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Aims: Our aim was to differentiate patients with mild cognitive impairment (MCI)

and Alzheimer’s disease (AD) from cognitively normal (CN) individuals and predict

the progression from MCI to AD within a 3-year longitudinal follow-up. A newly

developed Holo-Hilbert Spectral Analysis (HHSA) was applied to resting state

EEG (rsEEG), and features were extracted and subjected to machine learning

algorithms.

Methods: A total of 205 participants were recruited from three hospitals, with CN

(n = 51, MMSE > 26), MCI (n = 42, CDR = 0.5, MMSE ≥ 25), AD1 (n = 61, CDR = 1,

MMSE < 25), AD2 (n = 35, CDR = 2, MMSE < 16), and AD3 (n = 16, CDR = 3,

MMSE < 16). rsEEG was also acquired from all subjects. Seventy-two MCI patients

(CDR = 0.5) were longitudinally followed up with two rsEEG recordings within

3 years and further subdivided into an MCI-stable group (MCI-S, n = 36) and an

MCI-converted group (MCI-C, n = 36). The HHSA was then applied to the rsEEG

data, and features were extracted and subjected to machine-learning algorithms.

Results: (a) At the group level analysis, the HHSA contrast of MCI and different

stages of AD showed augmented amplitude modulation (AM) power of lower-

frequency oscillations (LFO; delta and theta bands) with attenuated AM power

of higher-frequency oscillations (HFO; beta and gamma bands) compared with

cognitively normal elderly controls. The alpha frequency oscillation showed

augmented AM power across MCI to AD1 with a reverse trend at AD2. (b)

At the individual level of cross-sectional analysis, implementation of machine

learning algorithms discriminated between groups with good sensitivity (Sen) and

specificity (Spec) as follows: CN elderly vs. MCI: 0.82 (Sen)/0.80 (Spec), CN vs.

AD1: 0.94 (Sen)/0.80 (Spec), CN vs. AD2: 0.93 (Sen)/0.90 (Spec), and CN vs. AD3:
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0.75 (Sen)/1.00 (Spec). (c) In the longitudinal MCI follow-up, the initial contrasted

HHSA between MCI-S and MCI-C groups showed significantly attenuated AM

power of alpha and beta band oscillations. (d) At the individual level analysis of

longitudinal MCI groups, deploying machine learning algorithms with the best

seven features resulted in a sensitivity of 0.9 by the support vector machine (SVM)

classifier, with a specificity of 0.8 yielded by the decision tree classifier.

Conclusion: Integrating HHSA into EEG signals and machine learning algorithms

can differentiate between CN and MCI as well as also predict AD progression

at the MCI stage.

KEYWORDS

resting state EEG (rsEEG), Holo-Hilbert spectral analysis (HHSA), machine learning, mild
cognitive impairment (MCI), amplitude modulation (AM)

GRAPHICAL ABSTRACT

A reference guide for early detection of MCI and AD.

1. Introduction

1.1. Alzheimer’s disease and the DIAN
study

Alzheimer’s disease (AD) is a chronic, debilitating
neurodegenerative disorder that manifests progressive cognitive
decline with behavioral and psychological symptoms until loss of
independence in daily activities, accounting for the leading cause
of dementia. The Dominantly Inherited Alzheimer’s Network
(DIAN) study demonstrates the natural history of familial AD
(Bateman et al., 2012), constructed by cross-sectional biomarker
data collection, including global cognitive score, fluid biomarkers,
neuroimaging, and structural biomarkers coupled with the
corresponding estimation of years from expected symptom onset.
Depending on the natural history, amyloid-beta deposition may
exist 25 years before symptom onset, ensuing in progressive
synaptic dysfunction and loss in vulnerable brain areas (Fu
et al., 2018). These pathologies can be measured by altered
glucose metabolism (FDG-PET; Herholz, 2010) and altered
brain oscillations (EEG or MEG; Cook and Leuchter, 1996).
However, the exact characteristics of neurophysiological signatures
(e.g., EEG) in the AD progression timeframe need further
investigation as these features may represent synaptic dysfunction
in the early stage or severe neuronal loss in later disease stages

(Smailovic and Jelic, 2019; Petrova et al., 2020). Therefore, EEG
biomarkers during prodromal AD can be a potential target for
preventive interventions or a monitoring tool for pharmacological
therapy (Babiloni et al., 2006a, 2013; McDade and Bateman, 2017).

The National Institute on Aging and Alzheimer’s Association
(NIA-AA) proposed a flexible AT(N) research framework for AD
in 2018, which defines the neurobiological profile of Alzheimer’s
disease continuum and welcomes new biomarkers to be added to
the system upon clinical validation (Jack et al., 2018). Based on this
framework, we use a cross-sectional rsEEG dataset following each
AD category to construct stage-wise characteristic-altered brain
oscillations. The clinical staging in the AD continuum grades from
one to six, where stages 3, 4, 5, and 6 correspond to mild cognitive
impairment (MCI), mild AD (AD1), moderate AD (AD2), and
severe AD (AD3; Jack et al., 2018), respectively.

1.2. Resting-state EEG as a
neurophysiological biomarker for the
diagnosis of AD

Resting-state electroencephalographic (rsEEG) signals provide
biomarkers for the early diagnosis of MCI and AD, where four
major features are observed, including slowing and reduced
complexity of EEG signals, aberrant synchronization measures
(Dauwels et al., 2010), and neuro-modulatory deficits in amplitude
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modulation (AM) of EEG oscillations (Falk et al., 2012).
To depict the time-frequency diagram of EEG signals, the
Hilbert-Huang transform (HHT) can be applied to efficiently
handle non-stationary EEG signals based on the Empirical
Mode Decomposition (EMD; Huang et al., 1998). The Holo-
Hilbert Spectral Analysis (HHSA) is an extension of the HHT
that provides AM information on each carrier frequency (f c)
band in addition to the time-frequency (Huang et al., 2016).
Conventional spectral-based EEG analyses such as the windowed
Fourier, complex wavelet, and Hilbert transform require a priori
knowledge to define the frequency bin of different frequency
bands before band-pass filtering. However, the HHSA uses
an adaptive model-free EMD approach to decipher raw EEG
signals into intrinsic mode functions (IMFs) before defining the
frequency bin of corresponding frequency bands upon a dyadic
rule, namely, the dyadic filter-bank property of IMF (Flandrin
et al., 2004). In this study, we used dyadic frequency bins to
demonstrate the results since they were close to the natural
bandwidths of IMFs. Meaningful frequency bands are more
appropriately defined as a posteriori. Other issues in the pre-
specified narrowband have been scrutinized using the FOOOF
algorithm (Donoghue et al., 2020), demonstrating the implications
of parameterizing neural power spectra into aperiodic and periodic
components on cognition and physiological conditions. We used
the FOOOF algorithm to examine our data, which showed
consistent results (Figure 3). Compared with FOOOF, HHSA
does not assume a model behind the signal. The categorization
and interpretation of the data spectral representations rely on
subsequent statistical analyses. The main advantage of using HHSA
over conventional signal processing is its ability to characterize
non-linear interactions across different oscillatory components
(Huang et al., 2016; Nguyen et al., 2019; Juan et al., 2021; Liang
et al., 2021).

1.3. Unmet needs of current rsEEG
analysis in the classification between MCI
and AD and in the prediction from MCI to
AD

Previous EEG reports only provide partial results concerning
cognitive decline and AD, chiefly emphasizing an increment in LFO
power density and a decrement in HFO power density in AD (van
Straaten et al., 2014). For example, reports of altered oscillations
in studies using LORETA-based source activity used predefined
frequency bands to discriminate between neurodegenerative
diseases, with the highest frequency band limited to beta2
(20∼30 Hz; Babiloni et al., 2006b, 2007, 2011). Two other studies
were also restricted to beta (12∼19.5 Hz) and beta3 (24∼29.99 Hz)
(Musaeus et al., 2018a; Smailovic et al., 2018), where higher
gamma-band signals were omitted because of intangible high-
frequency noise derived from the environment and muscle artifacts
(Whitham et al., 2008; Widmann and Schröger, 2012). Although
previous EEG studies compare MCI and AD with CN (Jelic
et al., 1996; Babiloni et al., 2006b, 2017, 2018; Musaeus et al.,
2018a; Nakamura et al., 2018), there is a lack of cross-sectional
survey of EEG signatures across MCI to each AD subgroup. By
utilizing the HHSA, a complete display of the power relationship

between AM frequency (f am) and carrier frequency (f c) with a
topographical description of the power density, specifically a full
dimensional frequency spectrum of EEG signals (i.e., f c, f am, and
time; Huang et al., 2016), is acquired. Extracted features can then
be deployed in machine-learning algorithms to classify disease and
predict disease progression (Falk et al., 2012; Fraga et al., 2013),
as the additional dimension of features empowers the algorithm’s
performance (i.e., f am in the HHSA) in the training stage (Falk
et al., 2012).

1.4. Study aims

Firstly, cross-sectional group-level HHSA rsEEG in the MCI
and each AD subgroup were compared with CN to construct
the EEG signal changes from the MCI to AD subgroups,
where the EEG signatures of the MCI and AD subgroups were
hypothesized to display stage-wise progressive changes compared
to CN. Secondly, we differentiated patients in the MCI and
AD subgroups from the CN group by extracting features from
the conventional methods and HHSA for further deployment in
machine learning algorithms. Thirdly, we prospectively followed
up on the MCI group within 3 years, resulting in the MCI-
converted (MCI-C) and MCI-stable (MCI-S) subgroups. Using
inter-group comparisons of baseline HHSA EEG, group-levels
were delineated using statistically significant differences utilizing
the abovementioned feature extraction approach, combined with
machine-learning algorithms to predict which subgroup of patients
would progress to AD.

2. Materials and methods

In this cross-sectional retrospective study, 205 participants
were recruited from three hospitals in Taiwan; Yang-Ming Hospital
in Taoyuan city, Chi-Mei Medical Centre in Tainan city, and
Taipei Veterans General Hospital. All participants’ rsEEGs were
recorded in the awake eyes-closed (EC) condition for 6 min.
Clinically, probable AD diagnosis was made following the National
Institute of Neurological and Communicative Disorders and
Stroke–Alzheimer’s Disease and Related Disorders Association
(McKhann et al., 1984) and DSM-IV-TR criteria (Segal, 2010).
Disease progression severity was categorized using the Chinese
version of the Mini-Mental State Examination (MMSE; Folstein
et al., 1975) and Clinical Dementia Rating (CDR) score (Lin and
Liu, 2003). Participants were subdivided into five groups based
on MMSE and CDR score, namely, CN (n = 51, MMSE > 26),
MCI (n = 42, CDR = 0.5, MMSE ≥ 25), AD1 (n = 61, CDR = 1,
MMSE < 25), AD2 (n = 35, CDR = 2, MMSE < 16), and AD3
(n = 16, CDR = 3, MMSE < 16) The inclusion criteria in the
MCI longitudinal cohort study was a CDR 0.5 score with at
least two rsEEG recordings within a 3-year follow-up, yielding 72
participants. The demographics of all participants are shown in
Table 1 (See Supplementary Figure 2 for grouping rationale). The
average age (i.e., years) of the CN was 69.6 ± 5.8, whereas the
average age across the AD subgroups was MCI, 73.5 ± 8.2; AD1,
78.9 ± 6.5; AD2, 80.9 ± 5.2; AD3, 80.1 ± 15.9, respectively. The
MMSE score revealed a statistically significant difference among
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TABLE 1 Demographic features of cognitively normal subjects (CN), MCI, and AD subgroups.

CN (n = 51) MCI
(n = 42)

AD1
(n = 61)

AD2
(n = 35)

AD3
(n = 16)

Gender (Male/Female) 27/24 21/21 30/31 13/22 3/13

Age in years, mean (std) 69.6 (5.8) 73.5 (8.2) 78.9 (6.5) 80.9 (5.2) 80.1 (5.9)

MMSE, mean (std) 28.5 (2.7)* 26.5 (1.4)* 18.2 (3.1)* 11.9 (2.3)* 5.4 (1.8)*

CDR NA 0.5 1 2 3

Dataset partition
(Training/Testing)

31/20 25/17 44/17 21/14 12/4

CN, cognitively normal subjects; MCI, mild cognitive impairment; AD1, mild AD; AD2, moderate AD; AD3, severe AD; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State
Examination; NA, not available. *Asterisk denotes statistically significant differences based on one-way ANOVA and Tukey HSD post hoc pair-wise comparisons.

the CN and AD subgroups. The ratio of dataset partitioning for
training and testing was approximately 1.47∼3.

2.1. Workflow of EEG signals analysis

The rsEEG data was acquired from both CN and patients,
where MCI and AD patients were further categorized into four
subgroups: MCI, AD1, AD2, and AD3 (Jack et al., 2018). EEG
denoising and preprocessing were performed and subjected to
windowed FFT, HHT, and HHSA to decompose and display their
spectral and spectro-temporal features, respectively. At individual-
level analyses, linear and non-linear features were extracted from
these methods and deployed in machine learning algorithms to
differentiate between patients with MCI and AD subgroups from
CN individuals. Subsequently, the rsEEG analysis was conducted
in the pre-specified MCI group (CDR = 0.5) and was followed up
on prospectively within 3 years. Two subgroups were categorized
according to the clinical labeling: MCI-S and MCI-C. Group-level
comparisons were then carried out between and within groups.
The same approach was applied to the individual-level analysis
by deploying machine-learning algorithms to discriminate rsEEG
signals between groups at baseline, the basis of which was to predict
which group would progress to AD. The workflow is depicted in
Figure 1.

2.2. EEG acquisition protocol and signals
processing

EEG data acquisition was performed using the Nihon
Kohden amplifier with 19 electrode placements according to the
international 10–20 system (Supplementary Figure 1). Electrodes
were saturated with Ag/AgCl gel and placed on all participants’
heads. The whole 6 min for both eye-closed (EC) and eye-
opened (EO) rsEEG was digitized at a 200 Hz sampling rate
with an online notch filter at 60 Hz. The reference was the
average of electrodes at the two sides of the linked-ear referential
electrodes (A1 and A2). Two pairs of bipolar electrodes were
also mounted to detect eye movements with the VEOU and
VEOL electrodes placed above and below the left eye, respectively,
with the HEOR and HEOL electrodes positioned adjacent to the
canthus of each eye. Impedances of all channels were maintained
below 5 k�.

2.2.1. EEG recording, preprocessing, and
denoising

The recorded EEG data were fragmented into consecutive
epochs of 7,000 ms. Epochs with ocular, muscular, and other
types of artifacts were preliminarily identified and excluded by a
computerized procedure using Independent Component Analysis
(ICA; Gilberet et al., 2017). Finally, the windowed FFT, HHT, and
HHSA were applied to compute the power spectrum of each trial.
The frequency bins in FFT were defined as delta (0.5∼4 Hz), theta
(4.5∼8 Hz), alpha (8.5∼12 Hz), beta (12.5∼30 Hz), and gamma
(30.5∼ 80 Hz, Fraga et al., 2013).

2.2.2. HHSA for EEG recordings–The concept of
carrier frequency and AM in HHSA

The HHSA (Huang et al., 2016; Nguyen et al., 2019), developed
upon the EMD (Huang et al., 1998), was applied to the pre-
processed EEG signals. The EMD is an adaptive time-frequency
decomposition method that utilizes the local information of the
signal to decompose the data into a set of intrinsic mode functions
(IMF), defined as a function with the following properties:
(1) the number of local extrema (including local maxima and
minima) and the number of zero-crossings that are either
equal to or differ at most by one; and (2) the mean value
of the envelope estimated by local maxima and local minima
to be zero (Huang et al., 1998). Essentially, EMD serves as a
dyadic filter bank to the data, i.e., each IMF represents signal
information in different log2 time scales (Flandrin et al., 2004).
The instantaneous frequency and amplitude of each IMF are
calculated from a direct quadrature transform (Huang et al.,
2009), which constitutes the HHT and generates a high-resolution
time-carrier frequency spectral representation, where the carrier
frequency is comparable to conventional narrowband frequency.
The envelope (i.e., amplitude function) of each given IMF is
acquired by fitting along the maxima of the absolute-valued IMF
using a cubic spline algorithm (Huang et al., 2009). Through the
application of the second-layer EMD on the amplitude function,
the HHSA is accomplished via the two-layer EMD of the natural
signals and generates the interdependence between the amplitude
modulation (AM) frequency and the carrier frequency and a two-
dimensional (AM-FM) spectral depiction. FM is the variation of
instantaneous frequency over time, while AM is the variation
of envelope amplitude over time. The x-axis represents carrier
frequency (f c), and the y-axis denotes the AM frequency (f am).
The display of f am power of the f c results from marginally
summed power spectra across time to a specific frequency

Frontiers in Aging Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1195424
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1195424 August 16, 2023 Time: 14:37 # 5

Chu et al. 10.3389/fnagi.2023.1195424

FIGURE 1

Workflow of rsEEG signals analysis.

band (Huang et al., 2016; Juan et al., 2021; Liang et al., 2021;
Supplementary Figures 9, 10).

In this study, both the first and second-layer EMDs were
performed using an improved complete ensemble EMD with
adaptive noise (CEEMDAN; Torres et al., 2011; Colominas et al.,
2012, 2014; Liang et al., 2021; Tsai and Liang, 2021) method to
attain the first- and second-layer IMFs. Compared to the original or
ensemble EMD (Wu and Huang, 2009), the improved CEEMDAN
method delivers less mode-mixing, lower reconstruction error (i.e.,
remaining noise within IMFs), and more consistent frequency
distribution ranges in the order of IMFs (Colominas et al., 2014;
Tsai and Liang, 2021) for diverse noisy signals. This study’s
frequency bins were defined on a dyadic scale (2−1, 20, 21, 22, 23,
etc.), generating the frequency bands of interest into low-frequency
(Lf; 0.5∼1 Hz), delta1 (1∼2 Hz), delta2 (2∼4 Hz), theta (4∼8 Hz),
alpha (8∼16 Hz), beta (16∼32 Hz), and gamma (32∼100 Hz). The
upper limit of the gamma band 100 Hz is based on the Nyquist rule.

2.2.3. Statistical analysis
For statistical comparisons, a two-tailed cluster-based non-

parametric permutation (CBnPP) test was conducted (Maris et al.,
2007; Groppe et al., 2011) on the multichannel HHSA spectra
(channels x AM x frequency bins x carrier frequency bins). The
two-dimensional power was processed for the rsEEG signals in the
CN, MCI, and AD groups in EC. Pair-wise comparisons were then
performed for EC differences between MCI vs. CN, AD1 vs. CN,
AD2 vs. CN, and AD3 vs. CN. The neighboring distance between
two EEG sensors was defined as 70 mm with 5,000 permutations
for each test, which was efficient for multiple comparison problems
(Maris and Oostenveld, 2007). Differences between the two groups
were analyzed using Student’s t-test. All p-values were two-tailed,
and a p < 0.05 was considered significant, which is illustrated as a
white circle in the figures (Figures 2, 4).

2.2.4. Classification and prediction based on
feature extraction and selection for machine
learning

Features from the FFT-, HHT-, and HHSA-based analytical
methods were extracted to fit the machine learning algorithms.
For the HHSA-based feature extraction, 262,656 features were
derived from the topographical whole head map. EEG signatures
were extracted from the AM-FM energy map of 19 electrodes,
where the individual f am, f c, or ratio between two EEG signatures
were used as features. Subsequently, a correlation was conducted
on features to retain one distinct feature from a cluster of
features with a correlation higher than 0.95 to remove redundant
features. Subsets of 100 features from the tens of thousands of
remaining features were applied to the LogitBoost algorithm to
select limited (<10) high-ranking important features to avoid
overfitting (Guyon and Elisseeff, 2003). These features were
then used to fit the machine learning algorithms for binary
classification between MCI and AD subgroups and CN. In
this study, seven common algorithms were employed, namely,
LogitBoost, Bagging (Bag), Gentle adaptive boosting (GentleBoost),
Decision tree (Tree), support vector machine (SVM), Naïve Bayes,
and K-Nearest Neighbor (K-NN), implemented via the MATLAB
software (R2018α, shown in Supplementary Figures 11, 17, 18).
Each algorithm underwent 10-fold cross-validation to yield receiver
operating characteristic (ROC) curves with area under the ROC
curve (AUC) values (Supplementary Figure 11). The performance
metrics of sensitivity, specificity, precision, F1 measure, and
accuracy are presented in the results (Tables 4, 6; Supplementary
Figures 12, 13).

Seventy-two patients in the MCI (CDR = 0.5) cohort were
followed up longitudinally with two rsEEG recordings within
3 years. Following clinical labeling, they were further subdivided
into MCI-S (n = 36) and MCI-C (n = 36) subgroups. Subsequently,
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FIGURE 2

The contrasted HHSA in the eyes-closed (EC) condition for (A) MCI–CN, (B) AD1-CN, (C) AD2-CN, and (D) AD3-CN shows increasing AM power of
lower-frequency oscillations (low-frequency, delta, and theta bands) with decreasing AM energy in higher-frequency oscillations (beta and gamma
bands) across groups. The alpha band acts as a transition zone, revealing increasing AM energy over posterior regions in MCI and AD1 with reducing
AM energy over anterior regions across entire patient groups. The x-axis denotes the carrier frequency, while the y-axis denotes AM frequency. The
frequency bin is on a dyadic scale (2-1, 20, 21, 22, 23, etc.), except for the gamma band (32–100 Hz). The upper limit of the gamma band is 100 Hz
based on Nyquist sampling. The color bar denotes t-statistics ranging from blue (–2) to red (+ 2). White circles indicate that contrast on those EEG
channels is statistically significant (p < 0.05, two-tailed cluster permutation test).

machine learning algorithms’ performances were evaluated with
features derived from different analytical methods to predict AD
progression in MCI. The dataset for machine learning was split
into training and testing subsets with a 10-fold cross-validation
procedure during the model training process. The sequence of our
data processing, including carrier frequency and AM was subjected
to each decomposition method and FOOOF algorithm, which
displayed the periodic and aperiodic components as shown in the
in-text Figure 3 and Supplementary Material 15 (Supplementary
Figure 20).

3. Results

3.1. Group-level analysis and contrasted
HHSA between AD subgroups and CN
subjects

Overall, increasing AM power of LFO became more prominent
with disease progression. Decreasing AM power of HFO emerged
earlier during MCI, which was sustained along the disease course.

Alpha band oscillations functioned as a transitional zone, revealing
increasing AM power in posterior regions but reducing AM
power in anterior regions in MCI. With disease progression, the
alpha band exhibited more widespread decreasing AM power,
especially in AD2.

3.2. Group-level rsEEG analysis

The three-dimensional (3D) relationship amid the carrier
frequency bands, AM frequencies, and topographical energy
distribution for MCI vs. CN, AD1 vs. CN, AD2 vs. CN, and
AD3 vs. CN in EC is summarized in Figure 2. Energy pattern
comparisons between MCI vs. CN and AD1 vs. CN are illustrated
following brain regions and classified by topographical electrodes
in Tables 2, 3, respectively. Figure 2 is the summary result
of the statistical analysis based on CBnPP across the whole
AD continuum, whereas Tables 2, 3 display the significant
topographical energy patterns between MCI vs. CN and AD1
vs. CN, serving as a comparison reference guide to conventional
rsEEG spectral-analysis in MCI and AD patients (Figure 2;
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FIGURE 3

True oscillatory activity using the FOOOF algorithm: (A) Periodic and aperiodic fit of EEG data; the upper row illustrates the mean full spectrum
(black) and mean aperiodic fit (red) of each group using the FOOOF algorithm. The lower row illustrates the mean periodic component (blue) of
each group, (B,C) A comparison of full and aperiodic adjusted spectra across all groups, where panel (B) is the full mean spectra of all groups and
panel (C) is the aperiodic adjusted mean spectra of all groups, (D,E) Aperiodic parameters across all groups; (D) shows that there is no difference for
offsets and (E) shows that the exponent parameter increases with the progression of AD [F(4,200) = 10.83, p-value < 1 × 10-5], (F) shows the
F-statistics of ANOVA across all groups for the full and aperiodic adjusted spectra.

Tables 2, 3). Individual group-level comparisons with CN across
the AD continuum are illustrated in Supplementary Figures 3–
6. Due to age being a confounding factor in this study, we also

conducted an analysis of covariance (ANCOVA), which showed
consistent results across the AD continuum (Supplementary
Figure 21).
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FIGURE 4

Inter-group comparisons between MCI-converted and MCI-stable subgroups. Left: The contrasted HHSA between MCI-C and MCI-S subgroups of
time 1 (baseline) shows decreasing AM power of the alpha band over the frontal, temporal, and parietal brain regions. Meanwhile, reduced AM
energy is seen in the beta band over the temporal, parietal, and occipital brain regions. Right: The HHSA contrast of time 2 (3 years apart) shows a
trend of increasing AM power of the delta and theta bands coupled with decreasing AM power of the alpha and beta bands. However, no statistically
significant contrast is seen between electrodes. The annotation is the same as Figure 2 [p < 0.05, CBnPP with 5,000 permutations, two-tailed; max
distance (cluster) = 70 mm].

3.2.1. MCI versus CN
The contrasted HHSA EEG between MCI and CN revealed

AM with increasing energy of LFO delta (1∼4 Hz) and theta
(4∼8 Hz) bands in posterior brain regions. In contrast, the bands
of HFO beta (16∼32 Hz) and gamma (32∼100 Hz) showed
decreasing AM power globally. Regarding the interdependency
between AM frequency and carrier frequency, the AM-FM energy
maps disclosed an increasing power of delta and theta bands
modulated with AM frequency below their respective frequency
bands. Conversely, the beta and gamma bands’ pronounced
decreasing power was modulated with AM frequency below their
respective frequencies. The negative modulating pattern of HFO
was globally distributed. However, the positive modulating pattern
of LFO was scattered over posterior brain regions. The alpha
frequency band revealed augmented AM power modulation in low
(Lf; 0.5∼1 Hz) and delta frequency in posterior brain regions with
attenuated AM power from delta-2 (2∼ 4 Hz) to alpha (8∼16 Hz)
frequency in anterior regions (Figure 2A; Table 2; Supplementary
Figure 3).

3.2.2. AD1 versus CN
The contrasted HHSA EEG between AD1 and CN showed

increasing AM energy of LFO with a reverse trend showing
decreasing AM power of HFO globally. The alpha band exhibited
decreasing AM energy in frontal and temporal areas, whereas
increasing AM energy was only observed in the left temporal area.
The AM-FM energy maps depicted densely augmented LFO power
with AM frequency below their respective frequencies. Inversely,
the prominent attenuated energy of HFO bands was modulated
by AM frequency below the beta and gamma bands, respectively.
The negative modulating trend of the HFO was widely distributed.
Meanwhile, the positive modulating trend of the LFO spread
globally in delta-2 and theta bands but sparsely in the delta-1 band
(Figure 2B; Table 3; Supplementary Figure 4).

3.2.3. AD2 versus CN
The contrasted HHSA EEG between AD2 and CN depicted

increasing AM power of LFO with decreasing AM energy of HFO
globally. Declining AM power of the alpha band was found in
frontal, temporal, and occipital regions, a reverse brain oscillatory
pattern compared with MCI. The AM-FM energy maps showed
increasing power of LFO bands. Contrarily, HFO bands manifested
decreased power. The negative modulating trend in the energy
density of HFO was globally distributed. Meanwhile, the positive
modulating trend of LFO was densely dispersed over the whole
brain. The energy map of the alpha band in the frontal, central,
temporal, and occipital areas showed a sparse decreasing power
density pattern (Figure 2C; Supplementary Figure 5).

3.2.4. AD3 versus CN
The contrasted HHSA between AD3 and CN displayed

increased AM energy of LFO globally. Meanwhile, decreasing AM
power of alpha, beta, and gamma bands was widely dispersed.
The AM-FM energy maps revealed markedly augmented LFO
power modulated with AM frequency below their respective
frequencies. Conversely, attenuated alpha and HFO energy showed
AM frequency modulation below alpha, beta, and gamma bands.
Modulating trends in the energy density were broadly distributed
except for the theta band, which was restricted to the parietal
region of the delta-modulating theta frequency band (Figure 2D;
Supplementary Figure 6).

3.3. Classification performance of
extracted features for best-fitted
algorithms

The performance of seven binary classification algorithms,
namely, LogitBoost, Bag, GentleBoost, Decision Tree, Support
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TABLE 2 MCI vs. CN.

Carrier frequency (FM) δ 1 (1–2 Hz) δ 2 (2–4 Hz) θ (4–8 Hz) α (8–16 Hz) β (16–32 Hz) γ (32–100 Hz)

AM Lf δ 1 Lf δ 1 δ 2 Lf δ 1 δ 2 θ Lf δ 1 δ 2 θ α Lf δ 1 δ 2 θ α β Lf δ 1 δ 2 θ α β γ

Brain region Electrode

Frontal FP1

FP2

F7

F3

FZ

F4

F8

Central C3

CZ

C4

Parietal P3

PZ

P4

Temporal T3

T5

T6

T4

Occipital O1

O2

The topographical registration of AM frequencies and their corresponding carrier frequency bands displayed a significant increase in delta and theta power density at posterior brain regions. In contrast, decreasing beta and gamma power density was distributed
globally. The red color denotes higher energy, while the blue color denotes lower energy in the MCI group. Lf designates low-frequency oscillation, with the frequency bin 0.5∼1 Hz. The δ1 represents the frequency bin from 1 to 2 Hz, and the δ2 denotes the frequency
bin from 2 to 4 Hz. The rest of the frequency bins follow the dyadic scale, as mentioned.
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TABLE 3 AD1 vs. CN.

Carrier frequency δ 1 (1–2 Hz) δ 2 (2–4 Hz) θ (4–8 Hz) α (8–16 Hz) β (16–32 Hz) γ (32–100 Hz)

AM Lf δ 1 Lf δ 1 δ 2 Lf δ 1 δ 2 θ Lf δ 1 δ 2 θ α Lf δ 1 δ 2 θ α β Lf δ 1 δ 2 θ α β γ

Region Electrode

Frontal FP1

FP2

F7

F3

FZ

F4

F8

Central C3

CZ

C4

Parietal P3

PZ

P4

Temporal T3

T5

T6

T4

Occipital O1

O2

Topographical registration of AM frequencies with their corresponding carrier frequency bands. Widespread increasing energy density is seen in lower-frequency oscillations, with robust decreases in higher-frequency oscillations. Notably, the increasing power density
of the lower-frequency oscillations spreads from posterior to whole brain regions in AD1 when compared with MCI. The annotation is the same as in Table 2.
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TABLE 4 Performance evaluation of classification algorithms deployed to discriminate between MCI and CN used features extracted from group-level
comparison by different signal analytical methods.

LogitBoost Bag GentleBoost Tree SVM Naive k-NN

HHSA Sensitivity 0.71 0.65 0.82 0.71 0.59 0.82 0.59

Specificity 0.80 0.85 0.80 0.75 0.80 0.70 0.80

Precision 0.75 0.79 0.78 0.71 0.71 0.70 0.71

F1-measure 0.73 0.71 0.80 0.71 0.65 0.76 0.65

Accuracy 0.76 0.76 0.81 0.73 0.70 0.76 0.70

HHT Sensitivity 0.35 0.41 0.41 0.47 0.53 0.71 0.29

Specificity 0.55 0.65 0.55 0.50 0.60 0.35 0.35

Precision 0.40 0.50 0.44 0.44 0.53 0.48 0.28

F1-measure 0.38 0.45 0.42 0.46 0.53 0.57 0.29

Accuracy 0.46 0.54 0.49 0.49 0.57 0.51 0.32

FFT Sensitivity 0.71 0.71 0.71 0.65 0.71 0.82 0.53

Specificity 0.80 0.65 0.75 0.70 0.75 0.75 0.85

Precision 0.75 0.63 0.71 0.65 0.71 0.74 0.75

F1-measure 0.73 0.67 0.71 0.65 0.71 0.78 0.62

Accuracy 0.76 0.68 0.73 0.68 0.73 0.78 0.70

TABLE 5 The performance summary of the best classifiers deployed in group-level comparisons used HHSA-based feature extraction; fam denotes
amplitude modulation frequency, fc represents carrier frequency, and SVM denotes support vector machine.

Classification Performance Algorithm Features
(n)

Features/Feature ratio

Sensitivity Specificity Accuracy Numerator Denominator

MCI vs. CN 0.82 0.80 0.81 Gentle
Boost

5 Fp1, f am 0–1 Hz, fc 16–32 Hz
F4, f am 2–4 Hz, f c 4–8 Hz
F8, f am 1–2 Hz, f c 2–4 Hz

T6, f am 0–1 Hz, f c 32–64 Hz
O2, f am 4–8 Hz, f c 16–32 Hz

AD1 vs. CN 0.94 0.80 0.86 Bag 6 Fp1, f am 0–1 Hz, f c 16–32 Hz
F4, f am 0–1 Hz, f c 32–64 Hz

F4, f am 1–2 Hz, f c 1–2 Hz
Fz, f am 0–1 Hz, f c 32–64 Hz
T3, f am 8–16 Hz, f c 8–16 Hz

P4, f am 4–8 Hz, f c 4–8 Hz

AD2 vs. CN 0.93 0.90 0.91 Bag 4 Fp1, f am 0–1 Hz, f c 4–8 Hz
Fp2, f am 0–1 Hz, f c 32–64 Hz
Fz, f am 0–1 Hz, f c 32–64 Hz
P4, f am 8–16 Hz, f c 8–16 Hz

Fp2, f am 0–1 Hz, f c
1–2 Hz

Fp2, f am 1–2 Hz, f c
32–64 Hz

F4, f am 0–1 Hz, f c
2–4 Hz

P3, f am 1–2 Hz, f c
4–8 Hz

AD3 vs. CN 0.75 1.0 0.96 SVM and
Naïve Bayes

3 P3, f am 32–64 Hz, f c 32–64 Hz
P4, f am 4–8 Hz, f c 4–8 Hz

O2, f am 4–8 Hz, f c 8–16 Hz

F8, f am 1–2 Hz, f c
2–4 Hz

P4, f am 8–16 Hz, f c
8–16 Hz

P4, f am 1–2 Hz, f c
16–32 Hz

Vector Machine (SVM), Naïve Bayes, and k –nearest neighbor
(k-NN), utilized features extracted from three analytical methods,
encompassing HHSA, HHT, and windowed FFT deployed to
classify MCI or CN, as shown in Table 4 (Supplementary
Figure 12). HHSA-based feature extraction outperformed other
methods, with the GentleBoost algorithm surpassing other

classifiers with a sensitivity of 82%, specificity of 80%, and accuracy
of 81% (Table 4 and Supplementary Figure 19). Therefore, only
the performance summary of the best algorithm deployed in group-
level analyses utilizing HHSA-extracted features is presented in
Table 5. Regarding HHSA-based binary classification between MCI
vs. CN, AD1 vs. CN, AD2 vs. CN, and AD3 vs. CN, five, six,
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four, and three features best fitted the classifiers, respectively.
The Bag algorithm outperformed other classifiers in the binary
classification for AD1 vs. CN and AD2 vs. CN. SVM and Naïve
Bayes transcended other classifiers for AD3 vs. CN (Table 5).
HHSA-extracted features contained channel location, f am, and f c.
Distribution of carrier frequencies in LFO (delta and theta bands)
vs. HFO (alpha, beta, and gamma bands) for binary classification
between MCI and CN, as well as AD1 and CN, were 2 vs. 3 and
2 vs. 4. The best-fitted features in binary classification between
moderate AD and CN and severe AD and CN were based on
a feature ratio. The feature ratios were LFO/LFO, HFO/HFO,
HFO/LFO, and HFO/LFO in the binary classification between
AD2 and CN, whereas they were HFO/LFO, LFO/HFO, and
HFO/HFO in the binary classification between AD3 and CN
(Table 5).

3.4. Longitudinal follow-up differences in
HHSA-rs EEG between MCI-C and MCI-S

The inter-group comparisons between MCI-C and MCI-S are
displayed in Figure 4. The left panel shows the baseline-contrasted
HHSA between MCI-C and MCI-S (i.e., Time 1), exhibiting
decreasing AM power from theta to delta2 (2∼4 Hz) band at
the alpha f c in the frontal, temporal, and parietal regions. In the
temporal, parietal, and occipital regions, decreasing AM power is
seen from alpha to low-frequency (0.5∼1 Hz) bands at the beta
f c. However, following the Bedrosian theorem (Bedrosian, 1963),
diminished AM power of theta frequency band modulating theta
carrier frequency should not be considered a reliable signature.
The right panel shows the contrasted HHSA between MCI-
C and MCI-S at a 3-year follow-up time point (i.e., Time 2),
exhibiting no statistically significant difference. However, a trend
of decreasing AM power in alpha and beta bands, accompanied

by increasing AM power in delta and theta bands, is seen
(Figure 4).

3.4.1. Intra-group comparisons in longitudinal
HHSA-rsEEG of MCI-C and MCI-S

The intra-group comparisons within the 3-year longitudinal
follow-up rsEEG in MCI-C and MCI-S subgroups are shown
in Supplementary Figure 7. The left panel displays that MCI-
C within-group analysis shows a trend of increasing AM power
in alpha and beta fc, with decreasing AM power in theta and
delta fc. The right panel reveals that the MCI-S within-group
analysis shows a trend of increasing AM energy in the alpha
fc. However, no statistically significant contrasts are seen within
groups (Supplementary Figure 7).

3.4.2. Performance evaluation of extracted
features by various analytical methods

The performance of seven binary classification algorithms
applied to discriminate between MCI-S and MCI-C, with their
features extracted from baseline rsEEG contrast between subgroups
using the HHSA, HHT, and windowed FFT, is shown in Table 6
(Supplementary Figure 13). Features differentiating MCI-C from
MCI-S in baseline rsEEG could function as predictors for
progression in MCI. Regarding the sensitivity, SVM (90%) yielded
the best results for HHSA, Tree (70%) yielded the best results for
HHT, whereas LogitBoost (80%), Tree (80%), and K-NN (80%)
yielded the best results for the windowed FFT-based features
extraction, respectively. Meanwhile, concerning specificity, Tree
(80%), SVM (70%), and Bag (70%) reported the best performance
by HHSA, HHT, and windowed FFT-based features extraction,
respectively (Table 6).

HHT and windowed FFT-based features contained channel
location and f c. Concurrently, HHSA-based feature extraction
added an f am dimension. The distribution of f c in LFO (delta

TABLE 6 Performance evaluation of prediction algorithms used features extracted from baseline rsEEG comparison between MCI-C and MCI-S
subgroups by different analytical methods.

LogitBoost Bag GentleBoost Tree SVM Naive k-NN

HHSA Sensitivity 0.50 0.50 0.70 0.70 0.90 0.70 0.50

Specificity 0.70 0.70 0.60 0.80 0.50 0.60 0.50

Precision 0.63 0.63 0.64 0.78 0.64 0.64 0.50

F1-measure 0.56 0.56 0.67 0.74 0.75 0.67 0.50

Accuracy 0.60 0.60 0.65 0.75 0.70 0.65 0.50

HHT Sensitivity 0.60 0.60 0.60 0.70 0.50 0.30 0.50

Specificity 0.30 0.50 0.50 0.50 0.70 0.50 0.60

Precision 0.46 0.55 0.55 0.58 0.63 0.38 0.56

F1-measure 0.52 0.57 0.57 0.64 0.56 0.33 0.53

Accuracy 0.45 0.55 0.55 0.60 0.60 0.40 0.55

FFT Sensitivity 0.80 0.60 0.60 0.80 0.50 0.50 0.80

Specificity 0.50 0.70 0.50 0.60 0.60 0.50 0.60

Precision 0.62 0.67 0.55 0.67 0.56 0.50 0.67

F1-measure 0.70 0.63 0.57 0.73 0.53 0.50 0.73

Accuracy 0.65 0.65 0.55 0.70 0.55 0.50 0.70
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and theta bands) vs. HFO (alpha, beta, and gamma bands) in
HHSA-extracted, HHT-extracted, and FFT-extracted features were
4 vs. 3, 6 vs. 1, and 3 vs. 4 (Supplementary Figure 8).

3.5. Conversion rate of Alzheimer’s
clinical syndrome in MCI patients

The conversion rate of MCI to AD in the 3-year longitudinal
follow-up yielded a percentage of 17% within 1 year, 36% in 2 years,
and 44% in 3 years following clinical diagnostic procedures. This is
shown in Table 7.

4. Discussion

The HHSA provides whole-head topography contrasts
following AM-FM interdependency orientation, where
these spectral representations are capable of extracting the
interdependence of f am and f c for further utilization to examine
CFC using the standard PAC method (Canolty and Knight, 2010)
to depict potential local and long-range CFCs (Juan et al., 2021;
Liang et al., 2021). The presence of AM power in the f c is the
necessary condition for CFC though CFC requires identifying
the modulation source (Juan et al., 2021). The HHSA results
are collapsed across time as the time variation in rsEEG is less
important than the overall AM-FM structure. The advantage of
EMD-based HHSA over FFT and wavelet transform is that EMD
is apt for analyzing non-stationary and non-linear data, which
is not feasible when applying conventional FFT-based spectral
analysis (Huang et al., 1998, 2016). The power spectrum consists
of periodic and aperiodic components, where the differential
effect of both components has been demonstrated in physiological
and pathological aging (He, 2014; Donoghue et al., 2020; van
Nifterick et al., 2023). Thus, we used the multitaper-based power
spectra of each group to fit the model and adjust the aperiodic
component, which yields the periodic component and reveals
oscillatory activities in LFO and HFO (Figure 3). The AM-FM
energy map genuinely displays systemic fluctuating patterns
across the AD spectrum, which has yet to be reported. Fitting
our data to the FOOOF algorithm yields aperiodic and periodic
components compared with recently published research. This is
further discussed in the novel alpha and gamma AM findings.
Finally, regarding machine learning, adding an AM dimension
boosts their performance for classification and prediction.

4.1. Converging findings of altered brain
oscillations in MCI and the AD continuum

4.1.1. Altered spectral power in carrier frequency
across the AD continuum correlates with
neurobiological biomarkers

The typical pattern of spectral analysis of rsEEG in MCI
and AD revealed augmented power of delta and theta bands
with attenuated power of alpha and beta bands, accompanied by
slowing of the alpha peak frequency, also known as EEG slowing
(Supplementary Figure 14; Dauwels et al., 2010; Hsiao et al., 2013;

van Straaten et al., 2014; Wu et al., 2014; Babiloni et al., 2018). In
this study, supporting evidence is provided for the characteristic
brain oscillatory patterns of MCI and AD, derived from various
measurements with conventional FFT-based spectral analysis of
rsEEG and advanced analysis of spectral power fluctuation over
time (i.e., amplitude modulation; Figure 2). In addition, integrating
the evidence of neurobiological profiles across the AD spectrum
(Jack et al., 2018) with brain oscillatory signatures provides a
non-invasive, affordable, and reproducible surrogate marker for
screening, detecting, and follow-up in large populations with early
cognitive decline (Maestú et al., 2019).

Our results showed an increment in AM power of LFO (delta
and theta bands) with disease progression, accompanied by a
decrement in AM power of HFO (beta and gamma bands) in MCI
patients, sustained along the disease course. Incorporating grading
of neurobiological profiles in the AD continuum (Jack et al., 2018)
and correlation with EEG signatures paved a broad way for rsEEG
utility in clinical applications (Maestú et al., 2019). For instance,
correlating global field power (GFP; Lehmann and Skrandies, 1980)
and CSF profiles revealed that the CSF amyloid-beta 42 effect
correlates with GFP augmentation of delta and theta, whereas
CSF p-tau and t-tau effects were associated with GFP attenuation
of alpha and beta bands (Smailovic et al., 2018). MCI patients
display increased prefrontal and occipital delta power, which is
negatively correlated with cognitive function, structural MRI, and
AD-pattern FDG-PET (Babiloni et al., 2018; Nakamura et al.,
2018), while increased global theta power negatively correlates
with memory capacity, structural MRI, and cognitive performance
(Musaeus et al., 2018a; Nakamura et al., 2018). Notably, increased
global theta power may not be a characteristic marker of MCI
caused by AD (Nakamura et al., 2018). In our results, MCI patients
exhibited increased AM power of delta and theta bands in posterior
brain regions and decreased beta and gamma AM power globally
compared with CN (Figure 2A; Table 2; Supplementary Figure 3).
Apart from findings in the spectral power of carrier frequency, we
also report AM power of dual-pattern alpha oscillations and global
attenuated gamma oscillations, which depict full-band spectro-
temporal representations of rsEEG signals in MCI (Cassani and
Falk, 2019).

In the AD continuum, our results disclosed globally augmented
AM power of LFO. In contrast, there was widespread attenuated
AM power of HFO with sparsely increasing posterior alpha
AM power in AD1 and pronounced decreasing alpha AM
power in AD2 (Figures 2B, C; Supplementary Figures 3, 4).
Regarding the spatial source dipole, alpha and beta source activities

TABLE 7 Probability of 3-year longitudinal follow-up of MCI progressing
to mild AD yearly.

MCI patients with CDR 0.5

MCI-stable
(MCI-S)

MCI-converted
(MCI-C)

n 36 36

Conversion to mild
AD within 1 year

0 16.6% (n = 6)

Conversion to mild
AD within 2 years

0 36.1% (n = 13)

Conversion to mild
AD within 3 years

0 44.4% (n = 16)
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shifted anteriorly in AD1 patients with increased delta and theta
GFP and decreased alpha GFP, which have been deployed in
linear discriminant analyses, yielding the best performance in
binary classification (Huang et al., 2000). Associating rsEEG
with neurobiological biomarkers may make clinical applications
plausible. The increasing delta source activity was positively
correlated with cortical hypometabolism of FDG-PET in AD-
pattern areas and cognitive decline (Babiloni et al., 2016).
Decreasing delta and beta GFP in AD1 was also correlated with
CSF p-tau and t-tau levels (Smailovic et al., 2018). Furthermore,
global augmented theta power was correlated with cognitive deficit
and total tau level in AD1 (Musaeus et al., 2018a). Across the CN
to MCI to AD continuum in our results (Figure 2), augmented AM
power of delta and theta bands extending anteriorly with attenuated
posterior alpha band AM power, accompanied by global attenuated
HFO AM power, reflects disease advancement via increasing delta
and theta AM power with decreasing alpha and beta AM power
(Fraga et al., 2013).

4.1.2. AM modulating trend is determined by the
spectral pattern of carrier frequency in the AD
continuum

Current studies show spectral patterns in MCI and AD but lack
systematic reports of AM dimension’s characteristics in AD, which
is the gist of this study. The AM power shown here is comparable
to band-limited power (BLP), which extracts AM power based on
FFT band-passed filter followed by the Hilbert transform. Fraga
and Falk’s reports encompass a similar method to our study by
analyzing AM power to discriminate between AD1 and CN as well
as AD1 and AD2 (Falk et al., 2012; Fraga et al., 2013). In contrast, we
used EMD-based spectral analysis with subsequent processing of
extracted envelopes by secondary EMD to generate corresponding
AM domains (Huang et al., 2016). Their findings in AD1 with
attenuated AM power of alpha and beta bands and augmented LFO
AM power are consistent with our results (Figure 2B; Table 3;
Supplementary Figure 4); both portray an AM power-modulating
trend following the spectral pattern of carrier frequency across
the AD continuum or variation of AM power following the
EEG slowing pattern with AD progression (Falk et al., 2012;
Fraga et al., 2013; Figure 2; Tables 2, 3). Regarding the AM-FM
relationship (Tables 2, 3), lower frequency amplitude modulation
of HFO is more important than amplitude modulation of LFO
when discriminating MCI from CN. Meanwhile, differentiating
AD1 from CN, lower frequency amplitude modulation of HFO
(alpha, beta, and two gammas) is more essential than the amplitude
modulation of LFO (Table 5).

4.1.3. Parameterizing spectral power of carrier
frequency (fc) and corresponding AM into
aperiodic and periodic components

In our results, the interdependency between AM frequency
and f c behaves like a hierarchical architecture between oscillations,
where the phase of slower oscillations modulates the amplitude
of faster oscillations (Lakatos et al., 2005). In a monkey’s auditory
passive listening task in the awake condition, brain waves showed
that the delta phase modulates theta amplitude, while the theta
phase modulates the gamma amplitude, which is similar to our
frequency architecture in the AM-FM energy map. Amplitude
modulation occurs when the amplitude of a carrier signal (f c) varies

in proportion to the message signal. At the same time, the frequency
and phase are kept constant. Phase coupling synchronizes two
or more rhythmic or oscillating processes with a fixed phase
difference. However, the modulation source may come from the
effect of the neurotransmitter (Pepeu et al., 2015), perceptual
entrainment (Fiebelkorn and Kastner, 2018), local or long-range
cross-frequency coupling (Liang et al., 2021), or body rhythm
(Klimesch, 2018).

To examine whether our extracted brain oscillations contain
any true oscillatory activity, we applied the FOOOF algorithm
(Donoghue et al., 2020) to decipher f c and AM power spectra
into aperiodic and periodic components (Figure 3A). Since the
relevant analysis for EMD-based decomposition is not applicable,
we used multitaper time-frequency decomposition to generate the
respective power spectra (Figure 3B). The results show true alpha-
beta oscillatory activity (8–32 Hz) across all groups with LFO
activity (below 8 Hz, including delta and theta bands) for MCI
and AD continuum (Figure 3C). Aperiodic activities primarily
contribute to the gamma activity. Similar to the HHSA, the adjusted
lower-frequency power increases, whereas the beta power decreases
with AD progression (Figure 3F). There is no difference in the
adjusted alpha power. The gamma power in AD3 is larger than
in other groups (Figure 3C). However, the result may need to
be more stable given the small sample size (16 participants). On
the other hand, the aperiodic exponent also increases with AD
progression [Figure 3E; F(4,200) = 10.83, p-value < 10-5]. The
overall results show that the EEG slowing is contributed to by the
increasing aperiodic exponent along with the increment of periodic
LFO and decrement of HFO. Similarly, the FOOOF analysis on
gamma (IMFs 1 and 2), beta (IMF 3), and alpha (IMF 4) AM yields
both periodic (Supplementary Figure 15, middle column) and
aperiodic components (Supplementary Figure 15, right column).
The periodic spectra of gamma, beta, and alpha AM still exist in
oscillatory activities ranging from 2 to 32 Hz, 2 to 32 Hz, and 1 to
16 Hz, respectively, with center frequencies at 8 Hz, 3 Hz, and 3 Hz
(Supplementary Figure 15, middle column).

4.1.4. Alpha AM spectral pattern in MCI and AD-
alpha transitional or fulcrum hypothesis

Our results illustrate an anterior-posterior spatial-specific
alpha AM pattern, revealing augmented alpha AM power in
posterior and attenuated alpha AM power in anterior regions
(Supplementary Figure 3; Table 2). Previous studies demonstrated
attenuated posterior alpha source and decreased alpha-band-
associated functional connectivity of rsEEG in MCI (Babiloni
et al., 2006c,d, 2018). However, some rsEEG studies also reported
augmented alpha spectral power in MCI (Huang et al., 2000;
Babiloni et al., 2006b; Moretti et al., 2009; Caravaglios et al., 2015).
These studies reveal a discrepancy in the alpha frequency bin.
In our study, the alpha range was 8∼16 Hz and was determined
by dyadic filter-bank properties of IMF (Flandrin et al., 2004),
encompassing Huang’s alpha (8–11.5 Hz), Babiloni’s alpha2 (10.5–
13 Hz), and Caravaglios’s alpha 3 (9.62–11.62 Hz). Therefore,
our increased posterior alpha AM power phenomenon in MCI
is consistent with augmented high alpha which is seen in the
abovementioned studies (Babiloni et al., 2006b; Caravaglios et al.,
2015; Moretti et al., 2017). This reflects a spatial-specific anterior-
posterior dual pattern of alpha AM oscillations in our study.

Mild cognitive impairment is a cognitively transitional stage
between CN and mild AD, supported by neurophysiological

Frontiers in Aging Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1195424
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1195424 August 16, 2023 Time: 14:37 # 15

Chu et al. 10.3389/fnagi.2023.1195424

signals (Babiloni et al., 2006b). Our results unveiled evolving brain
oscillation changes from MCI to AD continuum, with reciprocal
oscillatory patterns between LFO and HFO (Figure 2). Specifically,
the alpha oscillations may be a transitional phenomenon that
portrays progressively altered brain oscillations between MCI
and mild AD. In previous studies, comparisons between
CN, MCI, and mild AD revealed progressively attenuated
alpha1 (8∼10.5 Hz) source activity, with MCI showing
augmentation in alpha2 (10.5∼13 Hz; Babiloni et al., 2006b).
This insinuates a neurophysiological compensation for early
cognitive decline (Huang et al., 2000; Babiloni et al., 2006b;
Dubois et al., 2018). Posterior alpha rhythm is spawned by the
ensemble synchronization of oscillatory activities between the
thalamocortical loop and cortico-cortical interactions, mediating
transmission of sensorimotor information between the subcortical
and cortical loop, as well as retrieval of stored memory (Steriade
and Timofeev, 2003; Klimesch et al., 2007). Thus, the high alpha
power in rsEEG indicates a healthy aging brain (Babiloni et al.,
2006e). Our study showed gradually attenuated anterior alpha
AM power from MCI to mild AD, suggesting a progressive
cholinergic deficit due to basal forebrain dysfunction advancing
to degeneration in MCI and early AD, respectively (Schliebs and
Arendt, 2011; Pepeu et al., 2015). Meanwhile, augmented posterior
alpha AM power suggests an intact thalamocortical and cortico-
cortical loop that compensates for MCI in the non-demented
elderly (Moretti et al., 2009; Dubois et al., 2018).

Alternatively, the alpha band may serve as a fulcrum to explain
the AM power-changing pattern between LFO and HFO, which is
likely a manifestation of a rotational shift in the 1/f-like background
activity of the brain rhythm and may be aperiodic in nature.
The effects of the aperiodic exponent upon fc power is further
discussed in supplementary materials (Supplementary Figures 22,
23). Nonetheless, the multitaper applied in rsEEG deals with the
unadjusted full spectra of AM power (Supplementary Figure 15,
left column), whereas the Detrended Fluctuation analysis (DFA;
Linkenkaer-Hansen et al., 2001) and FOOOF algorithm can handle
the aperiodic component (Donoghue et al., 2020; Supplementary
Figure 15, right column). According to Donoghue et al. (2020),
brain oscillations contain periodic and aperiodic components and
demonstrate the implications of the aperiodic component’s effect
on the interpretation of canonical narrowband frequency analysis
and age effect on both components (Donoghue et al., 2020).
The age effect on periodic power spectra consists of decreased
center frequency, adjusted alpha power, and a reduced offset
and exponent in the aperiodic component (Donoghue et al.,
2020). However, a recent study showed that adjusted alpha power
reveals no statistically significant difference between younger and
older adults (Merkin et al., 2023), which means an aperiodic
component contributes to the unadjusted alpha power difference.
In our data, f c spectral power fitted in the FOOOF algorithm
reveals an increased aperiodic exponent (Figure 3E) and shift
in alpha peak frequency (Figure 3C) without a difference in
adjusted alpha power (Figure 3F). Similarly, alpha AM power
spectra fitted in the FOOOF algorithm yield periodic components
with two peak frequencies at 3 and 8 Hz and similar aperiodic
exponents of all groups (Supplementary Figure 15, middle and
right column). As Wang et al. (2023) revealed in the adjusted
power spectrum, the alpha periodic component revealed decreased
power in AD compared to CN, with an increased aperiodic
offset and exponent (Wang et al., 2023). The changing trend in

the center frequency is consistent in the aging and AD process.
In contrast, the trend in aperiodic parameters (i.e., offset and
exponent) is the opposite in both conditions, decreases across
aging (Donoghue et al., 2020; Merkin et al., 2023) and increases
in AD (Figure 3E; Wang et al., 2023). If the results in our data
and Wang et al. (2023) are reliable, then the alpha band is likely
a fulcrum balancing the lower-frequency (LFO; delta and theta)
power and higher-frequency (HFO; beta and gamma) power. The
result shows increased aperiodic exponent in AD patients, which
means the slope is steeper, leading to increasing LFO power and
decreasing HFO power (Figure 3C; Wang et al., 2023). In terms of
excitation/inhibition (E/I) imbalance, it depicts a hypoexcitability
state (Gao et al., 2017), which is not the case in the AD animal
model of Palop and Mucke (2016), which is also contrary to a
recent study showing that AD patients have a lower aperiodic
gamma frequency exponent and decreased DFA exponent, which
suggests a flatter slope (i.e., hyperexcitability state) and an E/I
imbalanced state, respectively (van Nifterick et al., 2023). Due to
inconsistent results around this issue, more research on further
analytical methods to answer this hypothesis is needed, which is
also a good direction for future work, essentially combining HHSA
and FOOOF methods to fully display the nature of rsEEG (Figure 3;
Supplementary Figure 15).

4.1.5. Decreased AM power of alpha and beta
oscillations predict AD progression

In our 3-year longitudinal follow-up dataset, baseline rsEEG
signals of MCI discriminated between MCI-C and MCI-S.
Specifically, MCI-C exhibited lower alpha and beta band AM
power over widespread posterior brain regions compared to
MCI-S (Figure 4). Similar results were shown by Huang et al.
(2000), who longitudinally followed up on an MCI group for
approximately 2 years. Baseline EEG comparisons revealed that
the MCI-C subgroup exhibited decreasing alpha GFP. In other
words, compared with AD, MCI-S showed increasing GFP of
alpha (8∼11.5 Hz) and beta2 (16∼19.5 Hz) bands with source
dipoles in posterior brain regions (Huang et al., 2000). In an FFT-
based spectral analysis, inter-group comparisons at baseline for
MCI and mild AD disclosed that posterior-channel alpha power
(8∼11.5 Hz) was positively correlated with cognitive function
and could discriminate between MCI-S and MCI-C, as well as
MCI-S and mild AD (Luckhaus et al., 2008). Yet, another 1.9-
year longitudinal follow-up study unveiled that combining six
EEG-based biomarkers outputs the best classification performance
between MCI-S and MCI-C, which is relevant to decreasing alpha
and beta band power (Poil et al., 2013). Additionally, attenuated
parietal beta1 (13∼17.99 Hz) power predicted disease progression
in MCI-C (Musaeus et al., 2018b). Indeed, our results (Figure 4)
disclosed an increased global alpha (8∼16 Hz) AM power and
posterior beta (16∼32 Hz) AM power in MCI-S compared with
MCI-C, concurring with the aforementioned studies and suggests
a compensatory phenomenon for early cognitive decline with
resistance toward progression to AD (Moretti et al., 2009; Dubois
et al., 2018). Contrariwise, attenuated alpha and beta AM power in
MCI can be predictive markers for progression to AD (Figure 4).

4.1.6. Decreased gamma AM power in MCI and
the AD continuum

Due to methodological limitations, previous studies rarely
dealt with brain oscillations beyond 30 Hz in MCI or AD
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(Supplementary Figure 16). The altered gamma oscillatory pattern
in MCI and AD remains unclarified. Our results unveiled
decreasing global AM power of gamma oscillations in MCI that
was sustained along the disease course. A comparison of multitaper
and HHT-based averaged carrier frequency power spectra of all
groups (Supplementary Figure 16, left panel) shows multitaper-
based power spectra (blue curve) following a power law with a
center frequency of 9 Hz. In contrast, HHT-based power spectra
(red curve) display a flatter curve with oscillatory activity ranging
from 4 to 56 Hz. Much energy is retained in the higher frequency
range, including the gamma range. Regarding the comparison of
multitaper and HHT-based averaged gamma AM power spectra
of all groups (Supplementary Figure 16, right panel), multitaper-
based spectra (blue curve) still follow a power law with a center
frequency of 9 Hz. Contrarily, HHT-based spectra (red curve)
exhibit a flatter curve preserving much power in the gamma range,
which might attribute to theta or alpha amplitude modulation of
gamma power (Osipova et al., 2008; Friese et al., 2013). In summary,
HHT is an EMD-based adaptive signal analysis that is able to retain
non-linear components and gain a high signal-to-noise ratio in
complex signals, such as EEG analysis (Huang et al., 1998, 2016;
Quinn et al., 2021). Multitaper-based averaged carrier frequency
power spectra of all groups are fitted in the FOOOF algorithm;
adjusted power spectra reveal that the gamma power of the AD3
group is larger than other groups (Figures 3C, F). However, given
the small sample size, the result may need to be more stable after
collecting more data. Multitaper-based gamma AM power spectra,
fitted in the FOOOF analysis, show oscillatory activities ranging
from 2 to 32 Hz with a center frequency of 7–8 Hz and increased
aperiodic exponents in MCI, AD1, and AD2 as well as decreased
aperiodic offset with AD progression (Supplementary Figure 15,
middle and right column).

Gamma oscillations represent cluster neuronal synchronization
in cortical activation (Moruzzi and Magoun, 1949; Munk et al.,
1996) related to perception (Llinás and Ribary, 1993; Engel et al.,
1999), short-term memory (Tallon-Baudry and Bertrand, 1999),
and attention (Tiitinen et al., 1993; Fries et al., 2001). These
oscillations ensue from the interneuron network gamma (ING),
pyramidal interneuron network gamma (PING), and persistent
gamma activity (Whittington et al., 2011). Transgenic mice
models of AD exhibit attenuated gamma oscillations, likely due
to the formation of increasing amyloid-beta (Aβ) plaque within
subcortical regions and later on in cortical regions with disease
progression. Iaccarino et al. (2016) showed that behaviorally
reduced driven gamma oscillations before the onset of plaque
formation or cognitive decline in an AD mouse model could be
modulated by inducing genes associated with the morphological
transformation of microglia via optogenetically driving fast-spiking
parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz)
range to mitigate AD pathology (Iaccarino et al., 2016). In our
study (Figure 2), attenuated AM of gamma oscillations over
widespread brain regions from MCI to late-stage AD likely reflects
the underlying GABAergic interneuron dysfunction or GABAergic
neuronal loss. The AD mice model’s findings support our results
and motivate future gamma entrainment using sensory stimulation
or other non-invasive brain-stimulating interventions to prevent
or attenuate disease progression (Reinhart and Nguyen, 2019;
Adaikkan and Tsai, 2020; Grover et al., 2021).

4.2. Machine learning issue in features
selection

4.2.1. Discrepancy in variables between group
and individual level analysis

The features selected were either a single feature or a feature
ratio. Each feature code included channel name, fam, and fc,
e.g., Fp1 (channel name), fam 0∼1 Hz, and fc 16∼32 Hz. The
best-fitted five features deployed in the Gentle Boost classifier for
discriminating between MCI and CN (Table 5) follow the colored
squares in the AM-FM power maps (Table 2): [FP1 (frontal), fam
0∼1 Hz (Lf, low-frequency), and fc 16∼32 Hz (beta)], [F4 (frontal),
fam 2∼4 Hz (delta2), and fc 4∼8 Hz (theta)], [F8 (frontal), fam
1∼2 Hz (delta1), and fc 2∼4 Hz (delta2)], [T6 (temporal), fam
0∼1 Hz (Lf), and fc 32∼64 Hz (gamma)], [O2 (occipital), fam
4∼8 Hz (theta), and fc 16∼32 Hz (beta)]. Notably, the second (F4
channel) and fourth (F8 channel) features are inconsistent with the
AM-FM power map. However, the feature in F8 abuts the colored
squares, in which some matched features might be deleted during
the dimensionality reduction process (Agarwal, 2019). The best-
fitted six features deployed in the Bag classifier for differentiating
between AD1 and CN (Table 5) follow the colored squares in the
AM-FM power maps in Table 3: [FP1 (frontal), f am 0∼1 Hz (Lf),
and f c 16∼32 Hz (beta)], [F4 (frontal), fam 0∼1 Hz (Lf), and f c
32∼64 Hz (gamma)], [F4 (frontal), f am 1∼2 Hz (delta1), and f c
1∼2 Hz (delta1)], [Fz (frontal), fam 0∼1 Hz (Lf), and fc 32∼64 Hz
(gamma)], [T3 (temporal), fam 8∼16 Hz (alpha), and fc 8∼16 Hz
(alpha)], [P4 (parietal) f am 4∼8 Hz (theta), and f c 4∼8 Hz (theta)].
Three features were inconsistent with the AM-FM power map,
including the second (F4 channel), third (F4 channel), and sixth (P4
channel). However, these features are adjacent to the color squares,
in which some matched features may also have been omitted during
the decorrelation process in the feature selection stage (Agarwal,
2019).

When comparing MCI vs. CN, carrier frequencies belonging
to the lower frequency-modulating HFO (i.e., two beta and one
gamma) are more important than the LFO (i.e., delta2 and theta). In
AD1 vs. CN, carrier frequencies in the lower frequency-modulating
HFO (alpha, beta, and two gammas) are more essential than the
LFO (delta1 and theta; Table 5). In the longitudinal MCI cohort
dataset, the validated features and classifiers can be used to screen
probable converted MCI with SVM, followed by Decision Tree to
boost relatively low accuracy in the prediction of MCI conversion
(Hampel et al., 2011).

5. The potential neurobiological
mechanisms of altered brain
oscillations in neurodegenerative
disease

The pattern of altered brain oscillations in AD patients,
particularly the augmented LFO AM power coupled with
attenuated HFO AM power, is reminiscent of EEG slowing in
patients with dementia of Lewy bodies (DLB; van der Zande
et al., 2018, 2020) and a common pattern of EEG signatures
in patients with major vascular cognitive impairment (VCI;
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Babiloni et al., 2021). These include slowing of peak frequency and
increased LFO with decreased relative alpha activity (d’Onofrio
et al., 1996), decreased power of posterior beta activity with
decreased frontal HFO power (Holschneider and Leuchter, 1995),
and increased widespread LFO power (Neto et al., 2015). EEG
slowing in DLB is associated with severe cholinergic neuron
degeneration (van der Zande et al., 2020), whereas the resemblance
of altered brain oscillations between AD and major VCI insinuates
the presence of an overlapping vulnerable region contributing
to brain oscillation changes due to basal forebrain dysfunction
or cholinergic depletion (Román and Kalaria, 2006; Wang et al.,
2009). This is seen not only in selectively vulnerable disease-specific
neurons in AD but also in PD with dementia, DLB (Pepeu et al.,
2015; Ballinger et al., 2016; Fu et al., 2018), or ischemic long-tract
projections of the basal forebrain in subcortical small vessel disease
(Engelhardt et al., 2007; Pepeu et al., 2015; Ballinger et al., 2016).
Thus, lower-frequencies power augmentation is hypothesized to
reflect the ensemble representation of interplay amid cholinergic
deficit and reduced rCBF based on evidence of the interaction of
Aβ, basal forebrain, and neurovascular uncoupling in AD (Schliebs
and Arendt, 2011: Pepeu et al., 2015: Love and Miners, 2016;
Iadecola, 2017) and mixed pathology in AD (Schneider et al.,
2007; Schreiter Gasser et al., 2008; Arvanitakis et al., 2016). The
attenuated HFO (alpha and beta) are highly correlated with the
underlying neuropathological change of tauopathy in AD and
frontotemporal dementia (Smailovic et al., 2018), which share a
similar topographical distribution of neurofibrillary tangles and
comparable decreased alpha and beta power in rsEEG (Lindau
et al., 2003; Nishida et al., 2011). Our results here show that these
signatures could be predictive markers for disease progression.

When considering the gamma band, the time-varying power
fluctuation of the fc (band-limited power; BLP) likely signifies
potential functional connectivity of spatial specificity in the cerebral
cortex (Leopold et al., 2003). Possible aberrant neuromodulation
between AM and pre-specified fc bandwidths (beta and theta
bands) could differentiate mild AD patients from CN (Fraga
et al., 2013). They both computed rsEEG signals analogously to
our method, providing the AM or second spectrum of given
frequency bands and delineating the interdependency between
the primary and second spectrum (Leopold et al., 2003; Falk
et al., 2012; Huang et al., 2016). Electrocorticogram (ECoG)
recording conducted in preoperative epileptic patients validates
that slow BLP of gamma oscillations exhibit a high correlation
between mirrored sites of both hemispheres (Nir et al., 2008),
suggesting interhemispheric functional connectivity (Smith et al.,
2009). This ushers a mechanistic question (Drew et al., 2008):
What is the very slow frequency modulatory source of gamma
oscillations (Drew et al., 2020)? Mateo et al. (2017) modeled
this problem in mice with concurrent two-photon imaging of
arteriole diameter and LFP measurements with an optogenetic
approach, elucidating that gamma-band oscillations modulated
arteriole vasomotion at a very slow frequency (0.1 Hz), contributing
to changes in BOLD signals of resting-state fMRI (Mateo et al.,
2017). Furthermore, a lesion study in monkeys showed that the
basal forebrain mediates global spontaneous resting-state fMRI
fluctuations (Turchi et al., 2018) and findings of anticholinergic
agent-provocative EEG index negatively correlated with the
severity of neurodegenerative diseases (Johannsson et al., 2015).
These pieces of evidence suggest that the cholinergic system

plays an essential role in the amplitude modulation of brain
oscillations and vasomotion control (Lecrux et al., 2017; Drew et al.,
2020).

Based on the cholinergic hypothesis in the fundamentals
of developing neuropsychiatric symptoms of AD, cholinesterase
inhibitors can not only improve cognitive function (Hampel et al.,
2018) but also reverse and lessen altered brain oscillations in AD
patients (Brassen and Adler, 2003; Rodriguez et al., 2004; Babiloni
et al., 2006a; Gianotti et al., 2008). The augmented posterior alpha
oscillations found in our study and others (Huang et al., 2000;
Luckhaus et al., 2008) in MCI-S might represent a compensatory
mechanism for early cognitive decline with enhanced cholinergic
activity as the most likely neurobiological basis (Dekosky et al.,
2002).

6. Limitations

A somewhat sparse electrode array (i.e., 19 electrodes) was used
for the recording of the rsEEG. This could limit conclusions about
scalp distributions and topographical descriptions in the altered
power patterns in the AM-FM energy map. The Nihon Kohden
amplifier with 19 channels is commonly used in the clinical setting
of hospitals, which is the source of our participants’ dataset and
is definitely a limitation in depicting the topographical pattern of
rsEEG activity (Wang et al., 2023). Therefore, we registered the
significant power density in the AF-FM map with channel locations
but concluded the important findings in the brain regions.

This study also used a retrospective cross-sectional design,
meaning that only available data at hand could be incorporated
into the analyses. For future work, it would be good to have
records that include biological fluid collection (e.g., blood and
CSF), medication consumption, neuropsychiatric scales (e.g.,
neuropsychiatric inventory, Beck Depression Inventory, Hamilton
depression score, etc.), and other neuroimaging modalities
(e.g., FDG-PET, MRI, and MEG), if possible, for further
correlation/regression analyses.

7. Conclusion and future work

Attenuated AM power of alpha and beta oscillations at MCI
can predict the future progression to AD. Attenuated beta and
gamma AM power densities with augmented delta and theta
AM power densities are prominent in early cognitive decline
and can serve as target oscillations for therapeutic intervention.
The HHSA-based feature extraction outperformed other analytical
methods when deploying machine learning algorithms. Therefore,
integrating HHSA of EEG signals into machine learning algorithms
can be a clinical tool to differentiate between CN individuals
and patients with cognitive decline and predict the conversion
from MCI to AD. As the HHSA can wholly and efficiently
depict these potential interactions, integrating the evidence of
neurobiological profiles across the AD spectrum together with
a correlation of brain oscillatory signatures could provide a
non-invasive, affordable, and reproducible surrogate marker for
screening, detecting, and follow-up in large populations with early
cognitive decline.
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