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TheNeogene fluvial–lacustrine sediments of the Tianshui Basin provide records of
the interactions among tectonic activity, and climatic and ecological changes on
the northeastern Tibetan Plateau (NE TP), from ~12.4 to 2.6 Ma. We investigated
the n-alkane record of a sedimentary sequence from the Tianshui Basin, which
reveals shifts in the productivity and sources of n-alkanes. The productivity of
n-alkanes doubled many times during ~4.2–3.2 Ma, accompanied by the
increased contribution from aquatic plants; in addition, non-emergent
macrophytes occurred sporadically after ~4.2 Ma but became a significant
n-alkane source after ~3.2 Ma. Changes in the inferred Late Miocene ecology
of the region are consistent with the major climate transition in response to global
cooling. The oscillations of the types and concentrations of n-alkanes during
4.2–3.2 Ma were likely related to the evolution of the East Asian monsoon (EAM),
driven by the tectonic uplift of NE TP and global cooling. The major increase in
aquatic plants and biological productivity of this region at ~3.2 Ma may have been
caused by the strengthening of the East Asian summer monsoon (EASM) and the
regional tectonic uplift.
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1 Introduction

As the frontier of the northeastward growth and expansion of the Tibetan Plateau, the
northeastern Tibetan Plateau is sensitive to tectonic activity and climate change, and it is thus
regarded as the most promising part of TP to document the uplift process and related
environmental changes (Molnar et al., 2010). The paleoenvironmental significance of NE TP
is demonstrated by the following. First, the climatic and ecological environment of NE TP
changed irreversibly from the Late Miocene onward, with fluctuations in geographical and
geomorphological conditions (Chen et al., 2019; Nie et al., 2020; Miao et al., 2022; Richter
et al., 2022). Second, the growth of NE TP exerted a profound influence on the onset and
strengthening of a modern-like East Asian monsoon system (Liu and Yin, 2002; Tang et al.,
2013; Zhang et al., 2015). Third, the enhanced erosion and weathering intensity due to the
tectonic uplift increased the generation of materials that made a major contribution to the
Aeolian sediments of the Chinese loess Plateau (Yang et al., 2019; Li et al., 2020; Sun et al.,
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2022). For these reasons, scientific problems related to the tectonic
history, weathering and denudation processes, and climatic and
ecological evolution of NE TP have attracted much attention for
research (Song et al., 2001; Miao et al., 2011; Chen et al., 2019; Yang
et al., 2021; Miao et al., 2022).

Over the past few decades, a large amount of
paleoenvironmental evidence from mountains and sedimentary
basins has indicated that NE TP underwent multiple stages of
tectonic activity to attain its modern topography (Song et al.,
2001; Fang et al., 2003; Fang et al., 2005; Li et al., 2014; Li et al.,
2015; Li et al., 2017). However, the timing of its attainment of its
modern altitude and how the regional climate system responded to
the mountain building remain controversial. Sedimentary evidence
from the Longzhong Basin including an increase in the sediment
accumulation rate and the occurrence of widespread boulder
deposits in the foreland basin (Song et al., 2001; Fang et al.,
2003; 2005; Li et al., 2014; Guo et al., 2017), together with the
disintegration of the main planation surface (Guo et al., 2006; Li
et al., 2015), indicates that strong tectonic uplift of NE TP occurred
since the Middle Pliocene (~3.6 Ma). The estimates of
paleotemperatures and paleoelevations based on oxygen and
carbon stable isotopic compositions of carbonates from the Lake
Qinghai Basin suggested that the basin paleoelevation might be
relatively high (>2.5 km) since the early Pliocene and then uplift up
to 1 km due to tectonic activity of NE TP at ~3.6 Ma (Richter et al.,
2022). The mid-Pliocene tectonic uplift of NE TP was thought to
create a profound impact on the Asian climate system and induced
the simultaneous strengthening of EAM and aridification of the
Asian interior (An et al., 2001). However, a recent paleoaltimetry
study based on a pollen record from the Qaidam Basin revealed that
NE TP was uplifted rapidly and reached a near-modern altitude in
the Late Miocene, with consequent changes in regional precipitation
and alpine biodiversity (Miao et al., 2022). The variations in EAM
are also controversial, which hinders a comprehensive
understanding of the climatic effects of the Late Miocene tectonic
activity. For example, biomarker evidence from the Xining Basin
(Chen et al., 2019) and pollen records from Jiuxi (Ma et al., 2005)
and Qaidam basins (Miao et al., 2011; Miao et al., 2019) indicate the
intensification of aridification from ~8 Ma, while a precipitation
reconstruction from the Tianshui Basin (Hui et al., 2023) and a
record of silicate-weathering intensity from the Linxia Basin (Yang
et al., 2021) indicate enhanced monsoon precipitation after
~8–7 Ma. This disagreement may result from different
interpretations of environmental proxies and/or the complexity
of the regional response to the tectonic uplift. Hence, it is
important to obtain additional long time-series of climatically
sensitive proxies from NE TP.

Leaf wax n-alkanes are sensitive to ecological and climatic
changes and provide information on changes in the vegetation
type, biological productivity, and climatic conditions
(Bourbonniere and Meyers, 1996; Ficken et al., 2000; Duan et al.,
2014; Liu et al., 2015; Li et al., 2018; Liu et al., 2018). Our previous
studies showed that the Neogene sediments of the Tianshui Basin,
adjacent to the West Qinling orogenic belt, contain abundant
n-alkanes (Peng et al., 2012; Peng et al., 2016). In this study, we
report the results of a systematic investigation of n-alkanes,
measured at a high stratigraphic resolution, from a
fluvial–lacustrine sedimentary sequence spanning the interval of

12.4–2.6 Ma. This record reveals shifts in the productivity of
n-alkanes and in their source types, and it provides insights into
regional ecological changes in response to EAM evolution, tectonic
uplift, and global changes.

2 Geological and geographical settings

The vast Longzhong Basin, bounded by West Qinling to the
south, the Qilian Mountains (Mts) to the north, and the Liupan Mts
to the east, is the northeastward-expanding frontier of TP (Figure 1).
Structurally, it is composed of a series of secondary basins, such as
the Xining, Lanzhou, Linxia, and Tianshui basins. Climatically, the
basin occupies the boundary between the humid Asian monsoonal
climate zone and the dry inland climate and alpine climate zones of
TP, at the apex of the monsoon triangle (Li et al., 1988).
Geomorphologically, the basin lies within the transition zone
between the high-altitude TP and low-altitude North China. The
main natural vegetation types from southeast to northwest are open
steppe, woodland, typical steppe, and desert steppe. The Cenozoic
mammalian fossil-rich basin sediments, derived from the
surrounding mountains, have recorded the evolution of the
mountain uplift, weathering, and the regional environment.

The Tianshui Basin, as a southeastern sub-basin of the
Longzhong Basin, is occupied by warm–temperate
forest–grassland under a semi-humid monsoonal climate, with a
mean annual temperature and precipitation of 10.8°C and 500 mm,
respectively. Tributaries of both the Yangtze River (the Jialing River)
and the Yellow River (the Wei River) flow cross the area. Landforms
are roughly divided into two parts by the Wei River: to the north of
the river are loess landforms and to the south are the North Qinling
Mts. Within the Tianshui Basin, Neogene fluvial–lacustrine
sediments unconformably overlie the Paleogene Guyuan
Group. From bottom to top, these Neogene strata are divided
into four formations (Fms): Ganquan, Yaodian, Yangjizhai, and
Lamashan Fms (Li et al., 2006). The Ganquan Fm comprises lower
alluvial facies and upper flood plain facies; the Yaodian Fm consists
mainly of shallow lake facies with channel facies below; the
Yangjizhai Fm consists of floodplain facies that unconformably
overlie the lacustrine facies of the Lamashan Fm.

3 Materials and methods

A total of 80 samples were obtained fromYaodian (105° 55′E, 34°
38′N) and Lamashan (105° 42′E, 34° 24′N) sections. The samples of
Ganquan and Yaodian Fms were obtained from the Yaodian section,
while the samples of Yangjizhai Fm were obtained from the
Lamashan section (Figure 2A). The results for the Lamashan Fm
were reported by Peng et al. (2023). For the Ganquan Fm, we focus
on the interval of 12.4–11.7 Ma, which consists of maroonmudstone
and interbedded calcareous mudstone with the deepening of
horizontal bedding and belongs to flood plain facies. The
Yaodian Fm spans the interval of 11.7–7.3 Ma containing
abundant fossils of the Hipparion fauna. The lower part
(11.7–9.2 Ma) is made up of alternations of floodplain and
overbank/channel deposits, and the upper part (9.2–7.4 Ma)
belongs to shallow lake facies, consisting of typical “Zebra Beds”
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gray-green or blue-gray marl (calcareous mudstone), interbedded
with maroonmudstone or siltstone. The Yangjizhai Fm, with the age
range of 7.3–3.7 Ma, has similar lithologic characteristics to that of
the Ganquan Fm, consisting of yellow-brown massive calcareous
argillaceous siltstone (marl) interbedded with maroon mudstone.
The Lamashan Fm, with the age range of 3.6–2.6 Ma, consists of
gray-green calcareous mudstone and marl, interbedded with shale,
containing snails and Ostracoda fossils.

Pretreatment for n-alkane analysis involves grinding 100–120 g
samples to pass through a 100-mesh sieve. Total lipids were extracted
with a dichloromethane/methanol solvent mixture (9:1, v/v) by Dionex
accelerated solvent extraction (ASE) under the following conditions of
high temperature (100°C) and pressure (1,000 psi). The extracted lipids
were then concentrated by rotary evaporation. After eluting the apolar
fraction with methanol, n-alkanes were analyzed by gas
chromatography (GC) with cholestane as the internal standard. The
heating procedure is as follows: initial temperature (70°C) increased to
210°C at the rate of 10°C/min, then increased to 310°C at the rate of 2°C/
min, and held constant for 6 min. The carrier gas was nitrogen with the
flow rate of 3 mL/min. The abundances of different carbon chain
lengths can be calculated from the ratio of each peak area to the
peak area of the standard sample. Pre-processing and analysis were
conducted in the State Key Laboratory of Biogeology and
Environmental Geology, China University of Geosciences (Wuhan).

The content of n-alkanes (∑ alk), average chain length (ACL,
Eglinton and Hamilton, 1967; Poynter et al., 1989), carbon preference
index (CPI, Copper and Bray, 1963; Eglinton and Eglinton, 2008), a
proxy for aquatic macrophytes (Paq, Ficken et al., 2000), and the
terrestrial vs. aquatic ratio (TAR, Bourbonniere andMeyers, 1996) were
calculated using the following equations:

∑ alk � ∑Cn, (1)
ACL � ∑ n × Cn odd( )/∑Cn odd( ) n � 21 − 33( ), (2)

CPI � ∑C23 − C35 odd( )/∑C22 − C34 even( ), (3)
TAR � C27 + C29 + C31( ) / C15 + C17 + C19( ), (4)
Paq � C23 + C25( ) / C23 + C25 + C29 + C31( ). (5)

Cn represents the content of each n-alkane with n carbon atoms.

4 Results

The n-alkane distributions of samples from the Yaodian and
Lamashan sections range from n-C15 to n-C35. On average, the
short-chain (C15-20), middle-chain (C21-25), and long-chain (C26-35)
n-alkanes account for ~20.3%, 26.1%, and 53.6% in total,
respectively (Figure 3A). Total n-alkanes have the range of
17.4–15053.7 ng/g, with the median being 259.8 ng/g. The
n-alkane contents were relatively stable during 12.4–7.3 Ma and
decreased during 7.3–4.2 Ma, after which there were two significant
increases, during the Middle and Late Pliocene (Figure 3B). We used
the Mann–Kendall (M-K) mutation test and the Bayesian change-
point algorithm (Ruggieri, 2013) to detect change points in the total
n-alkane content. The M–K mutation test showed an intersection
point of UF and UB at ~3.2 Ma (within the 95% confidence interval),
and the Bayesian approach indicated a change point at ~3.2 Ma (a
posterior probability of 41%). Both results indicated a major change
in the productivity of n-alkanes at ~3.2 Ma (Figure 3C).

There are various types of n-alkanes in sediments, and five
distribution patterns are evident in the sediment of the Tianshui
Basin (Figure 4C): Type A has a main peak at n-C21 and n-C23 with a
secondary peak at n-C29. Type B has a main peak at n-C25. For types
A and B, differences in the content of nC21-29 are relatively small and
there is a weak odd/even predominance. Types C, D, and E have a
main peak at n-C27, n-C29, and n-C31, respectively, with a
pronounced odd/even predominance. We used stratigraphically
constrained unweighted pair group average algorithms to
perform the hierarchical clustering of all samples based on the
n-alkane compositions. The classification results are shown in
Figure 4A, and they define two groups with the boundary age of
3.15 Ma. The 12.4–3.15-Ma group is divided into two subgroups
with the boundary at ~4.2 Ma. Thus, we conclude that significant
changes in the source of n-alkanes occurred between ~4.2 Ma and
~3.15 Ma.

It is interesting that neither the changepoint of the n-alkane
contents (3.2 Ma) nor the classification boundaries for the n-alkane
distribution (3.15 Ma and 4.2 Ma) correspond to changes in
sedimentary facies, which indicates that these shifts might be
results of ecosystem changes in biological productivity and

FIGURE 1
Geographical and geological context of the study area. The red pentagram indicates the location of the Lamashan and Yaodian sections.
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species. Combined with the variations in the content and
distribution in n-alkanes, we divided the sequence into three
evolutionary stages: Stage Ⅰ (12.4–4.2 Ma), Stage Ⅱ (4.2–3.2 Ma),
and Stage Ⅲ (3.2–2.6 Ma).

5 Discussions

5.1 Characteristic parameters of n-alkanes
and changes in the n-alkane source

Previous studies indicate that n-alkanes derived from different
plant species have different compositional characteristics. For
example, the n-alkanes produced by lower plants (e.g., algae,
fungi, and photosynthetic bacteria) and non-emergent

macrophytes (NEM, e.g., floating leaved and submerged plants)
are usually dominated by short-chain components (n-C17-20), with
the main peaks of n-C17, n-C18, or n-C19; and by middle-chain
components (n-C21-25), with the main peaks of n-C21, n-C23, or
n-C25 (Meyers, 2003; Gao et al., 2011; Duan et al., 2014). The
n-alkanes produced by emergent macrophytes (EMP), like those of
higher terrestrial plants (HTP), have increased abundances of long-
chain n-alkanes (n-C26-35), with the main peaks of n-C27, n-C29, or
n-C31, and with a pronounced odd/even predominance (Bray and
Evans, 1961; Eglinton and Hamilton, 1967; Gao et al., 2011). The
occurrence of n-alkane types A, B, C, D, and E in the studied sections
indicated that non-emergent macrophytes, emergent plants, and
higher terrestrial plants were ecologically important at various times
in the past. Types D and/or E occur almost throughout the
sedimentary sequence (Figure 5A), which indicated that emergent

FIGURE 2
(A) Lithology and magnetic stratigraphy of the Lamashan and Yaodian sections (Wang et al., 2012; Liu et al., 2016). Photographs of (B) the Lamashan
section and (C) Yaodian section . The red dashed area is the sampling location, and the results for the yellow-dashed area are cited by Peng et al. (2023).
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or higher terrestrial plants were a stable and dominant source of
n-alkanes. The diversity of n-alkane sources increased from Stage I
to Stage III, which is expressed by the increased number of types
(Figure 5A). Specifically, types C, D, and E occurred during Stage I,
Type B appeared during Stage II, and Type A appeared during Stage
III; this shows that aquatic plants played an increasingly important
ecological role. A triangle plot of the n-alkanes shows that the
middle-chain-length n-alkane percentage increased substantially
from Stage I to Stage III (Figure 5B), which indicates the
increased contribution of NEM.

Although the distribution of these three components and n-alkane
types can provide information about the origin of n-alkanes, it is
difficult to distinguish the sources completely due to complexity of
long-chain alkane provenance. A systematic study in Qinghai Lake
indicated some submerged and algal plants produce a large proportion
of long-chain alkanes (Liu and Liu, 2016). Therefore, it is necessary to
compare the characteristic parameters of n-alkanes in sediment and
modern plants. Several n-alkane-derived parameters (e.g., ACL, CPI,
Paq, and TAR), which describe the compositional features of n-alkanes,
can also reflect changes in the origin of n-alkanes and hence the
ecological environment. ACL and CPI indicate the chain-length
distribution and the odd-carbon number predominance of leaf wax
n-alkanes, respectively. Generally, n-alkanes from higher terrestrial
plants have higher ACL and CPI values than aquatic plants. Paq
and TAR were proposed to indicate the contribution from aquatic

macrophytes and lower plants to sedimentary organic matter, and
higher Paq and TAR values corresponding to larger contribution from
them, respectively (Bourbonniere andMeyers, 1996; Ficken et al., 2000).
The differences in the ACL and Paq values of the three stages are much
greater than those of CPI and TAR, with these differences mainly
evident between Stage Ⅲ and the other two stages (Figures 5C,D).
Specifically, ACL and Paq values of StageⅢ are lower and higher than
those of the other two stages, respectively. The published data in the
CLP (Li et al., 2018) and NE TP (Gao et al., 2011; Duan et al., 2014; Liu
et al., 2015; Liu and Liu, 2016) showed THP have the highest ACL and
lowest Paq values, NEM have the lowest ACL and highest Paq values,
and values of EMP distribute between THP and NEM (Figure 5C, D5).
In the Tianshui Basin, the ACL and Paq values of Stage Ⅲ are
intermediate between NEM and EMP, while those of Stages Ⅰ and Ⅱ
range between EMP and HTP, which indicates the increased
contribution from aquatic plants during Stage Ⅲ (Figures 5C,D).
Furthermore, the distribution of n-alkane composition and the
related parameters during Stage Ⅱ shows several transitional
characteristics from Stage Ⅰ to Stage Ⅲ, with most of the values of
Stage Ⅱ overlapping with Stage I, and with a minority distributed within
the range of StageⅢ. These observations indicate that the contribution
of NEM to n-alkanes changed from negligible to dominant.

In summary, the contribution from aquatic plants gradually
increased from Stage Ⅰ to Stage Ⅲ, manifested by changes in non-
emergent macrophytes, which occurred sporadically during Stage Ⅱ

FIGURE 3
(A) Percentages of short-chain (nC15-20), middle-chain (nC21-25), and long-chain (nC26-35) alkanes. (B) Total n-alkane concentration and model
values predicted by the Bayesian change-point algorithm, in logarithmic coordinates (blue). (C) Predicted changepoint of the total n-alkane
concentration. The blue line indicates the location of the change point (indicated by the “spikes”) based on the Bayesian change-point algorithm. The
black line indicates the changepoint (intersection of UF and UF) based on theMann–Kendall (M–K) mutation test, and the red dashed lines represent
the 95% confidence level.
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and were then significantly represented during Stage Ⅲ.
Additionally, the diversity of n-alkane sources increased from
Stage Ⅰ to Stage Ⅲ.

5.2 Regional ecological evolution and its
links with climate change and the tectonic
uplift

In the following sections, we summarize the evolution of the
regional ecological environment in terms of changes in biological
productivity and its composition, based on n-alkane
components. Generally, the absolute concentrations of both
total n-alkanes and the three components repeatedly doubled
in a stepwise manner from Stage Ⅰ to StageⅢ, accompanied by an
increase in the diversity of n-alkane types, and the increased
contribution from aquatic plants (Figure 6). The changes in the
plant composition of the Tianshui Basin both within and between
the three stages were closely related to the evolution of the EAM
system and/or tectonic uplift.

5.2.1 Relationship between lateMiocene ecological
changes and a major climate transition

Stage Ⅰ (12.4–4.2 Ma) is characterized by a low n-alkane content
and relatively homogeneous n-alkane sources, compared with the
other stages. The n-alkanes compositional analysis indicated that
HTP and EMP were the potential sources. Combined with the
predominance of the pollen of terrestrial plants (Liu et al., 2016),
we infer that HTP was the dominant source of n-alkanes. A
pronounced change in n-alkanes composition occurred at 7.4 Ma,
which corresponds to a transition from shallow lake facies to
floodplain facies (Li et al., 2006). The concentrations of both
total n-alkanes and the three components decreased after
~7.4 Ma, together with the pollen concentration, indicating a
decrease in biological productivity, and there was also a
corresponding change in n-alkane types. Types C and D
occurred sporadically, in addition to the dominant type E, at
times when the biological productivity was relatively high. Types
C and D mostly occur within the gray or greyish-green sediments,
which accumulated in a reducing environment, when aquatic plants
reached their highest abundance (Liu et al., 2016). We infer that the

FIGURE 4
(A) Results of hierarchical clustering analysis of samples based on the distribution of n-alkanes. (B) Average distribution of n-alkanes during stages
I–III. (C) Average distributions of the five types of n-alkanes.
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occurrence of types C and D indicates a contribution from EMP
and/or a relatively humid environment. After 7.4 Ma, when
biological productivity reached a minimum, type E was the only
type, and at the same time, aquatic taxa almost disappeared from the
palynological assemblage (Liu et al., 2016). In addition, the decrease
in CPI and increase in ACL after ~7.4 Ma indicate a decreased
n-alkane contribution from aquatic plants.

The synchronous decreases in productivity and in the aquatic
contribution to n-alkanes at 7.4 Ma are consistent with a major
climatic transition from humid to arid condition at the end of the
Late Miocene. Previous studies have documented decreases in the
pollen percentages of hygrophilous forest vegetation in the Tianshui
(Liu et al., 2016), Qaidam (Miao et al., 2011), and Jiuxi basins (Ma et al.,
2005; Figure 7), at the end of the Miocene, accompanied by an increase
in steppe vegetation. These changes indicate a decrease in precipitation
on the NE TP. Geochemical evidence from the South China Sea
indicates a reduction in weathering intensity related to the
weakening of the East Asian summer monsoon (Wan et al., 2007;

2010), and at the same time, Aeolian sediments began to accumulate on
the Chinese Loess Plateau (An, 2014; Lu et al., 2019). Aeolian sediments
were also supplied to the NE TP fluvial–lacustrine system (Fan et al.,
2006; Yang et al., 2018), and there was an increase in their contribution
to sedimentation in the PacificOcean at ~7–8Ma (Rea et al., 1998; Shen
et al., 2017), indicating the strengthening of aridification of the Asian
interior. On a global scale, pronounced cooling occurred in the Late
Miocene in both the ocean (Herbert et al., 2016) and on land (Chen
et al., 2019; Li et al., 2023; Wen et al., 2023), accompanied by a decrease
in pCO2 (Cui et al., 2020; Brown et al., 2022). This generally cool
climatic background resulted in the weakening of the Asian summer
monsoon, and therefore, we conclude that pCO2-induced global cooling
was the main factor driving the aridification and ecosystem changes in
the Tianshui Basin during the Late Miocene.

5.2.2 Oscillations in n-alkanes and EAM evolution
During Stage Ⅱ (4.2–3.2 Ma), the n-alkane concentration

increased intermittently during 4.2–3.6 Ma and then decreased,

FIGURE 5
Comparison of characteristic n-alkane parameters during the three stages. (A) Distribution of the total alkane concentrations and n-alkane types
(Cmax). (B) Triangle diagram of the distributions of short-chain, middle-chain, and long-chain alkanes. Plots of (C) ACL versus CPI and (D) Paq versus TAR.
The bottom figures show ACL and Paq values of modern higher terrestrial plants (HTP), emergent plants (EMP), and non-emergent macrophytes (NEM).
These data are obtained by Gao et al. (2011), Du et al. (2014), Liu et al. (2015), and Li et al. (2018).
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and both n-alkanes and pollen concentrations (Liu, 2016) decreased
during 3.6–3.2 Ma, indicating a decrease in biological productivity.
During 4.2–3.6 Ma, the numbers of n-alkane types increased and
type B appeared; however, type E remained dominant, while types B,
C, and D occurred less frequently. Changes in the concentration and
type of n-alkanes were roughly synchronous; for example, aquatic
n-alkane types generally occurred when the n-alkane concentration
peaked, and then disappeared when the n-alkane concentration

decreased significantly. In addition, Paq and ACL were
characterized by relatively low and high values, together with
occasional extremely high and low values, respectively. The
infrequent occurrence of aquatic n-alkane types and the extreme
values of n-alkane parameters reflect the occasional dominant
contribution of aquatic plants, including NEP. Furthermore, the
large oscillations in n-alkane concentrations and parameters,
accompanied by shifts in dominance between aquatic and

FIGURE 6
Age profiles of (A) n-alkane types, (B) ACL, (C) Paq, (D) concentrations of different chain lengths, and (E) total alkanes in the Tianshui Basin.
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terrestrial plants, may indicate the deepening and shallowing, or
even the occasional disappearance, of a lake environment in this
region.

The changes in n-alkanes after ~4.2 Ma, accompanied by the
oscillations of the level of an intermittent lake, were likely related to
the evolution of the monsoon system. Increases in pedogenesis

intensity are observed on the Chinese Loess Plateau at this time
(Sun et al., 2010), together with increases in the chemical weathering
intensity recorded by sediments of the South China Sea (Wan et al.,
2007; Wan et al., 2010), accompanied by a hydroclimatic shift on the
North China Plateau, from arid to humid conditions during
4.5–4.2 Ma (Lu et al., 2021). All these changes indicate the

FIGURE 7
Total alkane concentration in the Tianshui Basin compared with other climatic indices and the tectonic activity of NE TP. (A) Schematic model
showing the major periods of NE TP uplift (modified Wan et al., 2010). (B) Mass accumulation rate (MAR) of Aeolian dust at ODP 885/886 in the North
Pacific Basin (Rea et al., 1998). (C) Log arboreal pollen/non-arboreal pollen (AP/NAP) ratios from the Jiuxi Basin (Ma et al., 2005). Record of the chemical
index of alteration (CIA) between ODP 1146 (D, Wan et al., 2010) and ODP 1148 (E, Wan et al., 2007). (F) Magnetic susceptibility (χlf) record of the
Chaona section (Song et al., 2007). Concentration of (G) total n-alkanes and (H) pollen in the Tianshui Basin. (I) Stacked sea surface temperature (SST)
anomalies of the Northern Hemisphere (NH), Southern Hemisphere (SH), and tropics (Herbert et al., 2016).
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strengthening of the summer monsoon intensity. On the other hand,
increases in the grain size (Lu et al., 2010) and in the accumulation
area, as well as the sedimentation rate of Aeolian sediments on the
Chinese Loess Plateau (Lu et al., 2019), combined with increased
dust transport to the North Pacific during ~4–3.6 Ma (Rea et al.,
1998; Shen et al., 2017), together indicate the strengthening of the
winter monsoon and the aridification of the Asian interior.
Although the intensity of both the summer and winter monsoons
increased overall, their relative strength, or their influence within the
studied region, was different during different stages. Consequently, a
lake generally appeared or deepened when the summer monsoon
dominated, while the lake shallowed or disappeared when the winter
monsoon dominated. Generally, the winter monsoon dominated
during most of this stage, while the summer monsoon was
occasionally dominant.

The simultaneous strengthening of the Asian summer and
winter monsoons, and the aridification of the Asian interior were
closely related to the tectonic uplift of the TP (An et al., 2001),
especially of the NE TP (Liu and Yin, 2002; Tang et al., 2013).
Abundant geomorphological and sedimentological evidence has
demonstrated the occurrence of intensive tectonic activity within
the NE TP in the Late Pliocene. For example, the main planation
surface disintegrated at ~3.6 Ma (Li et al., 2015); the deposition
of extremely coarse conglomerate deposits was initiated in the NE
TP, such as the Yumen conglomerate in the Jiuquan Basin
(3.58–1.77 Ma, Liu et al., 2011), the Ganjia conglomerate in the
Xunhua–Guide Basin (3.6–2.6 Ma, Song et al., 2001; Fang et al.,
2005), and the Wuquan conglomerate in the Lanzhou Basin
(3.6–2.2 Ma, Guo et al., 2017); and the elevation of Qinghai Lake
increased by ~1 km at ~3.6 Ma (Richter et al., 2022). In addition, the
global climate experienced a cooling trend since ~4 Ma, which
strengthened the winter monsoon but weakened the summer
monsoon, resulting in the stronger influence of the winter
monsoon on the NE TP compared to the summer monsoon.

5.2.3 Major increase in n-alkane types and content
at ~3.2Ma and its link to the strengthening of the
EASM and tectonic activity

Stage Ⅲ (3.2–2.6 Ma) is characterized by relatively high
n-alkane concentrations and multiple n-alkane types. After
3.2 Ma, the concentration of n-alkanes rapidly and repeatedly
doubled, accompanied by increased diversity, and peaked at
~2.8 Ma, after which the n-alkane concentration and diversity
both decreased. At times when the n-alkane concentration
reached a maximum, types B, C, and E occurred together,
accompanied by the dominant type D, while type A occurred
only intermittently. This implies that aquatic plants, including
NEM and EMP, became one component of a stable and dominant
source of n-alkanes. In addition, the higher Paq and lower ACL
values indicate the greatly increased contribution from aquatic
plants (Peng et al., 2023). The corresponding lithology was
dominated by gray-green mudstone, which indicates a long-
term reducing environment. At the same time, the presence of
high frequencies of pondweed pollen and the cells of Pediastrum
indicate an increase in lake volume (Liu, 2016). This evidence
indicates the rapid deepening of the lake after ~3.2 Ma, which
maintained a sufficient depth to provide a favorable environment
for NEP plants until 2.8 Ma, after which the lake became shallower.

The strengthening of the EASM and regional tectonic uplift in
the West Qinling Mts are regarded as the cause of lake deepening at
~3.2 Ma (Peng et al., 2023). The magnetic susceptibility of Aeolian
sediments on the central Chinese Loess Plateau increased
continuously from the Early Pliocene, peaked at ~2.8 Ma, and
decreased thereafter (An et al., 2001; Song et al., 2007; Lu et al.,
2010; Sun et al., 2010). Additionally, there was the increased pollen
representation of hygrophilous forest vegetation in the Jiuxi Basin
during 3.2–2.8 Ma (Ma et al., 2005). Together, this evidence
indicates that the strengthened summer monsoon significantly
influenced the NE TP during 3.2–2.8 Ma, leading to a relatively
brief humid period. Additionally, geomorphological and
sedimentological evidence suggests the occurrence of tectonic
uplift in the West Qinling Mts and the surrounding region, in
response to tectonic activity within the NE TP (Song et al., 2001;
Fang et al., 2003; Guo et al., 2006). The uplift of the West Qinling
Mts caused an increase in precipitation on windward slopes,
including within the study region, due to the orographic
interception of moisture. On the other hand, the topographic
height difference likely increased with the growth of the West
Qinling Mts, which caused an increase in the runoff from the
high-altitude mountains to the low-altitude basin. The
pronounced changes in n-alkanes imply that at ~3.2 Ma, the
West Qinling Mts may have been uplifted to a critical threshold
altitude sufficient to alter the local climatic and/or geomorphological
conditions.

6 Conclusion

Our systematic investigation of the n-alkanes record of a Neogene
fluvial–lacustrine sedimentary sequence in the Tianshui Basin reveals
major changes in productivity and source of n-alkanes, which were
linked with the tectonic activity of the TP and global climate change.
According to the changes in n-alkane concentrations and types, the
sequence can be divided into three stages: Stage Ⅰ (12.4–4.2 Ma),
characterized by an overall low n-alkane content and relatively
homogeneous n-alkane source (HTP-dominated). The synchronous
decrease in productivity and in the contribution of an aquatic
n-alkane source after 7.4 Ma is correlative with a major climate
transition from humid to arid conditions in response to global
cooling. During Stage Ⅱ (4.2–3.2 Ma), the n-alkane concentration
increased intermittently, accompanied by the occasional dominance
of aquatic plants, reflecting the alternating deepening and shallowing
or disappearance of an intermittent lake, related to the evolution of the
EAM, under the influences of TP uplift and global cooling. Stage Ⅲ
(3.2–2.6 Ma) was characterized by relatively high n-alkane
concentrations and multiple n-alkane sources. A remarkable
increase in aquatic plants and biological productivity occurred
within this region at ~3.2 Ma, possibly caused by the strengthening
of the EASM and regional tectonic uplift.
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