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Introduction: Identifying significant sets of genes that are up/downregulated
under specific conditions is vital to understand disease development
mechanisms at the molecular level. Along this line, in order to analyze
transcriptomic data, several computational feature selection (i.e., gene
selection) methods have been proposed. On the other hand, uncovering the
core functions of the selected genes provides a deep understanding of diseases. In
order to address this problem, biological domain knowledge-based feature
selection methods have been proposed. Unlike computational gene selection
approaches, these domain knowledge-based methods take the underlying
biology into account and integrate knowledge from external biological
resources. Gene Ontology (GO) is one such biological resource that provides
ontology terms for defining the molecular function, cellular component, and
biological process of the gene product.

Methods: In this study, we developed a tool named GeNetOntology which
performs GO-based feature selection for gene expression data analysis. In the
proposed approach, the process of Grouping, Scoring, and Modeling (G-S-M) is
used to identify significant GO terms. GO information has been used as the
grouping information, which has been embedded into a machine learning (ML)
algorithm to select informative ontology terms. The genes annotated with the
selected ontology terms have been used in the training part to carry out the
classification task of theMLmodel. The output is an important set of ontologies for
the two-class classification task applied to gene expression data for a given
phenotype.

Results: Our approach has been tested on 11 different gene expression datasets,
and the results showed that GeNetOntology successfully identified important
disease-related ontology terms to be used in the classification model.

Discussion:GeNetOntology will assist geneticists and scientists to identify a range
of disease-related genes and ontologies in transcriptomic data analysis, and it will
also help doctors design diagnosis platforms and improve patient treatment plans.
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1 Introduction

Precision medicine gained importance in the last decade (König
et al., 2017). Molecular abnormalities in disease formation can differ
from patient to patient, and a more customized medication plan is
required for each individual. Fortunately, today’s next-generation
sequencing technologies offer several opportunities to quickly
generate a series of omics data in order to monitor molecular
alterations at different levels. Along this line, next-generation
sequencing has been widely used to analyze genetic variations,
gene-expression profiling, epigenomes, and genome diversity
(Levy and Boone, 2019). Furthermore, with improvement in the
technology, the cost of these high-throughput technologies is
decreasing. However, the reduction in the cost of next-generation
sequencing and other high-throughput technologies creates a
burden on the data analysis approaches.

Biological systems are quite complex by their nature. Therefore,
one of the difficulties in omics data analysis stems from these
complex data, where the information is present at multiple
layers. For example, in a biological system, the gene activities
under different physiological states are reflected by the gene
expression data (at the transcriptome level). On the other hand,
the epigenome reflects the effects of environmental factors on gene
activities and disease development. Epigenetic modifications such as
DNA methylations and histone modifications (acetylation,
methylation, phosphorylation, and ubiquitination) can alter the
genome and regulate gene expression. Hence, epigenomic
variations can control transcriptomes which can cause proteomic
dysfunctionalities and result in disease formation. A similar scenario
may also be caused by genomic variations. In addition to that, post-
translational modifications play roles in phenotypic differentiation
in physiology and pathology. Such complexities of biological
systems make it harder to analyze biological data.

In order to enlighten the molecular and functional mechanisms
of disease development, one of the widely studied data types is
transcriptomic data (Barrett et al., 2012; Perscheid et al., 2019).
Researchers analyze gene expression datasets to identify disease-
associated genes and to find biomarkers that can aid in early
diagnosis and targeted therapies. Various technologies, such as
microarray and RNA-seq technology, can detect thousands of
transcripts. One of the challenges in gene expression data
analysis stems from it being noisy and high dimensional. It has a
high number of features (i.e., genes or mRNAs) measured as a result
of the experiments conducted at the molecular level, with a small
number of samples including the patient group, control group, and
treated or non-treated groups. The expression values of the genes are
provided to a learning algorithm to accomplish the classification
task. However, usually, the majority of the genes (i.e., features) are
redundant, noisy, or irrelevant to the learning task, which will
influence the learning accuracy and training speed (Ang et al.,
2016; Aziz et al., 2017). In other words, only a number of genes
are primarily related to disease development. Therefore, it is crucial
to find disease-related transcripts (i.e., genes) by applying feature
selection methods. In other words, gene selection refers to

biomarker detection via applying feature selection methods on
gene expression data (Perscheid, 2021).

Traditional feature selection (FS) approaches are mainly based
on statistical tests. In the literature, several comparative studies were
carried out on different FS methods (Albattah et al., 2022). Several
comprehensive studies of different FS methods are provided for
classification problems (Bolón-Canedo et al., 2016). Yet, another
recent survey discussed the basics, applications, and challenges of FS
methods in the context of high-dimensional data (Abdulwahab
et al., 2022). According to the interaction of the FS method with
the classification model, Liu and Motoda (1998) originally classified
the FS methods into filter, wrapper, and embedded methods (Guyon
et al., 2006; Jensen and Shen, 2008; Chandrashekar and Sahin, 2014;
You et al., 2014; Tadist et al., 2019; Albattah et al., 2022). Later on,
hybrid and ensemble methods were proposed in the literature as
variants of them (Bellazzi and Zupan, 2007; Ang et al., 2016;
Perscheid et al., 2019; Tadist et al., 2019).

Filter methods evaluate a subset of features or a feature only by
using the intrinsic properties of the training samples. These methods
can be combined with a variety of classifiers, and therefore, filter
methods have a better generalization ability and lower computational
complexity. Filter methods are based on F-statistics (ANOVA, t-test,
etc.), mutual information, and entropy (Srinivasa et al., 2020), and
they evaluate the influence of the input values on the output value.
Some examples of the filter methods are information gain (IG) and
ReliefF (Perscheid et al., 2019).

Wrapper methods can achieve better classification performance
than filter methods because they are specific to a particular classifier
(Inza et al., 2004). These methods assess the quality of a candidate
subset. The successive feature selection (SFS) approach is an
example of the wrapper-type feature selection method (Perscheid
et al., 2019). The main disadvantage of the wrapper method is that
they are far more time-consuming.

As a special case of the wrapper methods, embedded methods are
characterized by an interaction between the FS and the classification
algorithm.When embeddedmethods are used to construct the classifier,
feature subsets are generated (Wang et al., 2015). The support vector
machine with recursive feature elimination (SVM-RFE) approach is an
example of embedded FS methods. As summarized here, traditional
methods are fully data-driven approaches, and they neglect biological
domain knowledge. For example, when selecting important genes in
transcriptome data analysis, the importance of each gene is usually
evaluated with a filtering method, ignoring the interactions and
relationships between the genes. On the other hand, wrapper
methods utilize the learning algorithm while evaluating the features
(i.e., genes). Hence, they are able to find optimal feature sets, but they
may encounter the overfitting problem.

It is reported that one of the main obstacles of traditional
methodologies is that they hardly perform biological
interpretation, and hence they do not allow the creation of new
biological knowledge (Perscheid et al., 2019; Yousef et al., 2021).
Since traditional gene selection approaches have limitations like
noise due to the high-dimensional data (Perscheid, 2021), lately,
scientists have started to develop integrative gene selection

Frontiers in Genetics frontiersin.org02

Ersoz et al. 10.3389/fgene.2023.1139082

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1139082


approaches that incorporate domain knowledge from external
biological resources during the gene expression data analysis
(Perscheid et al., 2019; Yousef et al., 2021). Genes perform their
biological functions in an organized fashion (in terms of metabolic
networks and signaling pathways). Hence, scientists attempt to
develop new methodologies which employ external biological
information such as pathways, interactions, and gene ontology
(Yousef et al., 2021). To this end, the integrative gene selection
process generates a ranked list of genes according to both statistical
metrics and biological background information collected from
external resources (Perscheid et al., 2019).

