will be included: (i) age at the time of diagnosis, (ii)

gender, (iii) histologic subtype of sarcoma (osteosarcoma,

primitive neuroectodermal tumor, or soft tissue sarcoma), (iv)

histological grade, (v) site of primary disease, (vi) the presence of

metastases to other sites, (vii) symptom duration prior to

presentation, (viii) performance status, (ix) hemoglobin, (x) total

leucocyte count (TLC), (xi) platelet count, (xii) serum lactate

dehydrogenase (LDH), (xiii) serum alkaline phosphatase (ALP),

(xiv) serum C-reactive protein (CRP), and (xv) serum albumin. The

baseline factors may aid in estimation of the disease burden and the

likelihood of lung metastases. In addition, details pertaining to

chemotherapy and local site therapy modalities received (surgery

and/or radiotherapy) including the timeline of receipt, therapeutic

responses, and event-free survival (EFS) and overall survival (OS)

will be collected. The radiological changes in the lung nodules will

be assessed in the context of the timeline of therapy received and

clinical responses to therapy. The degree of clinician suspicion for

lung metastases based on retrospective file review will be mentioned
TABLE 1 List of radiomics features to be evaluated for lesion identification, characterization, diagnosis, monitoring prognosis or predicting outcome
of patient.

SN Radiomics Features Description if any for easy understanding or describing importance of
feature

Methods Features

1

Shape

Volume Volume in 3D

2 Eccentricity
Measure of aspect ratio, which is the ratio of the length of the major axis to the length of
minor axis.

3 Axis of least inertia
It is defined as the line for which the integral of the square of the distances to points on the
shape boundary is a minimum. It is unique to the shape.

4 Euler number
The difference between the number of contiguous parts and the number of holes on a
shape.

5
Minimum bounding
rectangle

Smallest rectangle that contains every point in the shape.

6 Circularity ratio The ratio of the area of a shape to the area of a circle having the same perimeter.

7 Convexity The ratio of perimeters of the convex hull over that of the original contour.

8 Solidity The extent to which the shape is convex or concave.

9

Histogram

Mean Average intensity of image

10 Variance Contrast in intensity levels present in the image

11 Skewness Measure of the asymmetry of histogram with respect to mean

12 Kurtosis Measure of relative flatness and shape of histogram

(Continued)
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as “high”, “unclear”, or “low”. Clinical high suspicion of metastases

is based on the progressive size of lung nodules in patients along

with documented clinical deterioration or death or change of line of

therapy. The degree of radiologist suspicion based on routine

radiological findings will be mentioned separately by the

radiologist. If there is a discrepancy between the two, a

multidisciplinary discussion between the radiologist and the

clinician will be carried out to reach a consensus. The ground
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truth as to whether the patient has lung metastases or not on

imaging will be mentioned subsequently. For this study, OS will be

defined as the time from treatment initiation till death from any

cause. EFS will be defined as the time from treatment initiation till

disease relapse/progression or death from any cause.

f) Feature selection

Dimensionality and redundancy reduction and identification of

potential radiological and clinical feature(s) will be performed for
TABLE 1 Continued

SN Radiomics Features Description if any for easy understanding or describing importance of
feature

Methods Features

13 Energy Measure of uniformity; maximum value is 1 for constant image

14 Entropy Measure of variability; minimum value is 0, for constant image

15

Gray-Level Cooccurrence Matrix
(GLCM)

Energy Measure of image homogeneity

16 Contrast Measure of local image variation

17 Entropy Measure of randomness of gray levels

18 Homogeneity Measure of local homogeneity

19 Correlation Measure of image linearity

20 Sum average Measure of overall image brightness

21 Variance Measure of spread of gray-level distribution

22 Dissimilarity Measure the coarseness in image

23 Autocorrelation Measure the repetitive nature of the texture primitive

24

Neighborhood gray-tone
difference matrix (NGTDM)

Coarseness Measure spatial rate of change in intensity, thus measure the level of coarseness.

