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Abstract

Introduction:With persistent incidence, incomplete vaccination rates, confounding respiratory
illnesses, and few therapeutic interventions available, COVID-19 continues to be a burden on
the pediatric population. During a surge, it is difficult for hospitals to direct limited healthcare
resources effectively. While the overwhelming majority of pediatric infections are mild, there
have been life-threatening exceptions that illuminated the need to proactively identify pediatric
patients at risk of severe COVID-19 and other respiratory infectious diseases. However, a
nationwide capability for developing validated computational tools to identify pediatric patients
at risk using real-world data does not exist.Methods: HHS ASPR BARDA sought, through the
power of competition in a challenge, to create computational models to address two clinically
important questions using the National COVID Cohort Collaborative: (1) Of pediatric patients
who test positive for COVID-19 in an outpatient setting, who are at risk for hospitalization?
(2) Of pediatric patients who test positive for COVID-19 and are hospitalized, who are at risk
for needing mechanical ventilation or cardiovascular interventions? Results: This challenge was
the first, multi-agency, coordinated computational challenge carried out by the federal
government as a response to a public health emergency. Fifty-five computational models were
evaluated across both tasks and two winners and three honorable mentions were selected.
Conclusion: This challenge serves as a framework for how the government, research
communities, and large data repositories can be brought together to source solutions when
resources are strapped during a pandemic.

Introduction

Difficulty Identifying Children at Risk of Respiratory Infectious Diseases in Overwhelmed
Healthcare Settings

Seroprevalence studies of pediatric patients (age 0–17) reported by the Centers for Disease
Control and Prevention suggest that at least 75% of the U.S. pediatric population have been
infected with SARS-COV-2 [1]. As of December 2022, there have been more than 15.2 million
reported cases of COVID-19 among U.S. children and adolescents [2]. Despite the high
seropositivity of children, hospitalization rates and deaths among children and adolescents
remain relatively low compared with the older population. Because of the disproportionate
impact of SARS-CoV-2 on the older population, there was significantly more data to analyze
and predict the risk factors associated with severe disease in the adult population.

However, as the pandemic progressed through waves of variants, leading up to the Delta
variant during the summer of 2021, it became clear that some children were being hospitalized at
a greater rate than in previous influenza seasons [3]. Additionally, healthcare providers began to
notice previously healthy children presenting with a constellation of symptoms occurring weeks
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after COVID-19 infections: fever, myocarditis and shock,
abdominal pain and mucocutaneous findings. This postinfection
inflammatory response to SARS-CoV-2 was termed multisystem
inflammatory syndrome (MIS-C) [4–8]. Given the presentation of
MIS-C and the general lack of data in pediatric hospitalizations,
healthcare providers caring for children and adolescents did not
know whether the risk factors that resulted in severe disease in
adults, also translated into children and adolescents.

Hospital providers, particularly hospitals not specialized in
pediatrics, needed enhanced tools to help determine children at
risk for severe disease outcomes.

Need for a Community-Based Computational Model
Challenge to Inform on Infection Severity

Feedback from healthcare workers, heads of large hospital systems,
and pediatric government working groups indicates that emer-
gency departments and ICUs faced two major pain points during
the COVID-19 surge that still remains today: assessing patients’
need for hospitalization and escalated care to provide available
interventions. Children’s hospitals faced an additional burden
in protecting their already vulnerable patients. Due to the rare
occurrence and distributed nature of pediatric COVID-19
hospitalizations, approximately 70% of those pediatric hospi-
talizations occur in non-pediatric-specific hospitals [9]. Many
prediction models were based on small sample sizes and resulted
in limited diagnostic accuracy.

The Biomedical Advanced Research Development Authority
(BARDA), part of the Administration for Strategic Preparedness
and Response (ASPR) within the U.S. Department of Health and
Human Services (HHS), wanted to catalyze the development of
EHR-based algorithms with the ability to predict risk of severe
outcomes for earlier care, stratify pediatric patients for available
interventions, and help overburdened healthcare workers triage
patients. The community-based challenge offered an additional
ability to reach a broader community. They developed two key
clinical questions for the pediatric COVID-19 data challenge:
(1) Of pediatric patients who test positive for COVID-19, who are
at risk for hospitalization? and (2) Of pediatric patients who test
positive for COVID-19 and are hospitalized, who are at risk for
needing mechanical ventilation or cardiovascular interventions?

The National COVID Cohort Collaborative [10]

The National Institutes of Health (NIH) National Center for
Advancing Translational Sciences (NCATS) National COVID
Cohort Collaborative (N3C) has spearheaded the collection and
harmonization of a large EHR repository that, at the time of this
writing, represents over 7 million COVID-19-positive patients and
over 11 million confirmed COVID-19 negative patients from
76 sites across the U.S. These data-contributing sites include
academic medical centers, pediatric hospitals, and healthcare
networks. The N3C data repository is updated on a weekly basis
with data from contributing sites as well as data from newly
onboarded contributing sites. The harmonization process includes
mapping site data to the Observational Medical Outcomes
Partnership (OMOP) common data model and converting the
clinical codes to the OMOP standard vocabularies (Systematized
Nomenclature of Medicine, Medical Prescription Normalized,
Current Procedural Terminology 4th Edition, etc.). COVID-19-
positive patients were defined as having at least one positive
COVID-19 antigen test. The repository includes over 900,000
pediatric patients who have tested positive for COVID-19 and

serves as one of the largest, centralized databases of pediatric
clinical records in the U.S. At the time of challenge inception, the
enclave was being used for research study purposes and many
clinical sites were in the process of onboarding but the enclave was
an optimal choice for the Pediatric COVID-19 Data Challenge due
to the scope of data available, the robust governance oversight, and
the sophisticated computing platform. The clinical questions were
developed into two challenge tasks with N3C.

Materials and Methods

Designing the Challenge Tasks with N3C Data

The challenge utilized available de-identified pediatric patient data
from the N3C enclave that included age, gender, height, weight,
medical history, lab results, county-level social determinants
of health data, and available medications. The challenge cohort
included patients who were 18 or under and who had a COVID-19-
positive PCR, antigen, or serum antibody test (Supplemental
Table 1). The training data available to the challenge participants
included accumulated data from August 2020 to July 30, 2021,
consisting of 203,508 pediatric COVID-19-positive patients from
55 contributing sites (Table 1). The testing holdout set used
prospectively-collected data that was accumulated during initial
model development from July 30, 2021 to December 9, 2022
consisting of 201,083 pediatric COVID-19 patients from 64 sites
(Table 1). This accumulated data was not available to challenge
participants during the model development phase and was used for
the evaluation. Patients that appeared in the training data were
removed from the prospectively collected testing data.

The data used for this challenge was derived from the safe
harbor, de-identified data. The use of de-identified data lowered
the barrier for entry into the challenge, since not all participating
institutions required Institutional Review Board (IRB) approval for
access and expanded the number of eligible participants to include
international participants who were not permitted to access the
limited dataset at the time of the challenge. Key differentiations
between de-identified data and limited data include masked zip
codes to the first three numbers, patient-level date shifting of±180
days of each clinical record, and abstraction of birth dates to the
birth year.

COVID-19-specific severity can be difficult to accurately define
when using EHR data. Most of the time, the critical information to
determine if a severe health outcome was caused by COVID-19 or
simply occurred after a COVID-19-positive test does not exist.
When designing the challenge questions, the limitations of using
EHR data were an important consideration.

Task 1 Design
For task 1, participants were asked to address the following
question: Of pediatric patients who test positive for COVID-19 in an
outpatient setting, who are at risk for hospitalization? The task was
designed to have teams build predictive tools that could be used in
an outpatient setting to assess the risk of a given pediatric patient
progressing to a level of COVID-19 severity that warranted a trip to
the hospital (including an emergency department encounter
(Supplemental Table 4) or inpatient hospital visit (Supplemental
Table 3)). COVID-19-related outpatient visits were defined as
outpatient visits (Supplemental Table 2) that occurred within
seven subsequent days of a patient’s earliest COVID-19-positive
test. The presence of an inpatient visit (Supplemental Table 3) or
emergency department visit (Supplemental Table 4) within 35 days
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Table 1. Demographic breakdown of the training data and the prospectively collected testing data. The training data was derived from the N3C data enclave from August 2020 to July 30, 2021 and the prospectively
collected testing data was derived from the N3C data enclave as of from July 30, 2021 to December 9, 2021. Testing data also included eight new contributing sites.

Training data (n= 203,508) Testing data (n= 201,083)

Task 1 Task 2 Task 1 Task 2

Demographic True positives True negatives True positives True negatives True positives True negatives True positives True negatives

Total 4,062 142,840 830 8,292 4,753 139,737 708 9,270

Ethnicity Not Hispanic 2,852 (70.21%) 93,513 (65.47%) 504 (60.72%) 5,130 (61.87%) 3,569 (75.09%) 101,801 (72.85%) 464 (65.54%) 6,487 (69.98%)

Hispanic 849 (20.9%) 27,885 (19.52%) 220 (26.51%) 2,199 (26.52%) 867 (18.24%) 18,832 (13.48%) 199 (28.11%) 2,220 (23.95%)

Unknown 361 (8.89%) 21,442 (15.01%) 106 (12.77%) 963 (11.61%) 317 (6.67%) 19,104 (13.67%) 45 (6.36%) 563 (6.07%)

Gender Female 2,137 (52.61%) 70,792 (49.56%) 370 (44.58%) 4,226 (50.96%) 2,405 (50.6%) 69,327 (49.61%) 312 (44.07%) 4,664 (50.31%)

Male 1,920 (47.27%) 71,284 (49.9%) 460 (55.42%) 4,063 (49%) 2,348 (49.4%) 70,053 (50.13%) 396 (55.93%) 4,605 (49.68%)

Unknown >20 (>0.49%) 764 (0.53%) >20 (>2.41%) >20 (>0.24%) >20 (>0.42%) 357 (0.26%) >20 (>2.82%) >20 (>0.22%)

Age 0–4 963 (23.71%) 19,643 (13.75%) 208 (25.06%) 2,646 (31.91%) 1,258 (26.47%) 20,382 (14.59%) 168 (23.73%) 3,199 (34.51%)

5–11 810 (19.94%) 40,656 (28.46%) 236 (28.43%) 1,599 (19.28%) 1,189 (25.02%) 50,505 (36.14%) 181 (25.56%) 2,161 (23.31%)

12–19 2,289 (56.35%) 82,541 (57.79%) 386 (46.51%) 4,047 (48.81%) 2,306 (48.52%) 68,850 (49.27%) 359 (50.71%) 3,910 (42.18%)

Race White 2,714 (66.81%) 96,660 (67.67%) 361 (43.49%) 4,171 (50.3%) 3,254 (68.46%) 98,889 (70.77%) 288 (40.68%) 4,573 (49.33%)

Black 624 (15.36%) 14,269 (9.99%) 221 (26.63%) 1,894 (22.84%) 698 (14.69%) 14,907 (10.67%) 181 (25.56%) 2,314 (24.96%)

Asian 44 (1.08%) 1,720 (1.2%) 22 (2.65%) 145 (1.75%) 57 (1.2%) 1,821 (1.3%) >20 (>2.82%) 153 (1.65%)

Pacific Islander >20 (>0.49%) 330 (0.23%) >20 (>2.41%) 37 (0.45%) >20 (>0.42%) 181 (0.13%) >20 (>2.82%) 25 (0.27%)

Other 364 (8.96%) 13,676 (9.57%) 73 (8.8%) 622 (7.5%) 400 (8.42%) 9,874 (7.07%) 58 (8.19%) 747 (8.06%)

Unknown 306 (7.53%) 16,185 (11.33%) 153 (18.43%) 1,423 (17.16%) 340 (7.15%) 14,065 (10.07%) 162 (22.88%) 1,458 (15.73%)
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of a COVID-19 outpatient visit was determined to be the true
positive outcome. True negatives were COVID-19-positive
patients who tested positive within seven days of an outpatient
visit but had no inpatient or emergency room visit within 35 days
of the outpatient visit. A prediction window of 35 days was set in
order to capture patients who were being hospitalized for either
acute COVID-19 disease orMIS-C. A sensitivity analysis confirmed
that patients were still being admitted with MIS-C up to five weeks
after initial COVID-19-positive results (Supplementary Analysis 1).
Excluded were patients with same-day hospitalizations, in which the
hospitalization or emergency room visit occurred on the same day as
the outpatient visit making inpatient and outpatient data difficult to
discern. Additional information can be found in Supplemental
Materials: Task 1 Outcome Definitions.

Task 2 Design
Following the expected clinical progression from the task
1 scenario for severe COVID-19 patients, the second task
focused on predicting the risk of a patient needing additional
medical intervention once they were hospitalized. Task 2 asked
participants to address the question, Of pediatric patients who
tested positive for COVID-19 and were hospitalized, who are
at risk for needing mechanical ventilation or cardiovascular
interventions? COVID-19-positive hospitalized patients were
defined as any patients who tested positive for COVID-19
within seven days of being admitted to an inpatient visit. The
true positives included all patients who, during their hospitali-
zation, needed mechanical ventilation (Supplemental Table 5),
Extracorporeal Membrane Oxygenation (Supplemental Table),
cardiovascular support (Supplemental Tables 7-14), or expired
during their hospital stay. Additional information can be found
in Supplemental Materials: Task 2 Outcome Definitions.

Developing Evaluation Criteria

Quantitative Metrics
The desired outcome for this challenge was the development of
models that could be used to identify at-risk pediatric COVID-19
patients to prioritize medical interventions or preventative
measures. Sensitivity, precision, and specificity were considered
in the quantitative evaluation, but additional weight was put on
sensitivity to prioritize the identification of more at-risk patients.
All submitted models were evaluated using Area Under the
Precision-Recall Curve (AUPR), the Fβmax statistic (β=2), and the
Area Under the Receiver Operator Curve (AUROC). The Fmax was
calculated by finding the threshold at which the models had the
highest score. This was done to give teams flexibility in deciding
their model thresholds. Fβ and AUPR were used due to the
imbalanced nature of the data, and F2 was used to put additional
weight on sensitivity. AUROC was used to calculate cross-site
generalizability of the models. Because N3C is a central repository
from a wide range of healthcare centers, the performance of each
model’s AUROC could be calculated separately by site.

Qualitative Metrics
Historically, most data challenges have focused on the quantitative
aspect of model assessment, asking participants to maximize
their model’s performance. However, clinical models trained
on EHR data can produce accurate models, but the model itself
has methodological issues and when further scrutinized, the
performance drastically decreases when given new data due to
concept drift, changes in clinical practice, changes in

informatics practices, or changes in the presentation of disease.
Successful clinical models typically require a multidisciplinary
team of informaticists, clinicians, and statisticians to develop
and implement accurate and impactful models. A panel of subject
matter experts in medical diagnostics, clinical, statistical, and
informatics domains evaluated the submitted models for their
potential clinical utility and for their reproducibility. Clinical utility
was further evaluated by interpretability, timeliness, and utility.
Reproducibility was evaluated by prediction, technical, and
documentation reproducibility. Additional information can be
found in Supplemental Materials: Model Evaluation.

Challenge Administration and Governance

The Pediatric COVID-19Data Challenge was held fromAugust 19,
2021 to December 17, 2021 in three phases: Onboarding (August
19 to September 15, 2021), Model Development (September 15
to December 17, 2021), and Evaluation (December 17, 2021
to March 9, 2022) (Supplemental Figure 1). In order to receive
access to the data, participants needed to follow all the
governance procedures established in challenge.gov and N3C.
This includes having a signed Data Use Agreement between
their host institution and N3C, receiving IRB approval if
required by their home institution, agreeing to not download
any data from the enclave without permission, and agreeing to
the terms of use of the N3C enclave. Usually, when researchers
access the N3C enclave, they receive access to all available N3C
data as either de-identified or limited data. For this challenge,
researchers were given access to a subset of the de-identified
N3C dataset and were not able to access the full N3C data while
they were working in the challenge-specific project space.
Additional information on the challenge administration is
available in the supplemental materials.

Many of the participants of the challenge were new to the N3C
enclave. To familiarize them with the enclave, a series of webinars
were provided to participants with relevant enclave tools and
methods for participating in the challenge, a “Getting Started”
document was created to highlight key tutorials available in the
training portal, and informal office hours were conducted on a
weekly basis to answer questions and troubleshoot issues. The
enclave also had a robust support infrastructure that enabled this
challenge, including responsive technical support for when
technical issues arose, an extensive library of tutorials developed
by the N3C community, and a library of code repositories and
concept sets that were developed by the N3C community for the
N3C community [11,12].

Model Evaluation

The evaluation team consisted of government, industry, and
academic experts representing clinical, data science, medical
countermeasure product development, and informatics domains
from BARDA, Sage Bionetworks, University of Colorado, Stony
Brook University, Eunice Kennedy Shriver National Institute of
Child Health and Human Development (NICHD), NCATS, and
Health Resources and Services Maternal and Child Health
Bureau (HRSA MCHB). Models were scored based on the
quantitative and qualitative metrics defined above. Additionally,
the top-scoring models were explored for further government
utility and interest. The winners and honorable mentions were
then explored post-challenge for performance for evolving
variants. Additional information can be found in Supplemental
Materials: Model Evaluation.
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Evaluation on COVID-19 Variants Post-Challenge

After the close of the challenge, new data was continually collected
in the N3C enclave. Toward the end of the challenge, a new variant
of COVID-19, Omicron, became the dominant strain in the U.S.
Patients infected with Omicron have shown different clinical
phenotypes than previous strains. To test the generalizability of the
winning and honorable mention models with different variants,
the performance of the models was evaluated on data collected
from December 9, 2021 to April 7, 2022 to include Omicron data.
This data included new patients who appeared in the N3C enclave
during this time frame and who were part of the same sites that
were contributing data partners during the challenge.

Results

The Pediatric COVID-19 Data Challenge began on August 19,
2021 and was closed to submissions on December 17, 2021. Over
the course of the challenge, 200 participants and 88 teams were
fully on-boarded into the N3C enclave. Fifty-five total models were
submitted for evaluation across both tasks.

The highest quantitatively scoring model for Task 1 to predict
need for hospitalization achieved an F2 of 0.286, an AUPRC of
0.144, and a cross-site AUROC of 0.756. The highest quantitatively
scoring model for Task 2 to predict the need for respiratory and
cardiovascular intervention achieved an F2 of 0.594, an AUPRC of
0.591, and a cross-site AUROC of 0.853. (Table 2)

The highest qualitatively scoring models in Task 1 could predict
hospitalization up to 5 weeks out (Fig. 1) and Task 2 could predict
the need for cardiac and respiratory interventions the most
accurately up to 4 days before the outcome (Fig. 2). These models
performed well across different races, gender, age, and BMI
percentile with minimal variability within groups. Of note, the
highest qualitative scoring model for Task 2 was not the best at
capturing patients that would developMIS-C but was in the top four.
Additionally, the top models performed well across different clinical
site types – from small rural clinics to large pediatric hospitals.
Incidentally, the two highest quantitatively scoring models also had
some of the highest qualitative scores. Additional information can be
found in Supplemental Materials: Model Evaluation.

Information Leakage

During evaluation, the subject matter experts discovered variables
that were included in the dataset that were either highly correlated
with the true positive outcomes or were proxies for true positive
outcomes. In Task 2, all the interventions of interest that defined
true positive outcomes were removed from the patient’s record
during the covid-related hospitalization; however, many models
used same-day data from the patient’s record that was indicative of
severe patient status. In a follow-up evaluation, all same-day
records were removed except for measurement data. The top
model remained the top model, however, many models drastically
reduced their overall standing, highlighting the need to better
identify outcome information leakage in challenge data.

The winner of Task 1 was from the Department of Biostatistics &
Medical Informatics (BMI) at the University ofWisconsin-Madison
(UWisc-Madison-BMI). They used a high-performing gradient
boosting method and handcrafted features extracted from multisite
EHR data to build their model. In particular, their feature extraction
procedure summarized patients’ medical conditions and drug
exposures using medical meaning concepts such as International
Classification of Diseases and Anatomical Therapeutic Chemical
codes, which reduced the dimensionality of EHRdata, and enhanced
model interpretability. They also used a subset of COVID-19-related
lab measurements and recent values prior to the patient’s COVID-
19 diagnosis and customized the model training/tuning procedure,
tomake it resistant to sample size bias andmore generalizable across
multiple sites. Additional information can be found in Supplemental
Materials: Winners and Honorable Mentions Methods.

The winner of Task 2 was from Vir Biotechnology (Vir). This
team used a gradient-boosting tree classifier, capable of extracting
patterns from the complex set of EHRs. The team focused on
extracting data from laboratory measurements, disease conditions,
and past medical interventions to employ manual data cleaning,
creation of new aggregate variables, and further harmonization of
the data model. Not only did this group have the highest
quantitative score but they also employed a missingness-aware
classifier, capable of learning from the patterns of data availability
and which avoids the imputation of missing data and overfitting by
evaluating their trained classifier. In an additional analysis where

Table 2. Highest quantitatively scoring models for both Task 1 and Task 2. The highest scoring model in Task 1 achieved an AUROC of 0.756, while the highest scoring
model in Task 2 achieved an AUROC of 0.853. Cross-site AUROC is the AUROC when themodel’s performance is calculated on each individual data site and themean of
those AUROCs is calculated

Task 1 scores Task 2 scores

Team F2 AUPR
Cross site
AUROC

Cross site
AUROC variance Team F2 AUPR

Cross site
AUROC

Cross site
AUROC variance

Team M 0.2865 0.1438 0.7561 0.0039 Team Q 0.594 0.5907 0.8533 0.0028

Team K 0.2767 0.1202 0.752 0.0041 Team L 0.5771 0.4928 0.8541 0.0049

Team L 0.2439 0.1162 0.7412 0.0057 Team X 0.5895 0.5064 0.8356 0.0055

Team H 0.2539 0.1149 0.7241 0.005 Team J 0.572 0.4962 0.8323 0.0053

Team F 0.2514 0.1006 0.7241 0.0038 Team E 0.5763 0.4795 0.836 0.0061

Team W 0.2144 0.0892 0.7058 0.0064 Team K 0.5414 0.4432 0.8094 0.0069

Team U 0.2366 0.0671 0.696 0.0044 Team H 0.5411 0.39 0.8045 0.0045

Team J 0.2394 0.0976 0.6871 0.0079 Team A 0.5193 0.3774 0.7824 0.0055

Team D 0.2052 0.0777 0.6768 0.0051 Team O 0.4992 0.385 0.777 0.0036

Team S 0.2153 0.081 0.6635 0.0051 Team C 0.4879 0.3363 0.7115 0.0089
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all clinical information except for measurements were removed
from the hospitalization period, their model maintained its high
performance, scoring the highest among all submitted models
(Supplemental Analysis 2). Additional information can be found
in Supplemental Materials: Winners and Honorable Mentions
Methods.

Three honorable mentions were named based on unique
features or capabilities of their models: a team from the Oregon
Health & Science University for feature interpretability & design, a
citizen scientist from Wind City Applied Research for clinical
utility, and ARIScience for Computational Methodology. All three
teams also had very high quantitative scores and unique
contributions to the qualitative scores. Oregon Health & Science
University used a common set of predictors including

demographics, laboratory values, and associated diagnosis codes
to employ an ensemble classifier that combined individual
predictions from logistic regression, random forest, gradient-
boosted tree, and artificial neural network models. They used
Shapley Additive Values to provide individual-level and popula-
tion-level explanations for model predictions. This high-perform-
ing approach provided clinicians with an outcome prediction and
an individualized explanation with predictors for intervention.
Wind City Applied Research leveraged the extensive clinical
experience already utilized in the N3C community to create model
features derived from existing electronic health record code sets
from N3C to create an XGBoost code and feature importance
matrix. Finally, ARIScience used clinical and laboratory indicators
from pre-visit and during-visit data that was normalized by age,

Figure 1. Time to outcome assessments for the top 10 quantitative scoringmodels in Task 1 predicting hospitalization byweeks 1–4 from the time of the outpatient visit. All team
names have been removed except for the winning team. Outcome time bins are defined as noncumulative counts of patients who have the outcome in question within the given
time window. Patients included in week 1 are not included in week 4 and are excluded from AUROC calculation. The boxplot represents the bootstrapped distribution of the
AUROC (n= 100) for the given time window. The bar chart on the right shows the number of patients who have the outcome of interest during the given time window.

Figure 2. Time to outcome assessments for the top 10 quantitative scoring models in Task 2 predicting cardiovascular interventions and mechanical ventilation separately by
days 0–4 from the time of hospitalization. All team names have been removed except for the winning team. Outcome time bins are defined as noncumulative counts of patients
who have the outcome in question within the given time window. Patients included in day 0 are not included in day 4 and are excluded from AUROC calculation. The boxplot
represents the bootstrapped distribution of the AUROC (n= 100) for the given time window. The bar chart on the right shows the number of patients who have the outcome of
interest during the given time window.
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gender, and other demographic attributes and fed into random
forest, neural network, regression-based, Naïve Bayes, and neighbor-
hood-based artificial intelligence (AI) models to create ensembles of
predictions. Additional information can be found in Supplemental
Materials: Winners and Honorable Mentions Methods.

New COVID-19 Variants- Post-Challenge Analysis

The models from the two winners and the honorable mentions
were run on a prospectively collected dataset from the time when
the Omicron variant was the most prevalent strain of COVID-19.
Models were trained on the original challenge training dataset and
applied to the newly collected Omicron-era dataset. The dataset
was evaluated for UWisc-Madison-BMI, Oregon Health & Science
University, and the Wind City team for Task 1 and Vir, Oregon
Health & Science (OHSU), and ARIScience team submissions for
Task 2 (Fig. 3). For Task 1, none of the models saw a significant
decrease in their performance, and in the case of UWisc-Madison-
BMI and Wind City, their models saw a nonsignificant increase in
their performance (0.016 and 0.006, respectively). For Task 2, the
Oregon Health & Science University saw a significant drop in
performance (−0.167), while Vir and ARIScience saw a small
increase in their performance (0.012 and 0.014, respectively).

Discussion

For unknown emerging infectious diseases, particularly during
hospital surges, government decision-makers need to be able to
support the development and deployment of accurate and useful
clinical decision-support tools to educate healthcare workers and
to reduce hospital burden. Nationwide, this approach allows
healthcare workers to focus on patients who need escalated care.
These clinical decision support tools can help healthcare workers
guide available interventions and allow the government to triage
resources to hospitals that need them the most.

Organization and Administration

Initial reports of MIS-C were sporadic but what was known was
that the Kawasaki-like symptoms seen in COVID-19 children were
occurring several weeks after initial diagnosis and in children that
were seemingly previously healthy. The challenge needed to
include nearly real-time data from pediatric COVID-19 patients
nationwide to reflect a sufficient size to ensure diversity and a
relevant case number to evaluate for severe COVID-19 andMIS-C.
This allowed for the development of computational models with
the potential for broad applicability. N3C had the appropriate
regulatory, policy, privacy, and security protections in addition
to a robust computing platform but also was building broad
geographical representation, including at pediatric hospitals. N3C
had limited, deidentified, and synthetic data available. The use of the
limited data set required each participant to obtain their own IRB
determination letter, which the organizers felt would greatly limit
the number of organizations that would participate so the use of de-
identified data was utilized for the challenge. However, the use of de-
identified data limited each team’s ability to integrate more granular
location data including for social determinants of health, incorpo-
rate pandemic time course information and use granular age
information of the newborn population. The utilization of limited
data set, potentially through a centralized IRB that could be
implemented for challenges, from the onset could help address some
of these limitations in the future.

The N3C enclave is a unique resource for building scalable data
analyses on large datasets. However, the platform uses nonstand-
ard methods to create code repositories and to organize datasets.
New users of the platform, therefore, had a steep learning curve,
andmany participants spent their first fewmonths in the challenge
exploring how to use the enclave before they were even able to
begin building their models. Once this issue was identified,
multiple challenge-specific tutorial seminars were organized to
help familiarize new users with the challenge data, available tools,

Figure 3. Results of evaluating the winners and honorable mentions on N3C data from the time period when the omicron variant was the most prevalent strain of COVID-19. The
main challenge data was used to evaluate models during the challenge. Each boxplot compares the bootstrapped distributions (n= 100) of models performance using AUROC
between the main challenge data and the omicron data. The results from Task 1 are in the left column and the results from Task 2 are in the right column.
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and common issues. Future challenges using unconventional
platforms should plan tutorial sessions within the first few weeks of
the challenge to help jumpstart new users in the platform.
Additionally, regular office hours should be available starting early
in the challenge to field problems and questions that may arise as
users learn the platform.

Community Challenge

The Pediatric COVID-19 Data Challenge community participants
varied from a single citizen scientist to an 18-person team with
representation from multiple countries, pediatric specialties, and
data science domains. The international community challenge
brought perspectives from all over the world – small rural areas,
large metropolitan cities, multiple children’s hospitals, small
businesses, and large pharmaceutical and diagnostic companies
but also allowed for the utilization of different expertise. Unlike
many data challenges, this challenge did not seek to make teams
public, allowing competitors to work to leverage strengths, rural
communities to participate to gain pediatric insights to bring back
to their communities, and small businesses to compete without fear
of how poor scores may be viewed. Winners and honorable
mentions were given the option to make their computational
model public for others to refine post-challenge through open
collaboration or to keep their developed computational model
private and potentially seek follow-on investments from govern-
ment agencies and external sources as well as continue analytical
and clinical validation toward regulatory pathways.

Evaluation

While the quantitative metrics helped evaluators focus on the
models that would be best to assess pediatric patients at risk for
severe COVID-19, the qualitative metrics allowed evaluators to
explore the best models based on subject matter expert interest and
priority. For example, agency representation reflected interest in
predictive capabilities of models for community and emergency
department triage, features of importance and performance in
special cohorts and changing variants for educational material and
communication, and overall model performance for medical
countermeasure development and preparation for further vali-
dation. Subject matter expertise in health data science reflected
interest in mapping to EHRs and well-annotated code while
pediatric clinicians expressed the most interest in identifying at-
risk groups to target available interventions. The deep evaluation of
submissions by experts of varied backgrounds allowed government
agencies to glean a holistic understanding of the clinical models,
and to have deeper insight into the important predictive factors,
the methodological robustness, and the potential for clinical
impact that a pure quantitative optimization would not have
achieved.

The evaluation criteria used for the challenge were based on
quantitative metrics to address precision, recall, sensitivity, and
specificity as well as qualitative metrics to address utility and
reproducibility. While the evaluation criteria resulted in high-
performing winners, the resulting winners had too many features
to be directly mapped to an EHR system. In future challenges,
incorporating ametric such as “translational feasibility” that would
score models on their potential for direct validation and
incorporation into clinical decision workflows would be beneficial.
While large models can be implemented into an EHR, translating
models that were built on a harmonized central repository into an
EHR brings unique informatics challenges. Smaller models, while

often sacrificing accuracy, are often more easily translated to an
EHR due to themanageable task ofmapping all the features to their
equivalent clinical concepts in use in the EHR. While the metrics
for this challenge included interpretability and timeliness, which
are key considerations when implementing a clinical prognosis
tool, having an additional metric that considers the size and feature
space of a given model would be helpful in identifying even more
clinically impactful solutions.

Winners and Honorable Mentions

Both UWisc-Madison-BMI’s and Vir’s models used forms of
ontology roll-up or concept binning to reduce their feature space.
Both team’s also incorporated time into their features to account
for the longitudinal properties of EHR data. UWisc-Madison-BMI
binned each feature into two-time windows, counting all concept
occurrences within three days of the outpatient visit and prior to the
three-day window. Vir binned each feature into three-time
windows, concept counts with four days of hospitalization, within
four to eight days of hospitalization, and prior to eight days before
hospitalization. These methods helped the top models maintain
robust performance to changing data and improved interpretability.

Both teams showed an increased awareness of the limitations
and caveats of using EHR data for predictive modeling.
UWisc-Madison-BMI’s ordering of the contribution sites by
COVID-19positive prevalence was an important data curation
decision that helped in their improved generalizability. Vir’s
model included a wide range of measurement information that
gave their model an advantage when other types of clinical data
were removed from the test set. When all clinical records, except
for measurements, were removed from the first day of
hospitalization, Vir’s model decreased in performance (0.90
to 0.83 AUROC) but maintained its status as the highest-scoring
model while most other models drastically decreased in
performance.

The models that performed well in the qualitative metrics also
did well in the quantitative metrics. In fact, the highest-scoring
qualitative models both were the highest-scoring quantitative
models in their respective tasks. This makes intuitive sense, since
models that are well thought out, well documented, and well
designed, are most often going to have good quantitative scores.

Impactful features from top-performing models suggested that
children at risk for severe outcomes include patients with extreme
BMI (both underweight and overweight), cancer, diabetes, and
preexisting heart conditions. While many models did not have
specific features for cancer or diabetes, many of the features
suggested that models were prioritizing patients with tangential
clinical elements that indicated diabetic or oncology patients (e.g.
glucose measurements, related catheter procedures). During the
evaluation, the feedback from the clinician subject matter experts
was important to highlight these clinical nuances and to point out
where features made sense or were clearly proxy features for other
foundational health problems.

By the time the challenge ended, the Delta variant was no longer
the dominant strain and N3C had onboarded a much wider
geographical spread of contributing sites bringing concern to the
continued utility of the high-performing models. The models were
evaluated post-challenge on new data that had accumulated in the
enclave when Omicron was the dominant variant. When the
models were evaluated with new data to include Omicron-
dominant data, models in Task 1 did not decrease in performance
and in some cases, had a slight increase in performance. This may
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indicate that major risk factors for hospitalization may not have
changed from Delta to Omicron or that some of the hospitaliza-
tions may not have been directly COVID-19 related. In contrast,
the significant drop in performance in Task 2 for one of the teams
on the omicron-included data suggests that the clinical risk factors
for pediatric severity shifted from delta to omicron. For example,
while many of the important features in OHSU’s model remained
the same, numerous features either dropped out of the most
important features or new measurements became more important
such as mean platelet count and age. Also, practice patterns have
possibly changed in terms of either (1) administration of therapies
that define severe outcomes, or (2) unobserved effects of
vaccination or prior infections.

Limitations

In addition to the limitations outlined by using deidentified data,
the N3C enclave currently has a lack of granular vital sign data,
specific information about medication dosage, timing, and route
data, as well as generalized procedure codes that often resulted in a
loss of granular information about the procedures performed. Of
note, respiratory rates and dosage information such as inotrope
doses were not available, both of which are important data points for
assessing the risk of severe COVID-19. Additionally, vaccination
data was not sufficiently complete during the challenge but since
then has been improved within N3C. The utilization of real-world
data comes with the understanding thatmodels being developed will
evolve as additional data sets become available.

Pediatric Respiratory Infectious Diseases

The Pediatric COVID-19 Data Challenge was the first step to
develop a clinical decision support tool for a population in which
healthcare providers did not have clarity on the subset being
affected, lacked vaccination and therapeutic options, and were
anticipated to face new surges with confounding respiratory
illnesses. This challenge serves as a framework for how researchers
with varied backgrounds and large data repositories can be brought
together, under the governmental oversight of a panel of technical
reviewers, to develop healthcare solutions to emerging health
crises. The lessons learned and barriers overcome can serve to
accelerate future responses to deliver impactful pediatric clinical
models for future infectious diseases.

HHS ASPR BARDA, in collaboration with Sage Bionetworks,
NIH’s NCATS and NICHD as well as HRSA MCHB, sponsored
and facilitated a community challenge to develop prediction
models to address the pediatric pandemic surge and MIS-C. The
tasks centered around the severity of COVID-19 disease but can be
envisioned to any respiratory infectious disease. Additionally, one
of the difficulties that predictive computational models face when
developing robust models for the pediatric population is the lack of
available and quality data. N3C represents one of the largest
centralized repositories of pediatric COVID-19 cases in the U.S.
and it continues to add additional data and sites making it ideal to
assess future infectious diseases as well.

Future Direction

The Pediatric COVID-19 Data Challenge successfully executed a
framework to launch, develop and evaluate robust models that
have the potential to be used on a nationwide scale and in an
evolving landscape. The challenge not only outlined a framework
to produce robust computational models that assess children for

risk of COVID-19 severe outcomes but the tasks in N3C can be
adapted for future pediatric respiratory infectious diseases as well.
Significant work is still needed to adapt robust computational
models at scale, in complex healthcare environments, and for
everyday decision-making. In order to develop a more end-to-end
solution for national pediatric respiratory infection severity triage
(1) further validation of winning models using the limited data set
is needed to look at accuracy over time, to assess indicators of
severity in newborn and infant patients, and to determine the
impact of social determinants of health on risk of COVID-19
severe outcomes; (2) additional development of a workflow to
disseminate key clinical features, insights, and models back to N3C
sites is needed for further education, refinement, and clinical
validation; (3) additional validation of external data sets linked to
N3C need to be explored to bring additional clinical insights, and
(4) additional work with government pediatric centers of
excellence and networks are needed to evaluate computational
models outside of N3C. As government agencies support the
development of medical countermeasures (MCMs), such as
diagnostics, therapeutics, and vaccines, during a pandemic
response, computational models that inform on utility of critical
interventions or can be utilized to help manage patients during the
disease course can also be developed to help inform healthcare
providers and U.S. Government on opportunities to improve
patient care.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2023.549.
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