There are several resources, databases, and repositories of
biological knowledge. For example, Kyoto Encyclopedia of Genes
and Genomes (KEGG) is a widely used external ontology resource,
which serves as a pathway knowledge-base for systemic analysis of
gene functions, and it provides manually curated pathways (Kanehisa
and Goto, 2000). As another resource, The Cancer Genome Atlas
(TCGA) (Tomczak et al., 2015) hosts detailed information about
oncogenomic expression profiles. On the other hand, miRTarbase
(Chou et al., 2018) serves annotated experimentally validated
miRNA–target interactions. An integrative gene selection method
could also utilize functional information from the UniProt Knowledge
Base (UniProtKB) (The UniProt Consortium, 2017). DisGeNET
provides a system-level view on the genes and diseases via giving
access to other data sources such as RNA and interaction graphs
(Perscheid, 2021). As one of the widely used biological knowledge
bases, GO intends to unite detailed and standardized terminologies
defined for the various levels of molecular biology (Balakrishnan et al.,
2013). It supplies tools for exploring these terminologies and for
describing biological terms using this vocabulary (The GeneOntology
Consortium, 2019).

The GO Consortium created GO with the aim of presenting a
fully defined, organized terminology to describe the gene functions
and products in each organism (Ashburner et al., 2000). Primarily,
Mouse Genome Informatics (MGI), FlyBase, and Saccharomyces
Genome Database (SGD) model organism databases were used by
the GO Consortium and then were expanded to many organisms. In
the ontology, over 45,000 terms have been connected by about
134,000 relations. In addition, more than 7 million genes and the
annotations of gene products from over 3,200 organisms are included
in the GO knowledge base (The Gene Ontology Consortium, 2019).
Three different aspects of genes are covered by GO, i.e., biological
process (BP), molecular function (MF), and cellular component (CC).
Although MF represents the activity of a gene product at the
molecular level, CC represents the cellular localization of the gene
product, or where it acts. Lastly, the BP is the larger biological
objective that the molecular-level process of the gene product
contributes to The Gene Ontology Consortium (2019).

GO annotations constructed by connecting specific gene products
to terms in the ontology are also contained in the GO knowledge base.
Each information includes evidence on which it is based, using the
standardized codes, computational analysis evidence codes such as
Inferred from Sequence or structural Similarity (ISS), curatorial
statement evidence codes such as Inferred by Curator (IC), and
electronic annotation evidence code such as inferred from
electronic annotation (IEA), where these codes are defined by the
Evidence and Conclusion Ontology (ECO) (Chibucos et al., 2017;
Guide to GO evidence codes, 2022).

Recently, Perscheid published a survey on prior knowledge-
based approaches for integrative biomarker detection from gene
expression datasets (Perscheid, 2021). In that article, she evaluated
the respective characteristics of different integrative gene selection
approaches and presented an overview of external knowledge bases
that are utilized in these approaches (Perscheid, 2021). The article
reported that GO and KEGG resources are predominantly used as
external knowledge bases for integrative gene selection. For example,
Qi and Tang (2007) showed that incorporating GO as a biological
knowledge outperforms traditional gene selection methods in
microarray data analysis. Another approach used GO and KEGG
ontologies to filter genes more accurately (Fang et al., 2014). GO
terms are also used in another study to show the limitations of
network-based annotations (Asif et al., 2018).

The same review paper (Perscheid, 2021) noted that although
prior knowledge-based approaches offer several advantages for gene
selection, these approaches require advanced integration concepts to
consider both statistical and biological characteristics. As a result,
these approaches have not been widely adopted. In this respect,
recently, we proposed a Grouping–Scoring–Modeling (G-S-M)
approach (Yousef et al., 2021) for integrating biological knowledge
into the machine learningmodel. The G-S-M approach selects a set of
features where different sets can be generated via 1) using pre-existing
biological knowledge stored in a database (such as mirTarBase (Chou
et al., 2018), DisGeNET (Piñero et al., 2015), and KEGG pathways
(Kanehisa and Goto, 2000)) or 2) fully data-driven approach using
statistical measures such as Pearson’s correlations. The G-S-M
approach has been utilized in the development of different
computational tools. Examples of such tools are maTE (Yousef
et al., 2019) that uses microRNA target gene information for
grouping the genes; miRcorrNet (Yousef et al., 2021) and
miRModuleNet (Yousef et al., 2022), which detect feature sets via
concurrently analyzing mRNA and miRNA expression datasets,
respectively; CogNet (Yousef et al., 2021) and PriPath (Yousef
et al., 2022) that use KEGG pathway information for grouping the
genes; GediNet (Qumsiyeh et al., 2022) that uses disease gene
associations from DisGeNET while defining the sets of the genes;
and miRdisNET (Jabeer et al., 2023) that uses miRNA target gene
information while assigning the genes into sets. As the recent review
paper (Perscheid, 2021) points out, biomarker detection only based on
statistical analysis is insufficient. To this end, here, we attempt to
incorporate external biological knowledge into the selection process,
and hence we aim to deliver biologically relevant results. In other
words, this studymainly focuses on the detection of disease signatures
and on the discovery of novel gene sets with relations across a subset of
GO terms for the disease under investigation. In this study, our main
aim is to assign genes into groups using the G-S-M approach and to
identify the highly correlated sets of GO terms that are related to the
disease under investigation. Along this line, in this study, the
GeNetOntology algorithm is proposed as a novel algorithm that
improves classification performance by utilizing GO as external
biological information while selecting the most relevant genes from
gene expression datasets. In our experiments, the Monte Carlo cross-
validation (MCCV) technique is utilized. Hence, in each iteration,
some samples are selected randomly for the training set, and the rest
of the samples are selected for the testing set. In each training iteration,
the most informative GO term is identified. Later, the genes that are
associated with the top-ranked GO term in each iteration is merged to
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train the model. In addition, we perform comparative evaluation with
other existing methods. The novelty and originality of our approach
stems from its capability to explore GO terms to classify and to find
the most relevant sets of GO terms associated with the disease under
study. In this respect, our approach differs from traditional gene
selection approaches where searching is carried out by considering
individual genes.

2 Materials and methods

2.1 Gene expression dataset

A total of 11 gene expression datasets for different types of
human complex diseases were downloaded from Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). All datasets
include both healthy samples (labeled as negative) and patient
samples (labeled as positive). These datasets are used to test the
performance of GeNetOntology and to compare it with that of other
tools. The gene expression dataset is represented as a matrix. In this
matrix, while genes (i.e., mRNAs) are shown in the columns, rows
represent the samples. This matrix contains a special column called
label, which indicates the class annotation for each row. Here, the
class labels are either positive, indicating the patient, or negative,
indicating the control. Table 1 presents the GEO accession numbers,
titles, PubMed Identification numbers (PMID), disease name, and
numbers of cases and controls for each one of the 11 gene expression
datasets.

2.2 Gene ontology data

The GO (‘Gene Ontology Consortium: going forward’, 2015)
(http://www. geneontology.org) database provides the biological
knowledge that will be used for the grouping component. The
GO and Human Phenotype Ontology (HPO) data are
downloaded from the Molecular Signatures Database (GSEA
| MSigDB | Browse Human Gene Setsgui) (Liberzon et al., 2015).
HPO terms and all GO terms from GO BP, GO CC, and GO MF
categories are used in this study. The numbers of the GO terms in
each category and the number of HPO terms are listed in Table 2. As
illustrated in Supplementary Figure S1, each GO term is associated
with one or more genes and it can be represented as a gene set.

We wanted to see the distribution of the number of genes that
are associated with each GO term. For this purpose, for each one of

TABLE 1 Description of the 11 gene expression datasets that have been used in this study. Each entry has the GEO Accession, PMID, disease type, number of
healthy samples (controls), and number of patients.

Title GEO accession PMID Disease
type

# Of healthy # Of patients

Glioma-derived stem cell factor effect on angiogenesis in the brain GDS1962 16616334 Glioma 23 157

Early-stage Parkinson’s disease GDS2519 17215369 Parkinson’s disease 23 50

18669654

Metastatic prostate cancer (HG-U95C) GDS2545 17430594 Prostate cancer 81 90

15254046

Metastatic prostate cancer (HG-U95C) GDS2547 17430594 Prostate cancer 75 89

15254046

Large airway epithelial cells from cigarette smokers with suspected lung
cancer

GDS2771 17334370 Lung cancer 90 102

20375364

Cigarette smoking effect on lung adenocarcinoma GDS3257 18297132 Lung
adenocarcinoma

49 58

Colon epithelial biopsies of ulcerative colitis patients GDS3268 18523026 Colitis 73 129

Non-small cell lung carcinoma in female non-smokers GDS3837 20802022 Lung cancer 60 60

25889623

Pediatric acute leukemia patients with early relapse: white blood cells GDS4206 21295523 Leukemia 157 40

Colorectal cancer: laser microdissected tumor tissues GDS4516_4718 21270110 Colorectal cancer 44 104

Pulmonary hypertension: PBMCs GDS5499 22545094 Pulmonary
hypertension

41 99

TABLE 2 Summary of the GO subsets with the number of terms associated with
each GO subset.

Subset of gene ontology (GO) #Ontology groups (terms)

All ontology gene sets 14,998

GO biological process (BP) 7,481

GO molecular functions (MF) 1,708

GO cellular component (CC) 996

HPO 4,813
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the BP, CC, andMF categories, we further divide GO terms into bins
based on the number of genes that are associated with each GO term.
Supplementary Figure S2 presents three histograms for each one of
the GO BP, CC, and MF categories. In each histogram, we plot the
counts of GO terms, where n genes are associated with that GO term
and n increases in a window of 20. When the number of genes
associated with a GO term (n) is increased by 20, we get 7,481 bins
for the BP category, 996 bins for the CC category, and 1,708 bins for
the MF category.

Genes that are annotated with the same GO term either share a
common function, perform similar activity depending on their
responsibility at the molecular or cellular level, or act within the
same cellular component. Genes that are annotated with GO
Biological Process play roles in biological processes. Furthermore,
each gene that is annotated with a specific GO biological process
term performs a specific biological process. For example, genes that
are annotated with the GOBP_Artery_Morphogenesis term are
responsible for artery morphogenesis.

2.3 The general G-S-M model

The main idea of the G-S-M technique is to perform the scoring
operation for different sets of features rather than selecting and
evaluating individual features. Biological knowledge is used as a
function that is applied on the feature space to create sets of features,
where each set includes one or more features, i.e., one or more genes
in the gene selection problem.

The general G-S-M technique was developed by Yousef et al.
(2019) and was embedded in different computational tools, such as
SVM-RCE-R (Yousef et al., 2020), miRcorrNet (Yousef et al., 2021),

maTE (Yousef et al., 2019), CogNet (Yousef et al., 2021), SVM-RCE-
R-OPT (Yousef et al., 2021), Integrating GO-based Grouping and
Ranking (Yousef et al., 2021), PriPath (Yousef et al., 2023),
miRdisNET (Jabeer et al., 2023), GediNET (Qumsiyeh et al.,
2022), miRModuleNet (Yousef et al., 2022), AMP-GSM
(Söylemez et al., 2023), and TextNetTopics (Yousef and
Voskergian, 2022). The main idea and most of the relevant tools
are reviewed in Yousef et al. (2021).

2.3.1 General methodology of GeNetOntology
Here, we develop a novel approach named GeNetOntology. The

GeNetOntology consists of three main components (illustrated in
Figure 1):

1. G Component: to generate sub-datasets for each GO term group.
2. S Component: to score GO terms.
3. M Component: to train the classifier (Random Forest) to build

the model.

The main purpose of the GeNetOntology is to find significant
GO terms (scored in S Component) to be used for training the
classifier (M component). In order to evaluate a set of features, for
each GO term, a sub-dataset is created by only including the
expression values of the genes which are associated with that
particular GO term. The pseudo-code of GeNetOntology is
presented in Supplementary Table S1, and the algorithm is
explained more in detail in the following sections.

The gene expression dataset is represented by C, which consists
of two parts, Ctrain and Ctest. Although Ctrain has been utilized for
scoring the GO terms and training the classifier to create a model,
Ctest has been used to test and report the final performance.

FIGURE 1
GeNetOntology consists of four major components: GO term groups are extracted; sub-datasets for each GO term groups are generated by
G component; component S scores and ranks the groups; and component M creates and evaluates the model.

Frontiers in Genetics frontiersin.org05

Ersoz et al. 10.3389/fgene.2023.1139082

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1139082


2.3.2 Component G: generating sub-datasets
The G component of GeNetOntology creates sub-datasets for

each GO term. Several genes are annotated with a specific GO term.
For each GO term, the G component extracts a sub-dataset from the
gene expression dataset. In other words, each sub-dataset includes 1)
expression values just for the genes that are annotated with that
particular GO term and 2) class labels (positive or negative) of the
samples. We would like to note that each sub-dataset includes the
same number of samples, but different numbers of features
depending on the number of genes that are annotated with that
particular GO term. Figure 2 presents a flowchart for sub-dataset
generation based on the genes that are annotated with a specific GO
term. Each sub-dataset is named as GOterm(i)_sub_dataset, where i
starts from 1 and increases until k. Here, k refers to the number of
GO terms exported.

The G component involves two tables:

(1) The GO Terms table: Each GO term is associated with a set of
genes (shown as a row of the GO Terms table in Figure 2).

(2) Gene expression dataset: The flowchart in Figure 2 illustrates the
generation of four sub-datasets, each corresponding to a specific
GO term. Next, component S, which is shown as “S” in the last
part of Figure 2, performs the scoring step by taking these sub-
datasets as an input.

2.3.3 Component S: scoring GO terms
S, as a second component, takes the created sub-datasets as an

input from component G and operates an ML algorithm (Random
Forest) with an internal MCCV repeated r times (as shown in

Supplementary Figure S3). It has been performed on each sub-
dataset to give a score for its related GO term. The scoring is
evaluated by testing the capability of each GO term in terms of its
classification performance. In other words, the score implies the
accuracy of the classification by only using the gene expression
values of the genes that are annotated with that specific GO term. In
the S component, the classification accuracy is averaged over the r
iterations of the MCCV. The mean accuracy value is used as the final
score of the particular GO term. The S component ranks all GO
terms according to their scores. The top-scoring GO terms are used
in the next component to train the model.

Table 3 presents an example of the S output where for each GO
term, we assign a score that is calculated as the mean accuracy.