25 Contrast Measure intensity difference between neighboring regions

26 Busyness Measure the rapid changes of intensity from one pixel to its neighboring regions

27 Complexity Measure the rapid spatial changes in intensity

28 Strength Measure the boldness or distinctiveness of the texture primitives

29

Gray-level run length method
(RLM)

Short Run Emphasis (SRE) Measures the distribution of short runs and is expected large for fine textures

30 Long Run Emphasis (LRE) Measures distribution of long runs and is expected large for coarse structural textures

31
Gray-Level Nonuniformity
(GLN)

Measure the gray-level nonuniformity

32
Run Length Nonuniformity
(RLN)

Measure the nonuniformity of the length of runs

33 Run Percentage (RP) Measures the homogeneity and the distribution of runs of an image in a specific direction.

34
Low Gray-Level Run
Emphasis (LGRE)

Measures the distribution of low gray-level values

35
High Gray-Level Run
Emphasis (HGRE)

Measures the distribution of high gray-level values

36
Short Run Low Gray-Level
Emphasis (SRLGE)

Measures the joint distribution of short runs and low gray-level values.

37
Short Run High Gray-Level
Emphasis (SRHGE)

Measures the joint distribution of short runs and high gray-level values.

38
Long Run Low Gray-Level
Emphasis (LRLGE)

Measures the joint distribution of long runs and low gray-level values.

39
Long Run High Gray-Level
Emphasis (LRHGE)

Measures the joint distribution of long runs and high gray-level values.
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training the proposed model. Feature selection methods like

Fisher’s score, Lasso regularization, RF importance, and Recursive

feature elimination will be applied on radiological and clinical

feature sets separately for evaluating the importance of the

features for the classification task and the final feature selection

will be performed as the requirement of the training algorithm.

g) Machine learning/deep learning models for detection and

classification of metastatic lung nodule

A number of studies have been reported for the classification of

benign and malignant lung nodules using ML/DL techniques in

primary lung cancer (14–20); however, classification of metastatic

lung nodule using artificial intelligence (AI) has been rarely

addressed. Various ML-based classification models for primary

lung cancer have been reported, while SVM (23–25, 27, 29, 31,

34, 82) was applied mostly along with the other ML technologies

like LR (82), KNN (31, 35, 82), RF (32, 33), LDA (27, 34), DNN (28,

30), and Adaboost (34). DL-based frameworks based on CNNs have

been developed for lung nodule detection (36). Various advanced

CNN models (41–45) and ensemble learners using multiple CNN

models (46, 49–53), transfer learning-based systems (54–57), and

hybrid CNN-based systems (58–62) have been reported for

classifying malignant and benign lung nodules. CNN with

adaptive morphology and textural features (63), deep feature

selection from different convolution layers (67–69), and 3D

segmentation attention network-based systems (64, 65) were

reported for lung nodule classification. Recently, DL models based

on transformers (73, 74) along with CNN (75, 76) have reported

promising results for lung nodule detection and classification.

The plan in the current protocol is to train the proposed model

using CT datasets of nearly 450 patients from a retrospective cohort.

The aim is to detect and classify the metastatic lung nodules at baseline,

i.e., even before commencement of treatment and at follow-up. A

separate analysis will be carried out to train the classification model to

predict the metastasis even for the smaller nodule (<5 mm) at its very

early stage. For the classification model, ML-based algorithms like (i)

multivariate LR, (ii) SVM, (iii) LDA, and (iv) RF and DL-based

frameworks like (i) transformers with CNN, (ii) 3D CNN (CNN),

(iii) recurrent CNN, and (iv) Spatial pyramid Pooling CNNs will be

tested and validated. After features selection, relevant radiological

features and relevant clinical features will be used separately and in

combination to train the ML-based algorithms. For each ML

algorithm, three separate training models will be prepared using (i)

selected radiological features, (ii) selected clinical features, and (iii)

selected radiological and clinical features in combination. For ML

model training data normalization, data noise reduction and

regularization techniques like ridge regularization and lasso

regularization with k-fold cross-validation will be applied as

applicable for the model to avoid overfitting and maintain

generalizability of the model. The prediction accuracies of different

training models for all ML-based algorithms will be compared to

identify the best-performing prediction model. For DL-based models,

convolutional layers will be used to extract the features from the labeled

CT images, then the clinical features will be concatenated with the

extracted features vectors from convolutional layers, which will be

further feed to the fully connected layers to train the prediction model.

Appropriate hyper-parameters like learning rate, dropout, batch size,
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loss function, momentum, and optimizer will be applied during DL

model training. Data augmentation is an important step to overcome

insufficiency of labeled data, prevent overfitting, and increase the

training accuracy of a DL model. Many literatures reported that use

of geometric transformations (55, 60, 65, 76, 83), kernel filtering, color

and noise augmentation (50), and Generative Adversarial Networks

(84, 85) for augmenting pulmonary CT data improved the accuracy for

lung nodule characterization. Data augmentation may introduce

inconsistency among data distribution between training and test

data. To refine the trained model and maintain the model accuracy,

the DL model will be trained on augmented data first, followed by data

without any data augmentation. Prediction performance of applied

DL-based techniques will be compared to determine the optimal

prediction model balancing computational cost and accuracy. For

ML-based model implementation, MATLAB® (MathWorks Inc.,

v2018, Philadelphia, USA) and Python version 3.9 (Python Software

Foundation, https://www.python.org/) will be used, and for DL-based

model development, programming environments PyTorch (https://

pytorch.org/), TensorFlow (https://www.tensorflow.org/), and Keras

(https://keras.io/) will be used.

h) Identification of potential marker(s) for lung metastases

The proposed model will be able to identify the potential clinical

and/or radiological marker(s) for classifying the metastatic lung

nodules from benign ones. The proposed prediction model for

detecting lung metastases will be developed and tested for clinical

and radiological marker(s) separately and in combination, and the

importance of both in combination will be determined. This will

help to improve the model performance, reducing the misdiagnosis

and false-positive results particularly for the early-stage smaller

metastatic lung nodules.

i) Validation

The validation of the proposed ML/DL-based prediction model

will be performed using retrospective as well as prospective clinical

and CT datasets of a total of 100 patients, 50 patients each from the

retrospective and prospective cohort.
2.7 Statistical analysis

a) Student’s t-test will be used for continuous variables and the

Chi-square test will be used for categorical variables. A p-value of

<0.05 will be taken as significant.

b) Dimensionality reduction and identification of unique features

to train the classification model for lung metastasis detection.

c) ML methods to identify independent radiological and clinical

feature(s) as markers of lung metastases.

d) ROC curve analysis will be used to find which feature or

combination of features would best classify the lung metastases

from the other existing benign lung nodules.

e) True-negative and true-positive rate, positive predictive value

or precision, recall, F score, and average false-positive rate per patient

will be used to evaluate the performance of the proposed models.

Data analysis and development of an ML-based classification

model for lung metastases detection will be performed at the

laboratory facility of the Centre for Biomedical Engineering, IIT

Delhi, India.
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3 Discussion

The identification of metastatic disease at presentation is vital to

the clinician since the expected prognosis and treatment outcomes

are different in metastatic disease from that in localized disease.

Furthermore, it allows the clinician to decide the intent of treatment

with greater clarity. Thus, determining the nature of lung nodules in

a clinical scenario of possible pulmonary metastases is of

great importance.

Out of all the medical imaging techniques, CT is considered to be

one of the most effectivemeans of detecting lung cancer early (86, 87).

Clinicians need to diagnose malignant nodules accurately by reading

the patient’s lung CT image; however, reading a large number of CT

images is not only time-consuming, and there is also a high

probability of misdiagnosis. There has been a lot of research work

done regarding the differentiation between benign and malignant

solid lung nodules. Lung nodules can be evaluated according to

diameter, area, or volume. Results from the literature agreed that

volume measurement is a method with a better performance in

nodule sizing, as well as in assessing the nodule’s growth (88). Mehta

et al. (89) added volumetric nodule measurement to an existing

prediction model for malignancy estimation of nodules, showing an

improvement in the number of nodule classification. There are a

number of other factors like tumor image intensity, shape, and

texture that help in determining probability of malignancy in lung

nodules (90–97). When evaluating individuals with lung nodules, the

probability of malignancy is estimated on the basis of patient-related

clinical factors like primary tumor grade, tumor size, and histology

type (6, 78) and nodule characteristics, including size (77). As regards

morphological characteristics of nodules, besides small size, diffuse,

central, laminated, or popcorn calcifications, fat tissue density and

perifissural location have been recognized as indicative of benign

lesions. It has been found that pleural tags and contour may be

identified as independent predictors of pulmonary metastases (98) or

higher mean attenuation and larger diameter are significant

predictors for pulmonary metastases, while higher mean

attenuation is a significant predictor for small non-calcified

pulmonary metastases (99). Studies have reported that radiological

semantic features like lobulation, spiculation, subtlety, calcification,

and texture were relevant along with automatically calculated image-

based radiomics features for malignancy classification of pulmonary

nodules, which is found to be in line with current clinical practice (83,

100). Inspired by the aforementioned work, in this study, both

semantic radiological and clinical features of lung nodules will be

combined with radiomics features to develop the proposed

classification ML/DL predictive model for metastatic lung nodule

detection. Harmonization of radiomics features is an important

aspect to obtain standardization and reproducibility of the

developed model. In this study, extracted radiomics features will be

harmonized by the methods following the recent studies (101–104)

as applicable.

ML/DL has achieved a series of satisfactory results in the field of

medical imaging, and it also has made great progress in the detection

and classification of lung nodules (14–20) and the prediction of nodule

growth (105, 106) using ML/DL techniques in primary lung cancer.

However, there has been a dearth of work reported on detection of
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lung metastases. There is no accurate non-invasive modality available

to determine the malignant potential of a smaller (<5 mm) pulmonary

nodule. Furthermore, functional imaging like 18F-FDG PET/CT scans

are also not sensitive for lesions <1 cm. Because this ML/DL-based

system will be trained using thousands of lung scans, it will be

optimized to detect tiny malignant areas that specialists might

overlook in the daily busy clinical routine. On successful completion

of the project, the proposed model might be capable of assisting the

radiologist to make a diagnostic decision combining the radiological

screening with clinical data. The proposed classification model may

shift the current clinical practice paradigms by utilizing novel non-

invasive radiomics features of CT in combination with ML/DL

techniques for characterizing indeterminate lung nodules in the

patients with sarcomas. A working model for accurate detection of

lung metastases may be effectively applicable for patients with different

kinds of primary malignancy as well, especially those with predilection

for lung metastases. Early detection of metastatic disease may help in

planning personalized treatment protocol and may improve the

OS rate.

The strength of the proposed study design is in analyzing an

ambispective cohort with separate derivation and validation cohort

to develop the proposed prediction and classification model.

Moreover, combining radiological features and clinical features

with various radiomics textural features may reduce the false-

positive rate and help to produce a robust model. Furthermore,

information about temporal changes in lung nodules during anti-

cancer treatment will also be included into the feature map that will

aid the prediction of the malignant potential of lung nodules. In

addition, a number of ML and DL algorithms or a hybrid model

combining both techniques will be implemented and tested to

deliver an optimal performance.

There are few limitations in the proposed study. For

demarcation of lung nodules in CT scans, an in-house-built

segmentation tool has been used that has been tested on a limited

number of 50 patients; however, the accuracy of the tool will be

further evaluated in due course as larger data will be tested on the

project. This project is multi-institutional and will be facilitated and

carried out under AIIMS New Delhi and IIT Delhi in India.

Retrospective and prospective datasets of patients with sarcoma

will be collected from the institutional database at AIIMS New

Delhi. In the future, a multi-institutional dataset may be considered

for further improvement of the developed model. A comparison

between limited ML and DL classification models will be performed

for evaluating best performance; however, there might be a large

number of ML/DL-based algorithms that need to be considered.
4 Ethics and dissemination

The ethical approval for the use of retrospective data and collection

of prospective data of the patients with sarcomas has been obtained

(IEC-234/09.04.2021, RP-03/2021) from the Institute Ethics

Committee, AIIMS New Delhi, India. The details of data acquisition,

processing, and sharing along with risks and benefits for participating

in the study will be explained to all the patients before recruitment to

the proposed project. Detailed patient information sheets written in
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English and Hindi (regional) languages have been reviewed and

approved by the Institutional Ethics Committee.

The proposed study challenges and seeks to shift the current

clinical practice paradigms by utilizing novel non-invasive

radiomics features of CT combined with physiological symptoms

and clinical biomarkers. As a result, misdiagnosis and false-positive

rate might be reduced along with reduction in the total number of

follow-up CT scans, which will subsequently reduce the time, cost,

anxiety, and radiation exposure of the patients. Upon validation, the

proposed model will be deployed in the local hospital settings and

will be applied in the routine treatment protocol.
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