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In the context of increasing complexity in power system operations due to the
integration of renewable energy sources, two main challenges arise: accurate
short-term wind power forecasting and power flow convergence control.
Accurate wind power forecasting plays a crucial role in power system
scheduling, while controlling power flow convergence is essential for system
stability. This study proposes a concise short-term wind power generation
prediction model that combines a feature selection-based convolutional neural
network-bidirectional long short-term memory network (CNN-BiLSTM) model.
By effectively screening multidimensional feature datasets, the model optimizes
the selection of highly correlated feature parameters and assigns weights to input
data based on feature correlation. The CNN-BiLSTM combination model is then
employed to establish a predictive model for wind power generation based on
multiple features. Additionally, this study introduces an automatic adjustment
model for power flow convergence using the D3QN (Double Dueling Q Network)
reinforcement learning algorithm. This addresses the challenge of power
imbalance leading to flow non-convergence, enabling effective control of
power flow convergence and adaptive adjustment of operating modes.
Experiments conducted using the KDD Cup 2022 wind power prediction
dataset validate the wind power prediction method. The results demonstrate
that the CNN-BiLSTMmodel effectively utilizes time-series data, surpassing other
neural networks in prediction accuracy. Simulation results based on the PYPOWER
case39 standard case reveal that the reinforcement learning model’s reward value
increases with training rounds and stabilizes at 40. Remarkably, more than 72% of
abnormal flow samples achieve rapid convergence within 10 steps, affirming the
proposed method's efficacy and computational efficiency. The findings of this
study contribute to enhancing the accurate awareness of new energy integration
into power systems and provide a novel adaptive control method for power flow.
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1 Introduction

Wind power generation has been widely applied around the
world due to its superior environmental benefits, flexible installation
scale, and low operation and maintenance costs. As of November
2021, the installed capacity of China’s wind power grid has exceeded
300 million kilowatts, accounting for approximately 13% of the total
installed capacity of the country’s power sources, making wind
energy one of the important sources of electricity in China.

In recent years, China’s development and utilization of
sustainable energy has been rapidly expanding. In March 2021,
China proposed deepening the reform of the power system and
building a new power system dominated by new energy as a key
measure to achieve carbon peaking by 2030. This means that in the
future power system, wind and solar power will serve as the main
energy sources, while thermal power will serve as a supplementary
energy source. However, the high proportion of new energy
integration has made the operation characteristics of the power
system more complex, and the adjustment and optimization of
power system flow are facing unprecedented challenges.

Wind energy has many uncertain factors in practical
applications (Wu et al., 2018; Li et al., 2021; Gevorgian et al.,
2022; Yan et al., 2023). Without accurate wind energy
forecasting, it will pose a huge challenge to the scheduling and
management of the power system, and pose a great threat to the
stability of the power system. Therefore, in order to ensure the safe
and economical operation of large-scale wind power integration,
improving the wind power forecasting accuracy of wind farms has
become a key issue for the current power system.

Wind power prediction can currently be divided into long-
term, short-term, and ultra-short-term prediction based on the
time scale (Yang et al., 2018). Different time scales are suitable for
different scenarios. Long-term prediction is based on an annual
unit and is commonly used to estimate the annual power
generation of a wind farm after it is built. Short-term
prediction is based on a daily unit and is mainly used for
electricity prediction within 2 or 3 days. Ultra-short-term
prediction is based on minutes or hours as the prediction unit,
and the time resolution is no less than 15 min, which is generally
suitable for real-time dispatch of the power system. The
significance of ultra-short-term prediction is that it helps
optimize the coordination of units and economic dispatch of
loads online, as well as optimize the adjustment of frequency and
spinning reserve capacity. Because of the extreme specificity of
ultra-short-term power prediction, it puts higher requirements
on both the prediction time and accuracy.

In the field of short-term power forecasting, various influencing
factors exhibit strong regularity and are easily extractable, which
provides the possibility for accurate predictions. There are already
techniques, such as machine learning-based forecasting methods,
including artificial neural networks (ANNs), support vector
machines (SVMs), and extreme learning machines (ELMs) (Sun
et al., 2014; Portelinha and Tortelli, 2015; Wei et al., 2016; Huimin
et al., 2018; Zendehboudi et al., 2018; Fu et al., 2019). Deep learning
algorithms can extract and retain data features more
comprehensively compared to machine learning algorithms,
resulting in better adaptability of prediction models (Overbye,
1994) used wavelet transformation to decompose data sequences

and then adopted a targeted learning approach using convolutional
neural networks (CNNs) (Overbye, 1995) proposed a wind power
uncertainty analysis method based on a Gaussian mixture model
and long short-termmemory (LSTM). CNNs and LSTMs, with their
strong ability to process time series, have already achieved success in
short-term power forecasting in various temporal contexts.
However, when facing long time series or multidimensional input
data, single CNN or LSTM networks still suffer from issues such as
incomplete collection of sequence feature information, structural
confusion of data between data, and insufficient multidimensional
feature mining.

Combining multiple models and methods to predict short-term
power can better meet the practical needs of short-term power
prediction. This is called a combined model algorithm. Compared
with a single model, the generalization ability and prediction
accuracy of the combined model have been significantly
improved, but there is an overall model entropy increase
phenomenon in the process of combining multiple prediction
algorithms, which may cause problems such as computational
efficiency. Moreover, in practical power systems, power data is
often influenced by multi-dimensional feature parameters. To
further improve the prediction accuracy of short-term power, the
influence of multi-dimensional input feature parameters on short-
term power prediction should be taken into consideration.

The attention mechanism uses weight allocation to preserve
important information in the input features during training, thus
improving the feature extraction ability of the data. Therefore, it can
be used as an effective method to improve the accuracy of short-term
power prediction. In order to further explore how to improve the
performance and prediction accuracy of short-term power
prediction models under multi-dimensional input feature
parameters, it is necessary to further analyze and optimize the
selection of multi-dimensional input feature parameters.

Power flow calculation is the foundation for simulating and
analyzing the operation mode and planning of power grids, but
convergence issues often arise. As China’s power grid scale expands
and loads increase, power flow convergence and adjustment become
more difficult. Currently, operators mainly rely on experience to
adjust power flow data, which is time-consuming and lacks a
systematic and effective method (Zhang et al., 2017; Wang et al.,
2020). There are several factors that contribute to power flow
adjustment difficulty, including algorithms, models, and data.
Firstly, power flow calculations often fail to converge, which is
becoming more common as the power grid scale and complexity
increase (Zhang et al., 2022). Secondly, the nonlinearity of large
power grids increases, making power flow adjustment optimization
difficult (Li et al., 2006; Hongfu et al., 2018; Gbadega and Sun, 2022).
The third factor is the uncertainty of power flow, making traditional
adjustment and optimization methods no longer applicable (Sharma
and Ganness, 2007; Liu et al., 2017). With the increase of uncertain
factors such as power system sources, networks, and loads,
uncertainty has become a significant characteristic of power grid
operation. Traditional power system power flow adjustment and
optimization methods rely on given deterministic values, only for
single-section state calculations, and are greatly affected by
parameter accuracy, making it difficult to obtain sufficient and
comprehensive information about system power flow and unable
to meet the constraint requirements of power grid optimization
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operation under the condition of a high proportion of renewable
energy consumption.

Various adjustment strategies have been proposed to improve
the convergence of power flow calculation, including the eigenvalue
method, sensitivity analysis, optimal power flow, and others (Liu
and Li, 2018) proposes the dropout method and sensitivity analysis
to identify weak transmission channels and adjust the output of
generators and loads for convergence (Zhang et al., 2022) uses the
interior point method for optimal power flow to establish an
automatic adjustment model based on the voltage magnitude and
phase angle attenuation index to address ill-conditioned and
infeasible power flow in large power grids. Several researches
based on Newton’s method have proposed optimization methods,
optimal multiplier method, Levenberg-Marquardt method,
homotopy method, and others, to enhance the calculation ability
and expand the convergence margin of power flow calculation (Le
et al., 1997; Zhihuan et al., 2015; Liu X. et al., 2017b; Samsonov and
Kuchanskyy, 2020; Wu et al., 2020; Zhao et al., 2021). The
intelligentization of power grid simulation analysis has also led to
extensive research, such as reference (Sutton and Barto, 2018),
which proposes an adaptive particle swarm algorithm based on
fuzzy control theory for optimal power flow in DC power grid.
However, some of these methods require human intervention, and
their effectiveness is limited in large power grids (Joshi et al., 2021)
proposes a method of transforming PQ nodes into PV nodes when
the power flow does not converge due to reactive power imbalance
and gradually restoring them to determine the nodes that cannot be
restored, which provides a basis for reasonable power flow
adjustment.

As artificial intelligence technology has advanced, some scholars
have begun to explore its application in power flow convergence
adjustment. For instance (Gu et al., 2018), developed an intelligent
decision-making system for regional power grid operation mode
arrangement, based on the logical thinking of power grid operation
mode arrangement (Graves and Graves, 2012) used rules from an
expert system to adjust power flow, but this method has limitations
as it cannot handle all cases where power flow does not converge
(Catalão et al., 2009) combined static network equivalence with an
expert system to propose a method for adjusting reactive power and
voltage on a large-scale power grid. However, these research
methods primarily rely on knowledge bases of expert experience
to solve the problem of non-convergence of power flow, lacking
flexibility and autonomous exploration mechanisms.

Adjusting power flow convergence through power flow
calculation involves modifying power flow parameters, receiving
feedback based on the resulting power flow state, and making
decisions for the next action. This process follows a typical
Markov decision process, which can be addressed through
reinforcement learning (Zeng and Qiao, 2011; Zhang et al.,
2019). Reinforcement learning is a type of semi-supervised
learning that differs from general supervised learning in that it
guides behavior by interacting with the environment and receiving
rewards. The greater the reward, the greater the likelihood of a
particular action being taken. Therefore, this paper proposes a
power flow convergence adjustment method based on
reinforcement learning for situations where power flow
calculation does not converge in large power grids. This method
ensures both search efficiency and power flow calculation efficiency.

This paper proposes a CNN-BiLSTM model for ultra-short-
term wind power prediction by selecting highly correlated feature
parameters from multidimensional input data. The model extracts
feature vectors using a CNN network and forms high-dimensional
prediction feature vector values in a high-dimensional space. The
BiLSTM network is used for bidirectional cycle training, ultimately
outputting power prediction results. For the problem of unbalanced
active power in power grid flow calculations, this paper proposes a
feature selection CNN-BiLSTM deep neural network model. Flow
adjustment modeling is treated as a Markov process, and the D3QN
(Double Dueling Q Network) reinforcement learning algorithm is
used to control automatic adjustment of power grid flow
convergence. Experiments using KDD Cup2022 wind power data
and PYPOWER’s case39 standard example show that the trained
model can efficiently restore most abnormal flow samples to normal
and has high flow adjustment efficiency.

2 Data-driven grid operational
scheduling framework

2.1 Overall structure

The approach presented in this paper for enhancing situational
awareness and adjusting operation modes sustainable energy access
power systems is composed of two main components: predicting
future power grid trends and adapting operation modes. These are
supported by a data-driven auxiliary module, as illustrated in
Figure 1.

The block diagram in Figure 1 illustrates the two links of the
proposed method for situational awareness and operation mode
adjustment of new energy access power system. In the future trend
prediction link of the power grid, planning data such as power
generation plans, transmission line plans, and equipment
maintenance methods are first collected from the dispatch center.
Then, in the data-driven new energy prediction module, the ultra-
short-term power prediction of new energy is realized with the
support of deep learning technology, based on numerical weather
forecasts, actual power of new energy stations, and wind/light
measurement data. The new energy data is integrated with load
data and planning data to perform safety checks on the operation
mode, including basic steady-state flow calculations, static security
checks, and other electrical calculations to predict the future trend of
the power grid. If safety checks fail or risks exist, such as non-
convergence of flow, transmission line power overload, etc., the
operation mode adapts and adjusts using deep reinforcement
learning for rapid end-to-end adjustment of conventional unit
output to formulate power generation plans and operating modes
that meet the safety requirements of the power grid.

2.2 Key technologies

2.2.1 Deep learning
Deep learning is a method for learning the intrinsic patterns and

hierarchical representations of sample data, including models such
as Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Long-Short Term Memory Networks
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(LSTMs). CNNs are among the most important models in deep
learning, inspired by biological cells. For instance, cells beneath the
visual cortex are sensitive to local spatial regions, leading to the
concept of convolutional kernels. By emulating the neural network
between single cells and complex cells, the theory of convolution and
down sampling was established. The basic structure of a CNN
includes input, convolutional, pooling, fully connected, and
output layers. The pooling and convolutional layers are not
simply concatenated but are overlapped by connecting some
pooling layers to the convolutional layers and then connecting
the convolutional layers after the pooling layer. Through such
iterative processes, CNNs can maximize the extraction of data
features, resulting in efficient and accurate classification and
recognition tasks.

The CNN model uses weight sharing and local connectivity to
efficiently extract data features through high-dimensional mapping
of the original data. During the convolutional layer operation, the
CNN network greatly reduces the number of parameters in the
training process by locally connecting neurons and weight sharing in
the convolutional kernel, which accelerates the model’s training
speed. In the pooling layer, the original data is abstracted to reduce
feature dimensionality, effectively reducing the number of training
parameters and preventing overfitting while improving the model’s
generalization ability.

Traditional Recurrent Neural Networks (RNNs) have good
performance in processing sequential data. However, as the
length of the input sequence increases, the model cannot utilize
the earlier data in the sequence, resulting in the problem of long-
term dependency. To solve this problem, Hochreiter proposed the
Long Short-TermMemory (LSTM) network in 1997 (Zhang J. et al.,

2019a). The neural structure of the LSTM network includes three
logical units: input gate it, forget gate f t, and output gate ot, to
control the output of memory cells. The input gate controls the input
state that enters thememory cell, the forget gate filters the processing
result of the previous memory cell, and the output gate controls the
output state of the memory cell. In this way, LSTM can effectively
handle long-term dependency in the sequence and improve the
performance of the model.

The LSTM network calculation process is shown below:

it � σ W ixt + U iht−1 + bi( ) (1)
f t � σ W fxt + U fht−1 + bf( ) (2)
ot � σ Woxt + Uoht−1 + bo( ) (3)

~ct � tanh Wcxt + U cht−1 + bc( ) (4)
ct � it+~ct + f t+ct−1 (5)
ht � ot+tanh ct( ) (6)

The value of the input gate it is determined by the input xt, the
output of the previous hidden layer ht−1, and the activation
function σ. The input gate it is a vector of real numbers
between 0 and 1, used to control the degree to which the
current input state enters the memory cell. W i,U i, bi, W f , U f ,
bf , Wo,Uo, bo are gate training parameters. Here, tanh is the
activation function.

The hidden layer of LSTM remains in a self-connected form,
allowing LSTM to obtain both the cell state and hidden state
information from the previous time step. LSTM uses the
threshold structure of “forget gate,” “input gate,” and “output
gate” to control the replacement and propagation of cell state
and hidden state information.

FIGURE 1
Framework for situational awareness and operation mode adjustment of sustainable energy access power system.
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In electrical power parameter prediction, the training is always
conducted in a forward manner, which cannot fully explore the
intrinsic features of the data and has low utilization of past and
future data. BiLSTM uses bidirectional networks to obtain the
hidden layer states of the past and future for recursive feedback,
so it can explore the intrinsic connections between the current
power parameters and the power parameters of past and future time
steps, thereby improving the model’s utilization of feature data.

The BiLSTM network model is a combination of forward and
backward recurrent structures, in contrast to the traditional LSTM
network. In terms of structure, the BiLSTM model adds a data flow
from the future to the past in addition to the unidirectional flow
from the past to the future of the LSTM network. From a temporal
perspective, there is no connection between the hidden layers used
for the past and those used for the future in BiLSTM, allowing it to
better explore the temporal features of the data.

For the BiLSTM network, the hidden state at each level, ht, is
composed of three parts: the previous hidden state output, ht−1,
propagating forward along the time axis, the previous hidden state
output, hi−1, propagating backward along the time axis, and the
current input quantity, xt. The combination process of the hidden
states at each level can be represented by Eq. 7:

ht � LSTM xt, ht−1( )
hi � LSTM xt, hi−1( )
ht � atht + bthi + ct

⎧⎪⎨⎪⎩ (7)

The formula represents the computation process of the
traditional LSTM network, where ht is the forward hidden state,
hi is the backward hidden state, at is the weight of the forward
propagation unit’s hidden state output, bt is the weight of the
backward propagation unit’s hidden state output, and ct is the
current hidden bias optimization parameter.

2.2.2 Reinforcement learning
Unlike supervised learning, reinforcement learning trains an

agent to deal with dynamic environments. The agent reads the
environment’s state, takes actions in response, and receives rewards
through interaction with the environment, with the goal of
maximizing the reward and improving the agent’s action strategy.
Compared to traditional dynamic programming methods,
reinforcement learning can be modeled based on Markov
Decision Process (MDP). Markov Decision Process is the
foundation of reinforcement learning modeling and contains five
elements: state space S, action space A, transition matrix P, reward
function r, and discount factor γ. It can be simply represented as:

M � < S, A, P, r, γ> (8)
The key to reinforcement learning based on MDP is to learn a

policy that maximizes the long-term reward, where each action is
taken to achieve the final goal as much as possible. The formula for
the long-term reward at time t is as follows:

Rt � ∑
k�0

γkrt+k+1 (9)

Deep Reinforcement Learning quantifies the contribution of
each action to long-term rewards through a Value Function, thus
selecting the most valuable action based on the contribution. The
Value Function is defined by the Bellman Equation:

vπ s( ) � Eπ Rt|st � s{ } (10)
the equation defines the value function vπ(s), policy π, and the main
purpose of vπ(s) is to measure the value of state s.

Most deep reinforcement learning methods train a neural
network to approximate the Q-function during the training
process, aiming to predict the value of each state-action pair as
accurately as possible, and ultimately selecting the action that
maximizes the Q-function.

3 Materials and methods

3.1 New energy forecasting based on CNN-
BILSTM

3.1.1 CNN-BILSTM network construction
The CNN-BILSTM model used in this study is depicted in

Figure 2. The preprocessed data, after feature selection, undergoes
feature extraction with one-dimensional convolutional kernels. The
dataset is constructed using a sliding time window method and then
fed into a BiLSTM neural network. For a given input, the network
predicts the power data for the next time step by analyzing the
preceding time series data. The filtered data is then inputted into the
BiLSTM network for model construction and training. The training
and prediction results are then enhanced by the Dense layer to
strengthen the data features before output.

3.1.2 Feature selection and vector weighted
combination

Wind power output is often influenced by various factors, such as
wind speed, direction, ambient temperature, and blade pitch angle.
Predicting wind power output using multidimensional data directly
often leads to unsatisfactory results, mainly due to errors in weight
allocation for the multidimensional data. Some data have a direct
connection with the predicted output, resulting in a higher degree of
fit, while other data have a poor degree of fit. When data with high and
low degrees of fit are used as inputs to the prediction model, it is difficult
to obtain an ideal result. Therefore, this study proposes a method of
weighted combination of various feature vectors to balance the imbalance
between input data and obtain input data with a high degree of fit. This
method is also inclusive when dealingwithmultidimensional data inputs.

To reduce the algorithm’s generalization error, this paper adopts
regularization methods. Regularization strategies involve adding
additional parameters as soft constraints to the objective function to
reduce generalization errors. Common methods include L2 parameter
regularization and L1 parameter regularization. L1 regularization
produces a sparser model than L2 regularization. That is, when the
L1 regularization is applied to parameters w that are relatively small, it
can be reduced to 0, completely excluding irrelevant parameters and
greatly assisting feature selection. This technique is also known as
LASSO (Zhang et al., 2017).

Ω θ( ) �‖ w‖1 � ∑
i

wi| | (11)

∇w~J w;X, y( ) � αsign w( ) + ∇wJ w;X, y( ) (12)
The L1 regularization of model parameters w is controlled by the

strength of the positive hyperparameter α.
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J w( ) �‖ Xw − y‖22 + α ‖ w‖1 (13)
∇wJ w( ) � 2XTXw − 2XTy + α sgn w( ) (14)

Here, w � [w1,/, w1]T ∈ Rd represents the regression
coefficient, and solving the above equation is equivalent to
minimizing the first regression term.

We can sort the absolute values of the elements in wd in
descending order. For example, if we have six features, the order
of regression coefficients would be |w1 |>|w2 |>|w3 |>|w4 |>|w5 |>|
w6 |. The larger the absolute value of the regression coefficient, the
more important the corresponding feature is. If we need to select
three features for the prediction parameter set, we can choose
features 1, 2, and 3 based on their importance.

Once we have selected the three features w1, w2 and w3, we can
assign weights to W1, W2, and W3 based on their relative
importance. The rule is: 												

W2
1 +W2

2+W2
3

√
� 1 (15)

3.1.3 Attention mechanism
The attention mechanism is a unique approach that mimics

human visual processing and is currently one of the most important
techniques in the field of deep learning. By allocating weights to
highlight key information, the attention mechanism ensures that
features are not lost during the model training process. As a result, it
can more effectively extract features from remote data with relevant
time sequences. Therefore, when dealing with long sequence data
and multi-dimensional input feature data, the attention mechanism
is often introduced to improve the model’s feature extraction
capabilities.

3.2 Power flow adjustment based on DQN

Assuming that there are no inherent issues with the trend
computing algorithm, the reasons for non-convergence of the
trend mainly include: 1) data errors, 2) active power imbalance,
and 3) reactive power imbalance. This article only considers the
adjustment method for active power imbalance.

To ensure active power balance, it is necessary to balance the
active power between the generator and the load, as well as to ensure
that the current carrying capacity of transmission lines does not
exceed the limit. Generally, the process of regulating active power
imbalance involves first reading the current state of the power grid,
including the active power of the generator and load, and the current
carrying capacity of the transmission lines. Next, based on the
current state of the power grid, a power flow adjustment action
is taken and applied to the power grid to change its state. The process
of power flow adjustment can be modeled as a Markov decision
process (MDP), in which the state space, action space, and reward
function need to be designed according to the environment.

3.2.1 State space
Considering the requirement of balancing the active power

between generators and loads, and ensuring that the transmission
lines are not overloaded, the state space for the flow adjustment of
active power imbalance is given by Eq. 17:

st � PGen,t,PLoad,t,PLine,t[ ] (16)
where PGen,t is the active power of the generator at time t, PLoad,t is
the active power of the load at time t, and PLine,t is the active power of
the transmission line at time t.

3.2.2 Action space
In terms of the flow adjustment action for active power

imbalance, this paper only considers adjusting the power of the
generator. However, since the power of the generator is continuous,
to reduce the size of the action space and make the training easier,
the action space needs to be discretized. The following formula is
used:

At � ΔPG1,ΔPG2, ...,ΔPGN,−ΔPG1,−ΔPG2, ...,−ΔPGN[ ] (17)
In this formula, ΔPG represents the size of the active power

adjustment on the generator for each action, which is a fixed value,
while ±ΔPGi means increasing or decreasing the active power of
generator i. During the flow adjustment process, a generator is
selected for adjustment based on the results of the reinforcement
learning algorithm, and its active power is increased or decreased by
ΔPG. It should be noted that in the actual adjustment process, the

FIGURE 2
CNN-BiLSTM flow chart.
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adjusted generator power should not exceed the power limit of the
generator itself.

3.2.3 Reward function
The reward function is composed of three parts that evaluate the

results of the power flow calculation: whether the generator power is
within limits, whether the transmission line’s active power is within
limits, and whether the power flow calculation has converged or not.
The power flow calculation results in only two possible outcomes:
convergence and non-convergence. When convergence is achieved,
the agent should receive a positive reward, and when non-
convergence occurs, it should receive a negative reward:

R1 � rc if converged
rnc else

{ (18)

where rc is the reward value when convergence is achieved, and rnc is
the reward value when non-convergence occurs.

On the other hand, it is necessary to consider whether the generator
power exceeds the limit. Its reward expression is as follows:

R2 � −max (PG − PG,max, 0) −max PG,min − PG, 0( ) (19)
where PG,max and PG,min represent the upper and lower limits of the
active power of the generator. When the generator power is between
the upper and lower limits, R2 is 0. When the generator power
exceeds the limits, R2 is the negative value of the active power that
exceeds or falls below that limit.

The power constraint of the transmission line requires that the
transmitted active power of the transmission line does not exceed
the limit, expressed as follows:

R3 � −max Pline − Pline, max{ } (20)
where Pline, max represents the maximum active power that can be
transmitted through the transmission line.

In the end, the total reward value R obtained is:

R � R1 + R2 + R3 (21)
The framework of flow adjustment based on reinforcement

learning is shown in Figure 3. The dashed line represents the
interaction between the agent and the environment, and the solid
line represents the training process of the agent. In the interaction
process, the agent reads the state from the environment, obtains the
optimal action through the D3QN network, and applies it to the
environment. The generated data is stored in the experience replay
pool. In the training process, data is randomly sampled from the
experience replay pool based on the principle of prioritized
experience replay.

DQN (Deep Q-Network) is a widely used reinforcement
learning algorithm for discrete action prediction. The DQN
algorithm uses a Q-network to estimate the Q value. However,
training with only one network is relatively unstable and can easily
lead to high Q-value overestimation. Therefore, this paper adopts
the D3QN (Double Dueling Q Network) reinforcement learning
algorithm to automatically adjust the flow convergence of the power
grid. D3QN is an improved version of the traditional deep Q
network that solves problems such as instability and Q-value
overestimation. The active power of the generator, load, and
transmission line are used as input, and the Q value of the action
under the current state is obtained through a four-layer fully
connected network and the advantage and value network.

FIGURE 3
Framework for current adjustment based on reinforcement learning.
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The final output of the D3QN method is as follows:

Qπ s, a( ) � Vπ s( ) + Aπ s, a( ) − 1
A| | ∑

a′
Aπ s, a′( ) (22)

In the formula, π represents the parameters of the neural
network, Qπ(s, a) represents the Q value, Vπ(s) represents the
value function, and Aπ(s, a) represents the advantage function.

The Double Q structure consists of two networks: the
Q-network and the target-Q network. The Q-network and the
target Q-network will produce the In each parameter update
process.

yt �
rt if  st+1 is end
rt + γQπ′ st+1, argmax

a
Qπ st+1, a( )( ) else

⎧⎨⎩ (23)

L � yt − Qπ st, at( )���� ����2 (24)
where rt represents the reward value, yt represents the target
function, and L represents the loss function.

4 Example verification

4.1 Power system situational awareness
prediction

The characteristic data is derived from the KDDCup 2022Wind
Power generation Forecast dataset, and the SDWPF is provided by
Longyuan Power Group Co., LTD. This dataset includes the spatial
distribution of the wind turbine, weather, time, and conditions
inside the turbine. SCADA data is sampled every 10 min from
each of the 134 wind turbines in the wind farm owned by
Longyuan Power Group.

For the training and testing set selection, we employed a
70–30 train-test split ratio. Specifically, 70% of the dataset was
randomly allocated to the training set, while the remaining 30%
was reserved for the testing set. This random splitting ensures that
both sets are representative of the overall dataset and avoids
potential biases that may arise from a specific ordering of the data.

4.1.1 Feature vector screening and combination
All feature vectors are obtained by using the output sparsity

of L1 norm. This paper uses the lasso regression provided by
sklearn for calculation. Lasso regression has a regularization
parameter alpha, which is used to control the strength of the
characteristic variable coefficient being constrained to 0. If the
alpha parameter is too large, the constraint ability of the input
data is smaller, and it is more difficult to judge the under-fitting
of the feature. On the contrary, the smaller the value of the alpha
parameter, the stronger the ability to constrain the data, and the
more difficult it is to judge the overfitting of the input data. After
weighing the pros and cons of the two, this paper chooses alpha =
0.1 as the constraint. In turn, each data is brought into LASSO for
calculation, and the regression coefficient ω of each data is
obtained.

The dataset is filtered by L1 regularization. The specific data is
shown in Table 1, and the regression coefficient is obtained in
Figure 4.

According to the regression coefficient, the four vectors with the
largest regression coefficient are weighted and combined to form a new
prediction vector set. After normalization, the feature data is given
corresponding weights, and the new input features are combined.

data � W1Wspd +W2Ndir +W3Itmp +W4Pab3 (25)

4.1.2 Evaluation index
In this paper, the root mean square error RMSE, which is

commonly used in ultra-short-term power prediction, is used as
the evaluation index. The calculation methods are as follows:

dRMSE �
												∑N

i�1 yi − yf i( )2
N

√
(26)

yi is the true value of the sample point i. yf i is the predicted value of
the sample point i; N is the number of sample points.

In order to ensure the accuracy of the model training and the
scientificity of the prediction process, the RMSE and MAPE obtained
from the prediction results are the average values calculated after the
test set is brought into the data set.

4.1.3 Experimental result analysis
After 16 rounds of calculation, the average loss coefficient of

each round in 16 rounds is shown in Figure 5. It can be seen from the
diagram that with the increase of training rounds, the validation_
loss coefficient decreases continuously, and the loss coefficient
finally approaches around 0.005. It can be concluded that the
CNN-BiLSTM model based on feature screening proposed in this
paper has high accuracy for wind power prediction.

4.1.4 Comparison between different models
In order to further illustrate the superiority of the CNN-BiLSTM

combined model based on feature screening, this paper selects the
long and short time memory network LSTM, recurrent neural
network RNN, GRU network to process the same data. In order
to unify the input variables, the input features are normalized to
form a single feature vector and then processed. The root mean
square error RMSE and the mean percentage error MAPE are used
to evaluate the performance of the model, and the average loss is
calculated as shown in Table 2.

TABLE 1 Data.

Notation Annotation

Wspd (m/s) Wind velocity

Wdir (°) Angle between wind direction and turbine position

Etmp (°C) Ambient temperature

Itmp (°C) Temperature in turbine cabins

Ndir (°) The direction of the cabin

Pab1 (°) Pitch angle of blade 1

Pab2 (°) Pitch angle of blade 2

Pab3 (°) Pitch angle of blade 3

Patv (kW) Active power (target variable)
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The comparison between the predicted value and the actual
value of wind power generation in the next 1,790 min is shown in
Figure 6. It can be seen that the model proposed in this paper can
fit the wind power value to a certain extent. By comparing the
RMSE values of different models in Table 2, it can be concluded
that the CNN-BiLSTM combined model is far superior to other
models. The reason for the analysis is that, firstly, other models

only perform simple normalization processing when dealing with
multi-dimensional feature input, and do not judge the fitting
degree of the vectors of each dimension in the multi-dimensional
data to the output, resulting in high-fitting vectors. Not
prominent enough, low-fitting vectors reduce prediction
accuracy. Secondly, other models fail to deal with the impact
of past and future data on the present in time series data, and the
utilization rate of data is not high enough, resulting in
unsatisfactory output accuracy.

4.2 Adaptive operation mode adjustment

4.2.1 Example preparation and parameter selection
In order to verify the effect of the proposed method, this

paper takes PYPOWER as the platform of power flow calculation,

FIGURE 4
Regression coefficient.

FIGURE 5
Average loss function table.

TABLE 2 Average loss.

Model RMSE

CNN-BiLSTM (based on feature section) 0.1424

LSTM 6.617

CNN 1.712

BPNN 1.203

FIGURE 6
Comparison of predicted and actual values of wind power
generation in the next 1,790 min.
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and the power flow calculation method adopts Newton-Raphson
method. The application example in this paper is the
case39 standard example in PYPOWER. The wiring diagram
of the case39 example is shown in Figure 7, which contains
10 generators, 39 nodes and 46 transmission lines. In order to
generate non-convergent power flow data for training, the
generator and load are randomly changed based on the initial
convergence power flow. Among them, No. 2, No. 6, and No.
7 generators are replaced with wind turbines. Its installed
capacity and installed capacity are shown in Table 3. During
the power flow adjustment, the power data of No. 2, No. 6, and
No. 7 wind turbines are predicted by CNN-BiLSTM. The load
power is randomly transformed with a certain amplitude. In this
way, a total of 2,000 abnormal power flows including non-
convergence of power flow, over-limit of generator power and
over-limit of load voltage are generated. Among them, 1950 data
were selected as the training set, and the remaining 50 data were
used as the test set.

Figure 8 shows the number of convergent and non-
convergent samples in the 2,000 samples produced as the load
ratio increases. It can be seen that when the load increase ratio
remains below 1.5 times, the convergence samples account for the

majority, and when the load increase ratio comes to 1.6 to
2.0 times, the convergence samples are in the majority. When
the ratio is between 1.8 and 2.0, the number of convergence
samples is less than 250. At this time, the samples are extremely
unbalanced due to the excessive proportion of load increase,
which makes it difficult to adjust to convergence. Therefore, the
final choice of load ratio is between 1.0 and 1.4 times.

The parameter selection of D3QN reinforcement learning
model is shown in Table 4. In this experiment, the power flow
adjustment is required to be completed within 50 power flow
adjustment actions, otherwise it is regarded as a power flow
adjustment failure. The training environment of this experiment
is 11th Gen Intel (R) Core (TM) i7-11800H, RTX 3060,16G
memory, using Python 3.9.

4.2.2 Experiment part
In the above experimental environment, 2000 rounds of

training are performed, and every 10 rounds are tested on the
test set. The obtained reward value curve is shown in Figure 9. It
can be seen that with the increase of training rounds, the reward
value obtained also shows an increasing trend. The reward value
eventually stabilized at 40. It can be concluded that the D3QN
reinforcement learning model used in this paper has a good effect
on automatic power flow adjustment.

Table 5 shows the performance of the model on the test set.
Among them, the samples that restore the normal power flow within
10 steps are recorded as the samples that recover quickly, the
samples that restore the normal power flow within 10 steps to
50 steps are recorded as the samples that recover slowly, and the
samples that exceed 50 steps are recorded as the samples that do not
recover. It can be found that the trainedmodel can restoremore than
72% of abnormal power flow samples to normal. This shows that the

FIGURE 7
PYPOWER case39 example wiring diagram.

TABLE 3 The installed capacity and proportion of No. 2, No. 6, and No. 7 wind
turbines.

Generator Installed capacity (kW) Installed proportion (%)

No. 2 646 8.77

No. 6 687 9.32

No. 7 580 7.87

Frontiers in Energy Research frontiersin.org10

Jin et al. 10.3389/fenrg.2023.1253206

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1253206


method proposed in this paper can effectively adjust the automatic
power flow and improve the abnormal power flow. On the other
hand, the average power flow adjustment time of this model except
power flow calculation is only 0.0028 s, which shows that this
method has high power flow adjustment efficiency.

In order to more accurately illustrate the effect of the proposed
method on the automatic power flow adjustment, this experiment
selected the fourth sample in the test set, and recorded the change of
the generator over-limit power during the power flow adjustment
process after the training was completed, as shown in Figure 10. It
can be found that during the power flow adjustment process of this
sample, the over-limit power of the generator gradually decreases
with the continuous adjustment of the power flow, and finally

returns to zero in step 7. Therefore, the power flow adjustment
algorithm after training can effectively reduce the generator’s over-
limit power and make the power flow return to normal. This shows
that the method proposed in this paper can effectively reduce the

FIGURE 8
The proportion change of convergent and non-convergent power flow.

TABLE 4 Parameter selection of D3QN model.

Parameter name Parameter value

Buffer size 5·106

Hidden size 512

Learning rate 10−4

Batch size 256

γ 0.95

FIGURE 9
The change of the average reward value of the test set with the
number of training rounds.
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active power limit of the generator, so that the power flow can return
to normal.

5 Conclusion

In this paper, a combined wind power prediction model
considering historical time series and feature screening is proposed
based on the research status of wind power prediction and the idea of
joint model. Based on the KDD Cup 2022 wind power prediction data
set, the validity of the model is verified. Finally, the single model and
other methods are compared with the model established in this paper,
and the following conclusions are drawn:

(1) The CNN-BiLSTM combined model based on feature screening
has high accuracy for short-term and ultra-short-term
prediction of wind power, and greatly improves the
utilization of time series data. Compared with other models,
the model can extract the correlation of multi-dimensional
features to the objective function through feature screening,
and can give more comprehensive and comprehensive
prediction results.

(2) In the face of multi-dimensional data ultra-short-term
prediction, the model proposed in this paper has great
advantages in solving such problems. It can not only make
extensive use of historical data and future data in the data set,
but also reduce the problem of algorithm entropy increase

caused by multi-feature vectors, which is suitable for the
current wind power prediction trend.

On this basis, combined with reinforcement learning
algorithm and Markov decision process, this paper proposes
an automatic adjustment method for power flow calculation
convergence. By adding the constraints of generator and load
power balance and transmission line not exceeding the limit in
reinforcement learning, the search space is reduced and the
search is directional. Through the example analysis, the
proposed method can effectively adjust and converge the non-
convergent power flow, and realize the automatic adjustment of
power flow calculation convergence. The model reward value
increases with the increase of the number of training rounds and
stabilizes at 40. More than 72% of the samples can converge
quickly, that is, the power flow adjustment effect is good and the
calculation efficiency is high.

One limitation lies in the validation process, where we only
used a single dataset for experimentation. To address this, we
commit to conducting future tests on diverse datasets to
thoroughly assess the generalization capabilities of our model
across different scenarios. By validating our method on multiple
datasets, we can provide stronger evidence of its robustness and
applicability.

Additionally, in our power flow adjustment experiments, we
prioritized time-sensitive data to address convergence challenges.
While we successfully demonstrated the effectiveness of our
approach, we did not compare it with other existing methods,
limiting the understanding of its performance relative to
conventional approaches. In light of this, our future work will
involve conducting comprehensive comparisons with traditional
methods, such as MILP and heuristic techniques. These
comparisons will provide valuable insights into the strengths and
weaknesses of our data-driven approach in relation to established
optimization methods.

Looking ahead, we aim to further improve our proposed
method by exploring additional characteristics of active power
imbalance and expanding the types of power flow adjustment
actions. This research direction will contribute to enhancing the
efficiency and effectiveness of power flow adjustment in real-
world power systems.

In conclusion, we are committed to refining our wind power
prediction model and power flow adjustment method to address the
mentioned limitations. By conducting experiments on various
datasets and comparing our approach with traditional methods,
we aspire to enhance the credibility and broad applicability of our
research. Ultimately, our efforts will contribute to the advancement
of wind power prediction and power flow adjustment techniques,

TABLE 5 The performance of the model on the test set.

Average power flow adjustment time (excluding power flow calculation) 0.0028 s

Quickly restore the number of normal samples 36

Slowly restore the number of normal samples 5

The number of samples not recovered 9

FIGURE 10
The fourth sample of generator over-limit power.
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supporting the development of efficient and sustainable power
systems.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

SJ, QL, and WZ contributed to conception and design of the
study. ZH organized the database. YXH performed the statistical
analysis. LZ wrote the first draft of the manuscript. YL, PX, XZ, and
YHH wrote sections of the manuscript. All authors contributed to
the article and approved the submitted version.

Conflict of interest

Authors SJ, QL, WZ, ZH, YXH, LZ, YL, XZ, and YHH were
employed by State Grid Hubei Electric Power Company.

The remaining author declares that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Catalão, J. P. d. S., Pousinho, H. M. I., and Mendes, V. M. F. "An artificial neural network
approach for short-termwind power forecasting in Portugal", in: Proceedings of the 2009 15th
International Conference on Intelligent System Applications to Power Systems: IEEE), 1–5.

Fu, W., Wang, K., Li, C., and Tan, J., (2019). Multi-step short-term wind speed forecasting
approach based on multi-scale dominant ingredient chaotic analysis. Improv. hybrid
GWO-SCA Optim. ELM 187, 356–377.doi:10.1016/j.enconman.2019.02.086

Gbadega, P. A., and Sun, Y. J. E. R. (2022). Primal–dual interior-point algorithm for
electricity cost minimization in a prosumer-based smart grid environment: A convex
optimization approach, 8, 681–695.

Gevorgian, V., Shah, S., Yan, W., and Henderson, G. J. I. E. M. (2022). Grid-Forming
Wind: Getting ready for prime time, with or without inverters. 10(1), 52–64.

Graves, A., and Graves, A. (2012). Long short-term memory, 37–45.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent Adv.
convolutional neural Netw. 77, 354–377.

Hongfu,W., Xianghong, T., and Baiqing, L. J. P. o. t. C. (2018). An approximate power
flow model based on virtual midpoint power. 38(21), 6305–6313.

Huimin, P., Feng, L., Huling, Y., and Yanhong, B. J. (2018). Power flow calculation
and condition diagnosis for operation mode adjustment of large-scale Power Syst.
J.42(3), 136 doi:10.7500/AEPS20170406004

Joshi, D. J., Kale, I., Gandewar, S., Korate, O., Patwari, D., and Patil, S. “Reinforcement
learning: A survey,” in Machine learning and information processing: Proceedings of
ICMLIP 2020 (Springer), 297–308.

Le, T. L., Negnevitsky, M., and Piekutowski, M. J. I. t. o. p. s. (1997). Network
equivalents and expert system application for voltage and VAR control in large-scale
power systems. 12(4), 1440–1445.

Li, M., Chen, J.-f., and Chen, H.-y. J. A. o. E. P. S. (2006). Load flow regulation for
unsolvable cases in a power system. 30 (8), 11–15.

Li, Y., Gao, W., Huang, S., Wang, R., Yan, W., Gevorgian, V., et al. (2021). Data-driven
optimal control strategy for virtual synchronous generator via deep reinforcement learning
approach. 9(4), 919–929.

Liu, D., He,W., and Zhang, C. (2017). Proceedings of the IEEE 2ndAdvanced Information
Technology, