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Early damage to asphalt pavements generally occurs due to the increasing traffic
flow and the loads of vehicles, coupled with alternating high- and low-
temperature cycles, freeze–thaw cycles, ultraviolet radiation, and other harsh
environments. Several types of distress, such as rutting, cracking, and other
damage, deteriorate the serviceability of asphalt pavements and shorten the
road service life. Thus, the long-term structural mechanical response of
asphalt pavements under the influence of loads and the environment is crucial
data for the road sector, which provides guidance about road maintenance.
Effectively processing the pavement dynamic monitoring data is a prerequisite
to obtain the dynamic response of asphalt pavement structures. However, the
dynamic monitoring data of pavements are often characterized by transient weak
signals with strong noises, making it challenging to extract their essential
characteristics. In this study, wavelet decomposition and reconstruction
methods were applied to reduce the noise of pavement dynamic response
data. The parameters of the signal-to-noise ratio (SNR) and root mean square
error (RMSE) were introduced to compare and analyze the effect of the
decomposition of two different wavelet functions: the symlet (sym) wavelet
function and the Daubechies (db) wavelet function. The results showed that
both the sym and db wavelet functions can effectively obtain the average
similarity information and the detailed information of the dynamic response
signals of the pavement, the SNR after the sym wavelet fixed-threshold
denoising process is relatively higher, and the RMSE is smaller than that of the
db wavelet. Thus, wavelet transformation exhibits good localization properties in
both the time and frequency domains for processing pavement dynamic
monitoring data, making it a suitable approach for handling massive pavement
dynamic monitoring data.
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1 Introduction

The increasing demand for fast and convenient transportation has
resulted in the need for intelligent road infrastructure. This
infrastructure heavily relies on the application of digital transport
systems and road monitoring information support (Wang and
Wang, 2019). Previous studies have mainly relied on macroscopic
road surface investigations and non-destructive testing techniques to
evaluate asphalt pavement performance. However, asphalt pavements
are subjected to various factors, such as external loads, temperature, and
humidity. To monitor the dynamic response and internal
environmental information of pavement structures, researchers have
used fiber-optic grating sensors and resistance-type sensors, enabling
the monitoring of pavement dynamics and environmental changes.
This information helps us in the understanding of the relationship
between load and pavement performance, providing valuable insights
about road maintenance (Liu and Qin, 1998).

Mechanical parameters, including stress and strain, are essential for
the pavement design, according to the Chinese Specifications forDesign
of Highway Asphalt Pavement (Ministry of Transport of the People’s
Republic of China, 2017; Li and Ji, 2019). Researchers have attempted to
obtain the mechanical response of asphalt pavement interlayers.
Embedded sensors in layered structures have proven effective in
monitoring these parameters and capturing their dynamic response.
For example, Guan and Zhuang (2012) measured road strain–stress
signals using asphalt strain gauges and earth pressure boxes, analyzing
the dynamic strain and compressive stress in different layers. Liu and Li
(2017) collected asphalt pavement strain data using I-beam strain
sensors and developed software for post-processing. Yang and Wang
(2010) investigated the dynamic strain response of asphalt layers under
heavy loads and temperature effects. Wei and Wang (2009) measured
strain data under different loads and analyzed the response using
resistance strain sensors. Several other studies have also explored
strain sensor arrangements and have developed monitoring systems
for asphalt pavements (Tan and Li, 2017; Cornaggia et al., 2022).

Various signal processing techniques have been utilized in
pavement research studies. For instance, Hui et al. (2023) and Hui
and Yu (2023) used fast Fourier transform (FFT) to analyze acoustic
emission signals and characterize asphalt damage patterns. Jiang andNie
(2015) applied wavelet decomposition and reconstruction filtering to
reduce vibration noise in the output signal of a fiber-optic gyroscope.
Wavelet-based methods have also been utilized in pavement
identification, adhesion coefficient estimation, and crack detection
(Sun et al., 2011; Golestani et al., 2013; Devi et al., 2022). However,
previous studies have lacked effective preprocessing, real-time analysis,
and feature extraction methods for handling large-scale pavement
monitoring data. Accurate processing of dynamic monitoring data is
crucial for the understanding of the dynamic response of asphalt
pavements, as road dynamic signals are weak and transient and often
accompanied by significant noise. In this context, traditional Fourier
filtering techniques are not suitable due to the non-smooth nature of the
signals. Wavelet transformation emerges as a suitable approach for
processing extensive monitoring data in asphalt pavements.

Symmetrical wavelets, also known as orthogonal wavelets or
biorthogonal wavelets, are a class of wavelet functions that exhibit
symmetry properties (Powers, 2022). Unlike other types of wavelets,
symmetrical wavelets possess both symmetry and anti-symmetry
characteristics (Gossler et al., 2022). These wavelets are designed to

have equal energy distribution in their positive and negative frequency
components (Banerjee and Bhowmik, 2022). The key characteristic of
symmetrical wavelets is their ability to provide a balanced representation
of both high-frequency and low-frequency components of a signal
(Bairwa and Rathod, 2022). This property makes them particularly
useful for analyzing signals with symmetric properties or those that
require a balanced representation of positive and negative values. In
practical terms, the use of symmetrical wavelets in signal processing
allows for an accurate and stable analysis of signals, as they can capture
both fine details and global trends in a signal (Ghobber and Mejjaoli,
2023). They are commonly utilized in various applications, including
image processing, audio and speech analysis, data compression, and
time–frequency analysis. The symmetric properties of these wavelets
enable efficient filtering of signals, noise reduction, feature extraction,
and decomposition of signals into different frequency components. They
provide a versatile tool for analyzing and processing signals in both the
time and frequency domains (Ke et al., 2023). In the context of pavement
engineering andmaintenance, the application of symmetrical wavelets in
signal processing can help extractmeaningful information fromdynamic
response signals obtained from field testing (Janani et al., 2022). Through
symmetrical wavelet analysis, the method proposed in this study can
effectively remove noise and enhance the accuracy and clarity of the
pavement’s dynamic behavior representation, enabling a better
understanding of its performance and facilitating decision-making in
pavement engineering practices (Mallat, 1989; Zeng, 2007; Qin, 2014;
Shao and Bai, 2014; Zhang, 2016; Tulup, 2021).

This paper focuses on the application of wavelet decomposition
and reconstruction techniques to process dynamic response signals
obtained from field testing of asphalt pavements. By removing high-
frequency noise, the processed signals provide a clearer and more
accurate representation of the pavement’s dynamic behavior. We
introduce the signal-to-noise ratio (SNR) and root mean square
error (RMSE) as evaluation parameters for comparing two different
wavelet functions: the symlet (sym) wavelet function and
Daubechies (db) wavelet function. The effectiveness of the
proposed method is validated through the experimental analysis
and comparison with traditional signal processing techniques. The
processed data lay a valuable foundation for further analysis and
decision-making in pavement engineering and maintenance.

2 Engineering background and data
source

2.1 Engineering background

The original monitoring data of this study were collected from an
urban road in Jinan, Shandong. Sensors were directly laid on a semi-
rigid road base, and asphalt strain gauges were arranged outside of the
lane. The applied sensors were coefficient-calibrated, and data
acquisition was verified to be stable. The temperature and
humidity sensors were, respectively, arranged between a 6-cm AC-
20 asphalt mixture layer and an 8-cmAC-25 pavement layer and a 13-
cm LSPM-30 base and an 18-cm cement-stabilized gravel base. A
spacing of 60 cmwas set between the sensors. The pavement structure
and sensor layout are illustrated in Figure 1. The asphalt layer bottom
sensor is grounded and shielded by the instrument, and the noise base
fluctuates by only 1–3 uε to meet the acquisition conditions.
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2.2 Field testing

The testing vehicle was a 6.8-m two-axle flatbed truck
manufactured by Dongfeng, and the tire inflation pressure was
1.2 MPa during the test. A controlled axle weight of 10 t was set
for the rear axle of the two-axle truck (single-axle twin wheelset,
Figure 2B). The front-axle weight was weighed and recorded (2.8 t).
The dynamic response signals of the pavement were recorded using
a high-frequency data acquisition system with multiple
measurement functions, solid-state relay modules, and scanning
speeds of up to 800 channels/second.

2.3 Dynamic pavement response signal
acquisition under loading

A dynamic load appears when the original signal of the pavement
dynamic response amplitude changes with time, as shown in Figure 3.
The horizontal coordinate is the time, and the vertical coordinate is
the signal amplitude. The waveform graph shows that the collected
pavement dynamic response signal base fluctuation is large; the data

that appeared in the three peaks are the response signals when the
wheels pass through the sensor. The fluctuation region noise
interference is more serious, which almost covers the characteristic
peak. The noise seriously affects the subsequent pavement monitoring
work, which needs to be reduced.

3 Signal processing based on wavelet
decomposition and reconstruction

3.1 Wavelet decomposition and
reconstruction methods

The wavelet decomposition and reconstruction processing
methods have the advantages of low entropy, multi-resolution,
and decorrelation (Hui et al., 2023). Wavelet decomposition
requires a priori knowledge of the signal frequency to
determine the basic functions and decomposition levels, which
decomposes the signal into a set of elementary functions called
wavelets; these wavelets are obtained by scaling and shifting a
prototype wavelet called the mother wavelet (Hui and Yu, 2023).

FIGURE 1
Diagram of the road surface structure and sensor placement. (A)Diagram of the asphalt pavement structure; (B) sensor location; and (C) diagram of
sensor placement.

FIGURE 2
Field testing area and load-controlled vehicle. (A) Test section; (B) two-axle truck loaded with sand.
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We set the mother wavelet function ψ(t) with a scale factor of a and
a translation factor of b; then, the wavelet analysis basis is defined
as follows:

φ t( ) � 1���
a| |√ φ

t − b

a
( ). (1)

(1) Discrete wavelet transformation:

Mallat proposes an efficient algorithm for decomposing signals
into approximate and detailed sequences (Sun et al., 2011). The

wavelet decomposition process is shown in Figure 4, where S denotes
the original signal, A denotes the approximate or low-frequency
signal, and D denotes the detailed or high-frequency signal, with
each level dividing the low-frequency signal into a high-frequency
signal and a low-frequency signal.

Level 1: S � D1 + A1,

Level 2: A1 � D2 + A2,

Level 3: A2 � D3 + A3.

It is noteworthy that the decomposition level L and the number of
samples N should satisfy the relationship 2L≤N. The decomposed
signal consists of the approximation of level l and the details from level
1 to level l. Figure 5 shows the approximate sequence a containing the
lower frequency signal and the detailed sequence d~f containing the
higher frequency signal, obtained after the four-layer wavelet
decomposition of the road response monitoring signal collected in
this paper. It can be seen that after four layers of wavelet
decomposition, the high-frequency noise signal is decomposed layer
by layer, and the low-frequency effective pavement response signal
obtained retains the whole dynamic response characteristics of the
pavement generated by the three-axle truck and can proceed to the
next step.

The discrete wavelet transformation (DWT) discretizes the scale
and translation parameters to the power of 2 and averages the time
discretization usually using binary wavelet decomposition and
reconstruction, with discretized scale times of 2, 4, 6, 8, and 2n
(the sampling rate is required to satisfy Nyquist’s sampling
theorem), and is commonly used for the multi-resolution analysis

FIGURE 3
Original signal time-domain diagram.

FIGURE 4
Wavelet decomposition process.
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of signals and signal decomposition and reconstruction, with the
following equation:

DWTx a, b( ) � 〈X t( ),φa,b t( )〉 � 2−
a
2∫

R
X t( )φ 2−at − b( )dt. (2)

At different scales and times, the scale function vector group
and the wavelet function vector group are constructed,
respectively, for the scale function vector space V and the
wavelet function vector space W. At a certain level, the
approximate, low-frequency information of the signal is
obtained by the convolution of the signal in the scale space
V and the detailed, high-frequency information of the signal is
obtained by the convolution of the signal in the wavelet
space W.

① Scale function:

ϕjk t( ) � 2−
j
2ϕ 2−jt − k( ), j, k ∈ Z. (3)

② Wavelet function:

φjk t( ) � 2−
j
2φ 2−jt − k( )j, k ∈ Z. (4)

③ Threshold:

Common threshold selection methods, currently available,
include unbiased risk estimation thresholds (rigrsure), fixed
thresholds (sqtwolog), heuristic thresholds (heursure), and very
large and very small thresholds (minimaxi). There are two
categories of the four methods: one of them is the conservative
principle; e.g., the rigrsure criterion and the minimaxi criterion are
relatively conservative (only some of the coefficients are set to zero),
and therefore, the method is suitable for high-frequency information
that contains noise. The second is the non-conservative principle;
e.g., the sqtwolog and heursure criteria, particularly the fixed-
threshold (sqtwolog) method, which removes more noise, is
therefore suitable for low-frequency information (Devi et al., 2022).

FIGURE 5
Four-layer wavelet decomposition result. (A) Original monitoring data; (B) approximate sequence a; (C) approximate sequence d; (D) approximate
sequence e; (E) approximate sequence f.
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The mathematical formula for the generic threshold is

λ � σ
�������
2 ln N( )√

, (5)
where λ represents the threshold of wavelet coefficients, σ represents
the standard variance of the noise, N represents the length, and σ �
median(|wj,k|)/0.6745.

The process of discrete wavelet transformation thresholding
denoising is shown in Figure 6. The wavelet basis function,
threshold, queue function, and the number of decomposition
layers are all key factors affecting the final denoising effect in
the process of discrete wavelet transformation thresholding
denoising.

The signal is processed using wavelet decomposition and
reconstruction methods, and the wavelet coefficients obtained
contain important information about the signal. The effect of

wavelet decomposition coefficients on the dynamic response
signal of the pavement is shown in Figure 7, which clearly shows
the exact location of time discontinuity. The wavelet coefficient of
the pavement response monitoring signal is larger after wavelet
decomposition, and the wavelet coefficient of the noise is smaller
than that of the effective pavement dynamic response signal. An
appropriate threshold is selected, and the wavelet decomposition
coefficients of each layer are quantified using the threshold function;
when the wavelet coefficient is larger than the threshold, the
pavement dynamic response signal is considered effective and is
retained; if it is smaller than the threshold, it is considered as noise
and the wavelet coefficient is set to 0, thus eliminating the noise. The
essence of the wavelet decomposition and reconstruction processing
method is to suppress the useless noise part of the pavement
response monitoring signal and enhance the useful signal part.

FIGURE 6
Process of discrete wavelet transformation thresholding denoising method.

FIGURE 7
Effect of wavelet decomposition coefficients.
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The basic steps are as follows:

(i) Step 1: Decomposition: Select wavelets with N layers for the
wavelet decomposition of the pavement response monitoring
signal.

(ii) Step 2: After wavelet decomposition, select an appropriate
threshold and quantify the wavelet decomposition
coefficients of each layer using the threshold function.

(iii) Step 3: Reconstruction: Reconstruct the pavement dynamic
response signal using the processed wavelet coefficients.

3.2 Comparative selection of wavelet basis
functions and thresholds

3.2.1 Selection of wavelet basis functions
The choice of a wavelet basis function is usually based on the

combination of support length, vanishing moments, symmetry,
regularity, and similarity. As the support length increases, the
amount of computation required is usually greater, and the
resulting wavelet coefficients are larger. Long support lengths
can cause boundary problems, and short support lengths have

FIGURE 8
Waveform results of wavelet denoising. (A) db4wavelet two-layer decomposition; (B) db4wavelet three-layer decomposition; (C) db4wavelet four-
layer decomposition; (D) sym6 wavelet two-layer decomposition; (E) sym6 wavelet three-layer decomposition; and (F) sym6 wavelet four-layer
decomposition.

TABLE 1 SNRs and RMSEs of wavelet denoising results with different decomposition layers and wavelet functions.

Type db4 wavelet sym6 wavelet Number of decomposition layers

SNR RMSE SNR RMSE

Hard-threshold denoising 8.0819 0.52151 8.1008 0.52038 2

Soft-threshold denoising 8.0819 0.52151 8.1008 0.52038 2

Fixed-threshold denoising 8.0909 0.52097 8.1053 0.52011 2

Hard-threshold denoising 7.3455 0.56766 7.3653 0.56636 3

Soft-threshold denoising 7.3455 0.56766 7.3653 0.56636 3

Fixed-threshold denoising 7.3532 0.56715 7.3691 0.56612 3

Hard-threshold denoising 6.8295 0.6024 6.8335 0.60212 4

Soft-threshold denoising 6.8295 0.6024 6.8335 0.60212 4

Fixed-threshold denoising 6.8383 0.60179 6.8373 0.60186 4

Frontiers in Materials frontiersin.org07

Shang et al. 10.3389/fmats.2023.1221385

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1221385


small vanishing moments, which are detrimental to the
concentration of the signal energy. For the underlying wavelet,
not only the permissible conditions must be met, but also the
“vanishing moments” must be applied to it to minimize wavelet
coefficients or non-zero wavelets, thus facilitating data
compression and noise removal. As the vanishing moment
increases, subway coefficients become smaller. However, as the
vanishing moment increases, the support length increases under
normal conditions. Therefore, we need to weigh the support length
and vanishing moment.

Wavelet basis functions have their characteristics in signal
processing, but each type of function focuses on the denoising
effect of different types of information. Daubechies and symlet

wavelets are the two families of wavelet bases that are better
integrated and adapted to the aforementioned principles.

The Daubechies wavelet is a wavelet function proposed by the
wavelet analyst Ingrid Daubechies, often abbreviated as dbN, where
N represents the number of orders of the wavelet. The support
region in the wavelet function Ψ(t) and the scale function φ(t) is 2N-
1, and the vanishing moment of Ψ(t) is N. The dbN wavelet has
better regularity; in other words, the smooth error introduced by this
wavelet as a sparse basis is not easily detectable, making the signal
reconstruction process relatively smooth. The characteristics of the
dbN wavelet are as follows: as the order increases (sequence N), the
order of the vanishing moment becomes larger, where the higher the
vanishing moment, the better the smoothness, the stronger the

FIGURE 9
Comparison of the effect of wavelet decomposition and reconstruction on the dynamic response signal of the pavement.

FIGURE 10
Signal characterized by noisy motor detection data in the context of a massage chair.

Frontiers in Materials frontiersin.org08

Shang et al. 10.3389/fmats.2023.1221385

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1221385


localization ability in the frequency domain, and the better the
division of the frequency band; however, it will make the compact
support of the wavelet function weaker, and at the same time, the
computational effort increases greatly and the real-time
performance becomes worse. The sym wavelet is an
improvement to the db wavelet. It has better symmetry and, to
some extent, reduces phase distortion when analyzing and
reconstructing the signal.

3.2.2 Selection of decomposition layers
The second key step in wavelet decomposition and

reconstruction is determining the number of decomposition
layers. The number of wavelet decomposition layers is essentially
related to the characteristics of the signal itself and the sampling
frequency. As the number of decomposition layers increases, more
signals are obtained, the difference in noise characteristics and signal
performance becomes greater, a more complete signal denoising is
carried out, and a more beneficial separation effect is observed.
However, the higher the number of decomposition layers, the bigger
the distortion in the dynamic response signal of the reconstructed
pavement, which may result in the loss of the effective signal, and
this will affect the final noise reduction effect. Conversely, a lower
number of decomposition layers may lead to incomplete denoising.
Therefore, special attention should be paid to the conflict between
the two functions in the process of application, and an appropriate

decomposition ratio should be selected (Powers, 2022). This paper
compares and analyses the decomposition effects of the db and sym
functions. By comparing their intuitive graphs, detail differences,
and signal-to-noise ratios, it is found that the decomposition
method using the sym wavelet algorithm is more in line with the
objectives.

After wavelet transformations, we adopt three methods to
process the signal: hard-threshold denoising, soft-threshold
denoising, and fixed-threshold denoising. By setting the
appropriate wavelet bases, thresholds, threshold functions, and
decomposition layers for wavelet decomposition, the approximate
wavelet coefficients and detailed wavelet coefficients are obtained
(Gossler et al., 2022).

To carry out the wavelet threshold denoising method, we
introduce two metrics: the signal-to-noise ratio and the root
mean square error for evaluation, and the pavement structure
mechanical response signals are processed separately using
different threshold quantization methods. Figure 8 shows the
waveform effect of the fixed-threshold wavelet denoising process
with a different number of decomposition layers and different
wavelet functions. It can be observed from the figure that as the
number of decomposition layers increases, the more obvious the
waveform is, and the SNR and RMSE obtained are shown in Table 1.
The results show that the difference between hard- and soft-
thresholding methods is not significant since the mechanical

FIGURE 11
Noise reduction results of the massage chair signal.
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response of an asphalt pavement structure is a one-dimensional
signal; the reconstructed signal has less loss compared to the original
signal, and the decomposition and reconstruction methods both
yield better results. The signal-to-noise ratio is relatively high and
the root mean square error value is small after the sym wavelet fixed-
threshold denoising process.

3.3 Results of wavelet decomposition and
reconstruction processing

Figure 9 shows the waveform comparison between the output
signal and the original pavement response monitoring signal after
the selected sym6 wavelet four-layer decomposition and
reconstruction. Wavelet decomposition and reconstruction retain
the whole characteristics of the strain signal generated by the three-
axle vehicle, where the signal first drops from the baseline to the first
trough and then rises, while the second and third axle signals, in
turn, pass through the sensor, generating a compression strain and a
trough. In addition, the difference in signal amplitude between the
wavelet decomposition reconstructed signal and the original
pavement response monitoring signal is small. It can be seen that
in the wavelet decomposition process, different scales have different

temporal and frequency resolutions; thus, the signal contained in
different frequency intervals can be separated using wavelet
decomposition, and therefore, wavelet decomposition and
reconstruction have a powerful local feature portrayal capability.

3.4 Validation of applicability

In order to validate the effectiveness and applicability of the
proposed wavelet decomposition and reconstruction method, a
comparative analysis was conducted using a signal from the
selected literature titled “Signal Detection and Noise Reduction
Method of Massage Chair Based on EMD” (Lu and Yu, 2021).
The chosen signal, as shown in Figure 10, is characterized by noisy
motor detection data in the context of a massage chair. Figure 11
shows the result of signal denoising in the literature.

The chosen signal was processed using the sym8 wavelet with a
decomposition level of 4, consistent with the methodology described
in this literature. The wavelet decomposition results were obtained
and compared with the denoising results presented in this paper.
The obtained results demonstrated a high degree of similarity with
the literature, providing evidence for the applicability of our
proposed method. Figure 10 illustrates the wavelet decomposition

FIGURE 12
Four-layer wavelet decomposition result. (A) Original monitoring data; (B) approximate sequence a; (C) approximate sequence d; (D) approximate
sequence e; and (E) approximate sequence f.
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results, showcasing the effectiveness of the sym8 wavelet in reducing
noise and preserving useful signal components. These findings
validate the suitability of the proposed wavelet transformation
approach for processing dynamic monitoring data in pavement
applications.

Figure 12 presents the wavelet decomposition and
reconstruction results for the selected signal. The comparative
analysis was performed based on evaluating the signal-to-noise
ratio and the preservation of useful signal characteristics.

This comparative analysis serves as compelling evidence
supporting the applicability and effectiveness of the proposed
wavelet decomposition and reconstruction method for noise
reduction in motor detection signals of massage chairs.

The findings highlight the advantages of using the sym8 wavelet
with a decomposition level of 4 for handling noisy motor detection
data. This approach exhibits good localization properties in both the
time and frequency domains, enabling the extraction of essential
characteristics from the dynamic response signals of the motor of
the massage chair. The proposed method provides a suitable
approach for processing massive motor detection data, which is
vital for the effective maintenance and quality control of massage
chairs.

4 Conclusion

In this paper, the pavement dynamic response signal is
reconstructed via wavelet decomposition, and its working
principle and noise reduction process are analyzed in detail.
Wavelet transformation is characterized by multiple analyses and
is able to analyze local features in both time and frequency domains.

• This paper’s results demonstrate the effectiveness of wavelet
decomposition and reconstruction techniques in processing
pavement dynamic response signals. Consequently, the signal-to-
noise ratio of the signal was significantly improved. Noise reduction
was successfully achieved by applying these methods, and the signal-
to-noise ratio of the signal was significantly improved to obtain a
clearer dynamic response signal of the pavement structure. By
comparing different wavelet functions, it was found that the sym
wavelet method produced good results in terms of signal-to-noise
ratio and root mean square error. The wavelet decomposition and
reconstruction algorithm is appropriate for the preprocessing of the
dynamic response signal between different layers of the pavement.

• The selection of the wavelet basis function, decomposition
layer, and threshold processing method has a great influence on the
denoising results. The difference between hard and soft thresholding
is not obvious for wavelet decomposition and reconstruction
methods, since the mechanical response of an asphalt pavement
structure is a one-dimensional signal. The sym wavelet fixed-

threshold denoising results indicated a relatively high signal-to-
noise ratio and a small root mean square error.
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