2.3.4 Component M: building the model
The M component trains the classifier and creates the model.

The main principle of Component M is illustrated in
Supplementary Figure S4. This component trains a classifier (a
Random Forest model) using the gene expression values of the
genes that are annotated with the top-scoring GO terms. We
repeat this procedure in a cumulative manner. In the first
iteration, a Random Forest model is built by operating only on
the genes that are annotated with the highest scoring GO term. In
the second iteration, the M component takes the second highest
scoring GO term and merges the genes annotated with this GO
term with the gene set annotated with the highest scoring GO
term which is identified in the first iteration. In this way, it forms a
new sub-dataset that will be subject to training and testing the
model. This operation continues in the same way until all GO

FIGURE 2
Example of a sub-dataset generation based on genes that belong to a GO term. The generated sub-datasets are then subject to the S, the Scoring
Component.
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terms are processed. Hence, we calculate the cumulative
performance of the model. Through this approach, it becomes
possible to plot the performance results over different feature sets
(i.e., the highest scoring GO term, the top two highest scoring GO
terms, until the top 10 highest scoring GO terms). In this way, one
can discover the best feature set which is defined as the
combination of the genes annotated with the top scoring GO
terms.

A sample output of the M component is shown in Table 4.
GeNetOntology presents the average performance metrics of the

classification using the genes that are associated with the top
10 scoring GO terms, averaged over 10-fold MCCV.

2.4 Design and implementation of
GeNetOntology

Figure 1 and Supplementary Figure S5 demonstrate the
workflow of GeNetOntology. Two input files are required by
GeNetOntology: gene expression data and the biological
knowledge file (GO terms and a set of genes annotated with each
GO term). In this study, GO terms are used for grouping the genes
and for grouping their associated gene expression values. In this way,
we generate different sets of features using biological knowledge, and
then we evaluate the contribution of each feature set to the
classification task.

The gene expression data are separated randomly into
training and testing parts. The testing data are only used to
evaluate the model’s performance. The G-S-M components are
followed sequentially. The whole workflow is repeated N times,
where we set N to 10 in this study. This repetitive part is shown in
the MCCV box in Figure 1 and in Supplementary Figure S5.

At the initial steps of GeNetOntology, in order to filter the least
significant genes on the training set, a t-test is performed.
Additionally, to be able to have the same representation of the
genes in the test dataset, only the selected genes within the training
set are used in the test set. The test set is only used at the M
component for testing the model. The MCCV loop creates N lists
of different outputs, such as lists of performance tables, lists of
ranked GO terms, and ranked genes. The average is calculated over
all lists of performance tables to create a final performance table
that also contains the standard deviation. The robust rank
aggregation approach was applied to the other lists (i.e., ranked
GO terms and ranked genes) to aggregate them into a final list, as
shown in Table 5. The ranked GO terms and the genes that are
annotated with these terms are shown in the final list. All those
final lists or tables are visualized in the output panel of
GeNetOntology, as shown in Figure 1 and Supplementary
Figure S5.

GeNetOntology has been implemented in the free and open-
source KNIME Analytics Platform, which is a data analysis,
reporting, and integration tool under the General Public License
(GNU) (Berthold et al., 2009). KNIME is able to utilize scripts in
both R and Python. In the KNIME workflow, there are several nodes
with their own functions. Nodes have been collected under meta-
nodes that fulfill a specific task. The GeNetOntology KNIME
workflow is available publicly in https://github.com/malikyousef/
GeNetOntology.git.

2.5 Model performance evaluation of
GeNetOntology

We have evaluated a set of statistical measures such as
specificity, sensitivity, and accuracy for each model to score
model efficiency. The following formulations were used to
calculate the statistics:

TABLE 3 Example of grouping Gene Ontology (GO) terms and their computed
scores. Calculated for the GO BP category in the GDS1962 dataset.

GO term# Score

GOBP_AMEBOIDAL_
TYPE_CELL_MIGRATION

1

GOBP_APOPTOTIC_
PROCESS_INVOLVED_IN_
BLOOD_VESSEL_MORPHOGENESIS

1

GOBP_CANONICAL_
WNT_SIGNALING_PATHWAY

0.98

GOBP_CELLULAR_RESPONSE
_TO_EXTERNAL_STIMULUS

0.98

GOBP_CELLULAR_RESPONSE_
TO_LOW_DENSITY_LIPOPROTEIN_
PARTICLE_STIMULUS

0.97

GOBP_CELLULAR_RESPONSE_
TO_NUTRIENT

0.96

GOBP_CELLULAR_RESPONSE_
TO_PEPTIDE_HORMONE_STIMULUS

0.96

GOBP_CHOLESTEROL_STORAGE 0.95

GOBP_FATTY_ACID_BIOSYNTHETIC_
PROCESS

0.93

GOBP_FOAM_CELL_
DIFFERENTIATION

0.92

TABLE 4 Sample output of GeNetOntology. Averages over 10-fold MCCV are
presented for different performance metrics. Obtained cumulatively for the
top 10ranked Gene Ontology BP groups using the GDS1962 dataset.

#Groups #Genes Accuracy Sensitivity Specificity AUC

10 133.9 0.94 0.96 0.9 1

9 122.9 0.95 0.96 0.95 0.995

8 114.9 0.94 0.96 0.9 0.985

7 107.8 0.95 0.96 0.95 0.98

6 93.8 0.94 0.98 0.85 0.99

5 88.6 0.95 0.98 0.9 1

4 74.7 0.98 0.98 1 1

3 62.4 0.95 0.96 0.95 1

2 48.2 0.94 0.98 0.85 0.98

1 31.9 0.91 0.96 0.8 0.97
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• Sensitivity (Recall) = True Positive/(True Positive + False
Negative)

• Specificity = True Negative/(True Negative + False Positive)
• Accuracy = (True Positive + True Negative)/#All examples,

In addition, the area under the receiver operating characteristic
(ROC) curve (AUC) is used to approximate the probability of a
classifier which would score a randomly selected positive instance
higher than a randomly selected negative instance. All reported
performance measures indicate the average of 10-fold MCCV. We
have performed an under-sampling approach to deal with the
imbalanced dataset problem. This approach decreases the number of
samples in the majority class to the number of samples in the minority
class. In that way, we can reduce the bias in the size distribution of
datasets and overcome the imbalanced class distribution problem. The
under-sampling ratio is chosen as 1:2. Graphs and figures have been
generated using the software GraphPad Prism 8.

2.6 Protein–protein interaction (PPI)
network analysis

Network analysis was performed using Cytoscape (Franz et al.,
2016). Using Cytoscape, we have visualized the PPI networks of the
geneswhich are annotatedwith themost significantGO term. Cytoscape
imports the human PPI network from the STRING database. The
betweenness centrality of nodes was calculated in Cytoscape using the
built-in NetworkAnalyzer (Cytoscape App Store - NetworkAnalyzer,
2021). For eachGOcategory (BP, CC, andMF), genes that are annotated
with the top 10 scoring GO terms were selected. For each protein, we
have computed the betweenness centrality which indicates the amount
of control that this node exerts over the interactions of other nodes in the
network (Yoon et al., 2006). The color and size of the node are used to
represent the betweenness centrality. Bigger and darker colored nodes
(proteins) in the PPI network have higher betweenness centrality.

3 Results

3.1 Model performance evaluation of
GeNetOntology

GeNetOntology is tested on 11 different gene expression
datasets, where the characteristics of the datasets are presented in

Table 1. For each dataset, for different numbers of feature sets, the
accuracy, sensitivity, specificity, and AUC values have been
calculated as the mean of the values obtained in 10 iterations of
the cross-validation procedure. For each feature set, GeNetOntology
reports the number of features (i.e., genes) included in the set
(i.e., GO term). In addition, the average gene number over
10 iterations is reported. Table 4 shows the performance metrics
of GeNetOntology for the GDS1962 dataset for the top 10 scoring
GO terms. For example, there are 31.9 genes on average as shown in
the # of the Genes column of the last row (top scoring GO term) in
Table 4. There are 48.2 genes on average as shown in the # of the
Genes column of the 2nd last row (top two scoring GO terms
cumulatively). In other words, the model that is generated via only
using the gene expression values of 48.2 genes can successfully
predict glioma patients with 0.98 AUC score.

In our experiments on various gene expression datasets,
three different GO categories, i.e., BP, CC, MF, and all GO terms
are utilized. Table 6 summarizes the performance metrics
obtained for 11 different gene expression datasets using only
the top two scoring GO terms. AUC, accuracy, and sensitivity
values for GDS2519 and GDS4206 are not as high as in other
datasets. However, AUC, accuracy, and sensitivity values for
GDS 1962, GDS3837, GDS4516_718, and GDS5499 are
quite high.

Additionally, to be able to compare our approach with other
solutions, we have performed additional experiments. In this
respect, we have applied different traditional feature selection
methods such as eXtreme Gradient Boosting (XGB) (Athanasiou
et al., 2020; Li et al., 2020), Information Gain (IG) (Lei, 2012), Select
K Best (SKB) (Pedregosa et al., 2011), and Fast Correlation-Based
Filter (FCBF) (Senliol et al., 2008); and different classifiers such as
Adaboost, Decision Tree (DT), LogitBoost, Random Forest (RF),
SVM_opt, Stack_Logitboost_Kmeans, and Stack_SVM_Kmeans on
the same 11 gene expression datasets using 10-fold MCCV. For each
dataset, we evaluate the performance of each classifier and each
feature selection method with the same number of features used by
GeNetOntology. For most of the tested classifiers, the AUC of the
XGB FS method (Supplementary Table S2) showed higher
performance than the IG FS method (Supplementary Table S3),
SKB (Supplementary Table S4), and FCBF FS method
(Supplementary Table S5). For each FS method, we have plotted
the average AUC values over seven different classifiers for
11 different datasets. As shown in Supplementary Figure S6,
GeNetOntology generates similar AUC values compared with

TABLE 5 Example of the robust rank aggregation output for the GDS1962 dataset where the ranked GO BP terms (groups) and their associated genes are shown.

GO groups p-value (Score) #Genes Genes

GOBP_ARTERY_MORPHOGENESIS 1.30E-07 17 ADAMTS9, APOE, PRRX1, EFEMP2, VEGFA. . .

GOBP_CHROMATIN_SILENCING 4.44853E-07 9 SMCHD1, HMGB1, EZH2. . .

GOBP_CAMERA_TYPE_EYE_DEVELOPMENT 5.61732E-07 49 RDH10, MEGF11, ATOH7. . .

GOBP_GLAND_DEVELOPMENT 7.07998E-07 85 PRMT5, IQGAP3, MSN. . .

GOBP_RESPONSE_TO_HORMONE 1.65122E-06 123 IDH1, ADAM9, GPR173. . .

GOBP_NEGATIVE_REGULATION_OF_EPITHELIAL_CELL_MIGRATION 1.8769E-06 14 HMGB1, SP100, APOE. . .
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TABLE 6 Performance results table including accuracy, sensitivity, specificity, and AUC value of GeNetOntology for 11 different datasets.

Accession Numbers in GEO #Genes Accuracy Sensitivity Specificity AUC

GDS1962 48.2 0.94 0.98 0.85 0.98

GDS2519 170.4 0.5 0.6 0.41 0.58

GDS2545 110.5 0.72 0.72 0.7375 0.78

GDS2547 81.7 0.75 0.725 0.7875 0.83

GDS2771 68.4 0.66 0.73 0.6 0.68

GDS3257 20.6 1 1 1 1

GDS3268 90.3 0.66 0.62 0.71 0.73

GDS3837 64.6 0.98 0.96 1 0.99

GDS4206 46.1 0.63 0.25 0.8 0.55

GDS4516_718 50.6 1 1 1 1

GDS5499 52.1 0.9 0.94 0.8 0.95

FIGURE 3
Performance results of GeNetOntology over the top-2-ranked groups with standard deviations for different datasets. (A) AUC and (B) average
number of genes are plotted for GO BP, CC, and MF categories and all groups.
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other methods, averaged over different datasets. We would like to
emphasize that the aim of GeNetOntology is not to compete with
other feature selection (FS) approaches. Our aim is to select
significant ontology terms that have biological meaning. Even if
the performance of GeNetOntology is similar with that of other FS
methods or even slightly less than that of other FS methods, the

contribution of the tool is to find the most informative GO terms
that can help the researchers understand the biological background
of the disease under study.

The performance of GeNetOntology over 11 datasets by using
GO BP, CC, and MF categories and all GO terms are summarized in
Figure 3. AUC is considered the performance metric, and all values

FIGURE 4
Comparative performance evaluations of GeNetOntology, maTE, and PriPath using 10-fold MCCV. (A)Mean AUC values; and (B) average number of
genes are plotted for GeNetOntology, maTE, and PriPath results for 11 different datasets for top two scoring groups.
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in Figure 3 are the mean of 10-MCCV iterations, shown together
with standard deviations. Figure 3A implies that except for the
GDS3268, GDS2519, and GDS4206 datasets, the choice of GO
category does not affect the performance in terms of AUC.
Figure 3B implies that, except for the GDS2771, GDS3257, and
GDS3268 datasets, the choice of the GO category does not affect the
average number of genes in the top two selected GO terms by
GeNetOntology.

3.2 Comparative performance evaluation of
GeNetOntologywith other GSM-based tools

Pripath (Yousef et al., 2023) and maTE (Yousef et al., 2019) are
two other G-S-M-based tools that incorporate biological domain
knowledge. Although PriPath utilizes KEGG pathways as the
biological knowledge, maTE uses miRNA information as pre-
existing biological knowledge. maTE integrates information about
miRNA target genes with gene expression data, and multiple high-
scoring miRNAs are utilized while building the final classifier.
PriPath tries to detect dysregulated pathways by using KEGG
pathways as the grouping information and insert this
information into an ML algorithm for selecting the most
significant KEGG pathways in the gene expression dataset. We
have compared GeNetOntology results with PriPath and maTE
results (Figure 4). Although maTE, PriPath, and GeNetOntology
generate distinct output tables, they all produce a table which
demonstrates the tool’s performance. AUC performance metrics
of GeNetOntology, PriPath, and maTE have been comparatively
evaluated for 11 different datasets. We have considered the AUC
values of the top two scoring sets for each tool by applying 10-fold
MCCV. The mean AUC values of the three tools for the 11 datasets
are represented in Figure 4A. One can deduce from Figure 4A that
for GDS2519, GDS2771, and GDS5499 datasets, GeNetOntology
performed higher than maTE and PriPath. For the remaining
datasets, the AUC values are comparable. The mean number of
genes utilized by the tools is also plotted in Figure 4B.

3.3 Biological validation of the
GeNetOntology: analysis of the diagnostic
model developed for the glioma dataset

In the previous section, we assessed the performance of
GeNetOntology from a computational point of view using
different computational performance evaluation metrics. In this
section, we evaluate GeNetOntology findings from a biological
point of view using the glioma dataset (GDS 1962).

3.3.1 Correlation between top scored gene
ontology terms for glioma dataset

One of the outputs of the GeNetOntology tool is a list of ranked
GO terms for the disease under study. The robust rank aggregation
method of GeNetOntology calculates a p-value for each GO term,
which shows the significance of the GO term in distinguishing the
cases from controls for the disease under investigation. At the final
step, the GO terms are ranked based on this p-value. In Figure 5, we
plotted the top 10 important GO terms for the GDS1962 dataset

associated with glioma. Although the robust rank aggregation p
values are converted to -log 10 scale and shown in the x-axis, the GO
terms are represented in the y-axis, and some examples of the genes
annotated with the specified GO terms are represented on the bars.
GO terms are ranked separately for BP, CC, and MF categories and
shown in Figures 5A–C, respectively.

As depicted in Figure 5A, for the glioma dataset (GDS 1962), artery
morphogenesis is the top ranked GO term in the BP category.
Chromatin silencing, camera-type eye development, gland
development, response to hormone, negative regulation of epithelial
cell migration, animal organ morphogenesis, and cell morphogenesis
involved in differentiation have similar p values; and lipid catabolic
process and cellular lipid metabolic process have the lowest
-log10 p-value among the top 10 ranked GO BP terms. As
illustrated in Figure 5B, for the same dataset, the cell cortex has the
highest score in the top 10 ranked GO CC category. Envelope, actin
filament, blood microparticle, protein DNA complex, inclusion body,
vacuole, condensed chromosome centromeric region, coated vesicle,
and nuclear protein-containing complex are the other top ranked
terms in the GDS1962 gene expression dataset. As shown in Figure 5C,
primary active transmembrane transporter activity and carbohydrate
binding GO terms have the highest importance for the GDS1962 gene
expression dataset in the MF category. Hormone binding, lipid
binding, hydrolase activity acting on ester bonds, molecular adapter
activity, isomerase activity, carboxylic ester hydrolase activity, protein
kinase c binding, and active transmembrane transporter activity are the
other GO MF terms selected among the top 10 for the glioma dataset.
These results guided us to apply further analysis to investigate the
possible relationships between these GO terms.

It has been mentioned in literature that GO terms facilitate our
understanding of the disease development and progression at the
molecular level (Denny et al., 2018). Studying the associations
between GO terms may further help us enlighten the relations of
the GO terms with the disease mechanisms. In Figures 6A–C, for the
GDS1962 glioma dataset, we present the pairwise correlations
among the top 10 scoring gene ontology terms for BP, CC, and
MF categories, respectively. In the BP category, organ
morphogenesis and gland development terms have moderate
correlations in terms of their shared genes) (as shown in a
heatmap in Figure 6A). In the GO CC category, no significant
correlation is observed between the top 10 identified GO terms (as
depicted in Figure 6B). In the GO MF category, primary active
transmembrane transporter activity and active transmembrane
transporter activity have a moderate relationship (as displayed in
Figure 6C). Figure 6 implies that the set of genes in each one of the
top 10 scoring GO terms are nearly unique and there is minimum
redundancy between the genes that are annotated with the selected
GO terms. Hence, each selected GO term contributes to the
classification. In other words, there are not so many overlapping
genes in the top 10 selected GO terms. This finding is independent
from the BP, CC, and MF categories, as shown with low or medium
pairwise correlations in Figures 6A–C, respectively. Figure 6D shows
the axis names of GO terms for BP, CC, and MF.

3.3.2 PPI network analysis of the genes included in
the top 10 scoring GO terms

We have collected the genes that are annotated with the top
10 scoring GO terms identified by GeNetOntology for the
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GDS1962 glioma dataset. Then, we analyzed the topological
properties of these proteins within the human PPI network. To
this end, Figure 7 represents the PPI network of the genes
annotated with the top 10 scoring GO terms detected by
GeNetOntology for the GDS1962 dataset. We repeated this
procedure separately for GO BP, CC, and MF categories and
illustrated in Figures 7A–C, respectively. The PPI networks
including 460 genes with 2,809 interactions for the BP category,
236 genes with 990 interactions for the MF category, and 284 genes
with 777 interactions for e CC category are represented in Figures
7A–C, respectively. For each protein, we have computed the

betweenness centrality which indicates the amount of control
that this node exerts over the interactions of other nodes in the
network (Yoon et al., 2006). Bigger and darker colored nodes in
Figure 7 represent the proteins with higher betweenness centrality.
One can easily observe from Figure 7A that TP53, AKT1, VEGFA,
IDH1, MYC, APOE, NOTCH1, SOX2, FGF2, CAV1, and
CCND1 have high betweenness centrality in the BP category for
the glioma dataset. It implies that for glioma, these genes play key
roles between other nodes (proteins) as connective proteins. In
terms of the GO CC category, APOE, CCNB1, LMNA, RHOC,
GNS, ANLN, CAV1, SIRT1, CTSO, and LMNA proteins are found

FIGURE 5
Top 10 important Gene Ontology terms in (A) BP, (B) CC, and (C) MF categories, identified by GeNetOntology for the GDS1962 glioma dataset.
Although -log 10 p-values are represented on the x-axis, GO terms are represented on the y-axis, and some examples of the genes that belong to the
associated GO terms are represented along the bars.
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to have high betweenness centrality in the analysis of
GeNetOntology on the glioma dataset. One can imply from
Figure 7B that these core proteins may play an important role
for glioma. As visualized in Figure 7C, AKT1, MAPT, MYC,
APOE, JUN, CAV1, and EGFR are hub proteins in the PPI
network that are generated according to the top 10 scoring GO
terms identified by GeNetOntology on the MF category for the
glioma dataset.

3.3.3 Frequency and word cloud analysis of the
genes associated with top 10 gene ontology terms
in the glioma dataset

Proteins can play different roles in the organism, and hence they
may be included in different GO terms. We have collected the genes
that are annotated with the top 10 scoring GO terms identified by
GeNetOntology for the GDS1962 glioma dataset. This time, instead
of having three different gene sets for BP, CC, andMF categories, we

FIGURE 6
Correlations among the top 10 Gene Ontology terms identified by GeNetOntology for the GDS1962 glioma dataset. The pairwise correlations are
calculated based on the number of shared genes within GO term pairs. Heatmaps for pairwise correlations of the GO terms are visualized in (A) BP;
(B) CC; (C) and MF categories. (D) Full names of the GO terms.
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merged these lists and obtained one gene set. In other words, if a
gene is annotated with at least one of the top 10 scoringGOBP, CC, or
MF terms for the glioma dataset, we include this gene into our final
list. For the identified genes, we also keep track of the frequencies or
how many times a gene is observed in any one of the top 10 scoring
GO BP, CC, or MF terms for the glioma dataset (as shown partially in
Figure 8A). One can observe from Figure 8A that APOE, PSEN1,
RPE65, PTEN, and SRC have the highest frequencies. These five genes
are annotated with eight GO terms among the top 10 scoring GO
terms in any one of the BP, CC, and MF categories. Here, the top
10 scoring GO terms refer to the terms that are identified by
GeNetOntology while analyzing the GDS1962 glioma dataset. We
have also visualized the frequency of the genes from the top 30 scoring
GO terms as a word cloud. To this end, Figure 8B presents the top
100 frequent genes from the top 30 scoring GO terms, where the top
10 scoring GO terms are identified by GeNetOntology for each one of
the BP, CC, and MF categories for the glioma dataset.

4 Discussion

4.1 Computational performance evaluation
of GeNetOntology

GeNetOntology is a novel and highly effective approach that
predicts disease-causing genes by modeling and analyzing gene
expression data with GO terms. In GeNetOntology, we have
implemented an ML algorithm to select the most significant GO
terms. Yet, when more terms are included, we did not obtain any
statistically significant improvement in the performance metrics.
Therefore, it is possible to construct a model with less number of
genes, which facilitates the interpretation of the generated model. The
GeNetOntology was tested on 11 different gene expression datasets,
including cancer, hypertension, and other diseases. For the present
analysis, we have tested GeNetOntology using i) all GO terms as all
terms; ii) terms in BP; iii) in CC; and iv) in MF categories. Under these
four settings, the performance results (in terms of AUC metric) using
the top two scoring GO terms from different categories for different

datasets are shown in Figure 3. In Figure 3, we present the mean of the
AUC values for 10-fold cross-validations for all, BP, CC, and MF
categories and themean number of genes for each one of the 11 datasets.

As shown in Figure 3, GeNetOntology performs well on all
datasets, except GDS2519 and GDS4206. When we analyzed
different performance metrics of GeNetOntology over the top
two ranked GO terms for different datasets, we noticed one more
time that GeNetOntology performs well on all datasets, except
GDS2519 and GDS4206, as shown in Table 6. In addition, when
these datasets are analyzed with other tools such as maTE and
PriPath, it has been observed that other tools also generated poor
performance on these two datasets (as shown in Figure 4). As it can
be seen in Supplementary Tables S2-S5, the AUC scores of all tested
classifiers (Adaboost, DT, LogiBoost, RF, SMV_opt, Stack_
Logitboost_Kmeans, and Stack_SVM_Kmeans) and all tested
feature selection methods (XGB, IG, SKB, and FCBF) are also
low for GDS2519 and GDS4206 datasets.

We have also tested for the effect of cumulatively adding top
scoring GO terms (increasing the gene number) in terms of the
performance of GeNetOntology. In Table 4, we present the
performance metrics of GeNetOntology averaged over 10-fold
MCCV iterations for the aggregated top-10 scoring GO terms for
the GDS1962 dataset. For example, GeNetOntology has an AUC
value of 0.97 when on average 31.9 genes are used, as shown in the
last row of Table 4 (results of the top scoring GO term). On the other
hand, the AUC value of GeNetOntology becomes 1 when
133.9 genes from the top-10 scoring GO terms are cumulatively
used (as shown in the first row of Table 4). Instead of checking the
gene expression values of 134 genes, one can prefer to check the
expression values for only 32 genes to predict whether the sample
has glioma while sacrificing 3% of AUC. To put it another way, the
model that is generated via only using the gene expression values of
32 genes can successfully predict glioma patients with an AUC score
of 0.97, which is quite a satisfying result.

Additionally, GeNetOntology is comparatively evaluated with
other G-S-M-based tools. For 11 different gene expression datasets,
themeanAUC values of 10-fold cross-validations for GeNetOntology,
maTE, and PriPath were compared using the genes from the top two

FIGURE 7
Protein–protein interaction (PPI) network of the genes included in the top-10 scoring GO terms detected by GeNetOntology for the
GDS1962 dataset. Genes are collected from the top 10 GO terms in (A) BP; (B) CC; and (C) MF categories. Color and node size denote
betweenness centrality. Bigger and darker colored nodes have higher betweenness centrality in the PPI network.
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scoring feature sets. One can obtain from Figure 4A that for GDS2519,
GDS2771, and GDS5499 datasets, GeNetOntology performed better
than maTE and PriPath. For the remaining datasets, the AUC values
were comparable. On the other hand, the outcome and contribution
of each tool is different because each of these tools aims to identify
important feature sets via using a different biological knowledge. For
example, while defining important feature sets, PriPath makes use of
KEGG pathway information, and the final output of PriPath is the top
scoring pathways and their associated genes. InmaTE, miRNA–target
gene information is utilized, and the final outcome is top scoring
miRNAs and their associated genes. However, GeNetOntology
exploits GO as biological knowledge; and as an output, it identifies
top scoring GO terms and their associated genes that can best
distinguish patients from healthy samples for the specific disease
under study.

4.2 Biological evaluation of GeNetOntology
findings

4.2.1 Top scoring gene ontology terms for the
glioma dataset

As the performance metrics shown in Table 6, Figure 3A,
Figure 4A implies, GeNetOntology is capable of discovering
significant gene ontology terms that can perform as a marker for
classification. In the previous section, GeNetOntology is
comparatively evaluated with other G-S-M-based tools. Here, we
evaluated whether the top scoring GO terms identified by
GeNetOntology are supported by previous experimental research.

For the glioma dataset, the top 10 significant GO BP terms include
morphogenesis, development, and differentiation (Figures 6A, D). In
the literature, it has been shown that morphogenesis is highly correlated

FIGURE 8
Most frequent genes for the GDS1962 dataset (associated with glioma cancer) in the top-10 scoring GO terms for the BP, CC, and MF categories (A),
word cloud of the top-10 scoring GO terms (B) are identified by GeNetOntology.
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with cancer invasion to other tissues. Lipids are a complex group of
biomolecules, and they form the main structure of biological
membranes, an energy source, and also act as signaling molecules
(Snaebjornsson et al., 2020). Lipid metabolism has an impact on cancer
formation and promotion since lipid metabolism, carcinogenesis, and
cancer metastasis are related with abnormal levels of lipids (Jiang et al.,
2020). Chromatin is a critical and dynamic major regulator of
transcription. Studies showed that deregulation of chromatin guides
gene activation alteration and/or improper gene silencing and is able to
promote oncogenesis by altering chromatin structures (Nair and
Kumar, 2012). Numerous studies have demonstrated that epigenetic
gene silencing is a critical mechanism for the loss of gene function in
many cancers (Baylin and Ohm, 2006). Several GO BP terms such as
tissue formation, embryological development, inflammation, immune
defense, and cancer progression, are highly related with cell migration
(Pijuan et al., 2019). Unusual regulation of epithelial cell migration has a
significant role in pathological processes such as cancer metastasis and
tissue fibrosis development (Magliozzi et al., 2013). Cancer cell invasion
mechanisms and metastasis based on cellular motility is a complicated
process (Lorente et al., 2014). An essential characteristic of tumor cell
invasion and metastasis is the ability of improved motility and
migration capability of the tumor cells. It is important to
understand the specific mechanisms of cellular motility in cancer
development because a loss or deficiency of the mechanisms that
regulate cytoskeletal remodeling might result in tumor development
and metastasis (Lorente et al., 2014). Therefore, actin filament
formation and cell cortex and envelope formation could potentially
have a role in cancer formation. These terms are identified by
GeNetOntology among top 10 significant GO CC terms, as shown
in Figures 6B, D. Blood microparticles originate from the endothelial
lining of blood vessels and cellular components of blood. Almost all
cells, when they are exposed to several stress conditions such as
apoptosis and cellular activation, shed parts of their plasma
membranes, and these are called cellular microparticles (MPs) (Shet,
2008). DNA packaging and gene expression regulation are performed
by chromatin, which is a protein–DNA complex (de Brot et al., 2018).
For the glioma dataset, the top-10 scoring GO MF terms of
GeNetOntology include carbohydrate-, lipid-, and hormone-binding
molecular functions which regulate several intracellular and
extracellular signaling pathways (Figures 6C, D).

4.2.2 Top scoring genes for the glioma dataset
We have collected the genes that are annotated with the top

10 scoring GO terms identified by GeNetOntology for the
GDS1962 glioma dataset. As shown in Figures 7A–C, several well-
known cancer driver genes are present in the PPI network generated by
using the genes from the top scoring GO BP, CC, and MF terms,
respectively. TP53 is a well-known oncogene, and it is highly correlated
with many cancer subtypes. AKT1 plays a vital role in many signaling
pathways and in growth factor-induced neuronal survival during
nervous system development (Dudek et al., 1997). VEGFA is a
critical modulator of angiogenesis, and it has been shown in the
literature that VEGFA expression is high in cancer tissue, and this is
correlated with its aggressive characteristics (Sa-nguanraksa and
O-charoenrat, 2012). Mutation in the IDH1 gene has been found in
many genetic conditions and cancer types, such as acute myeloid
leukemia, glioblastoma, and myelodysplastic syndromes (Dang et al.,
2016). MYC is a proto-oncogene, and it is overexpressed in several

tumors. It can escape from several tumor-suppressing checkpoint
mechanisms such as apoptosis senescence, proliferative arrest, and
induces tumorigenesis (Li et al., 2014). In several tumors, APOE
overexpression is related to poor prognosis and aggressive biological
behaviors (Zhao et al., 2018). NOTCH1 is associated with numerous
signaling pathways in tumorigenesis, and it is involved inmany types of
cancer, including brain tumors, leukemia, breast cancer, and several
other cancer types (Gharaibeh et al., 2020). SOX2 is dysregulated during
gene amplification and promotes metastasis, drug resistance, and
survival. Therefore, its overexpression is associated with a poor
survival rate in cancer patients (Zhang et al., 2020). FGF2 gene
expression is correlated with several cancer types, including
colorectal cancer (Caiado et al., 2020). With their roles in top
10 scoring GO BP terms, these genes are emphasized in our analysis
on the glioma dataset, and these genes are shownwith bigger and darker
nodes in Figure 7A based on their high betweenness centrality.

APOE plays an important role in GO CC as well (Figure 7B).
CAV1 functions both as a tumor suppressor and metastasis promoter
membrane-associated scaffolding protein, and it has shown that
CAV1 is downregulated in human tumors (Díaz et al., 2020).
CCND1, known as a proto-oncogene, switches to proximal APA
sites in cancer cells and acts as the G1-S phase of the cell cycle
regulator (Wang et al., 2018). It has been shown that in lung cancer,
breast cancer, cervical cancer, andmelanoma and esophageal squamous
cell carcinoma, CCNB1 expression is relatively high (Li et al., 2019).
LMNA functions as an oncogene inmany cancer cell types, especially in
hepatocellular carcinoma (Liu et al., 2020). Understanding the role of
RhoC-regulated migration processes is crucial to deal with cancer
metastasis mechanisms (Lou et al., 2021). In many types of site-
specific cancerous tumors, such as bone marrow, brain, breast,
colorectal, pancreas, and lung cancer, ANLN is highly expressed
(Hall et al., 2005; Olakowski et al., 2009; Uhlén et al., 2015; Tuan
and Lee, 2020). Several studies have presented that SIRT1 can function
as a tumor promoter or tumor suppressor depending on its targets in
specific cancer and signaling pathways (Lin and Fang, 2013). CTSO is a
biomarker that can predict which women will emanate the highest
benefit from a selective estrogen receptor modulator (SERM) therapy
(Brentnall et al., 2016). With their roles in top 10 scoring GOCC terms,
these genes are emphasized in our analysis on the glioma dataset, and
these genes are shown with bigger and darker nodes in Figure 7B based
on their high betweenness centrality.

AKT1, MAPT, MYC, APOE, JUN, CAV1, and EGFR are
identified as hub proteins in the PPI network in Figure 7C, which
is generated using the proteins associated with the top 10 scoring GO
MF terms. The associations ofmost of these genes with glioma are also
reported in literature as follows. Tauopathies, known as
neurodegenerative disorders, are characterized by abnormal tau
protein deposition in the brain, and MAPT expression is a
biomarker for tauopathies and an increased survival rate and low-
grade glioma (Zaman et al., 2019). JUN is a proto-oncogene
transcription factor and regulates transcription-caused cancer
formation (Expression of JUN in cancer - Summary - The Human
Protein Atlas, 2021). EGFR is a driver of tumorigenesis and is
identified as a biomarker of resistance in tumors, especially in
glioblastoma, breast, and lung cancer (Sigismund et al., 2018). In
the literature, it has been shown that the APOE gene is related with
tumorigenesis and progression, such as cell proliferation,
angiogenesis, and metastasis (Zhao et al., 2018; Adaku et al., 2022).
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4.2.3 The most frequent genes and word cloud of
the genes associated with top 10 GO terms in the
glioma dataset

Genes might have several functions in the living organism and act
with multiple roles. Therefore, a gene can be annotated with different
GO terms. When a gene is mutated, gain or lose function, several
biological processes and molecular functions would be affected. To this
end, we analyzed the frequency of the genes that are annotated with the
top 10 scoring ontology terms. Figure 8A showed that APOE, PSEN1,
PTEN, RP65, and SRC genes play a role in eight different top scoring
GO terms for the glioma dataset. Although the importance of theAPOE
gene for glioma is discussed in the aforementioned section, the other
frequently observed genes are potentially associated with glioma as
follows. PSEN1 gene missense mutation is a well-known cause of a
neurological disorder, Alzheimer’s disease (Randa, 2019). The
RPE65 gene mutation causes several inherited retinal diseases
because it provides instructions to make essential proteins for
normal vision (Sodi et al., 2021; RPE65 gene: MedlinePlus Genetics).
PTEN can function as a tumor suppressor in a PI3K signaling pathway,
and when the tumor suppressor function of the PTEN enzyme is
disrupted bymutations, it causes cells to grow and uncontrolled division
and contributes to a cancerous tumor formation (Milella et al., 2015).
Several human cancers, such as colorectal, lung, breast, and prostate
cancer, have been strongly related to SRC, which promotes
maintenance, progression, development, and metastasis of cancers
(Wheeler et al., 2009). We extended the most frequently observed
gene list and compiled the list of the top 100 genes which are annotated
with the top 10 GO terms identified by GeNetOntology for the glioma
dataset. The word cloud visualized in Figure 8B shows that this list
included several glioma-associated genes, where several of these genes
are discussed in the previous section. Taken together with our previous
results, GeNetOntology findings imply that the identified genes have a
significant impact on disease development and progression for glioma.

5 Conclusion

The current advancements in next-generation sequencing and
other high-throughput technologies make it possible to acquire gene
expression profiles from tissue samples at quite low expenses. Various
gene expression datasets were publicly available right after these
technologies were developed, and extracting knowledge from these
datasets became a major challenge. In this study, we have introduced a
computational tool that uses biological knowledge from GO, which is
implemented into the ML algorithm performing gene selection. Our
methodology is different from the standard approaches where the
analysis is carried out by considering individual genes; however,
GeNetOntology has focused on the investigation of the ontology
terms to rank and discover the most influential feature sets.
Performance evaluations over 11 different datasets showed that the
GeNetOntology tool is consistent and robust. We have compared the
performance of GeNetOntology with that of PriPath andmaTE, which
are similar in their merits. The results show that, in most cases,
GeNetOntology outperforms maTE and PriPath, depending on the
gene expression dataset. We believe that GeNetOntology will assist
scientists, medical geneticists, and physicians in studying and
analyzing their gene expression datasets and in better
understanding disease-related genes and the main mechanisms

behind disease development and progression. GeNetOntology
could help researchers define dysregulated genes and gene ontology
terms in BP, CC, and MF categories, which can be potentially applied
to medical diagnostics. As a future work, we intend to make
improvements in our proposed approach in a way that allows us
to perform patient stratification based on gene expression, and it
allows us to determine druggable targets toward precision medicine.
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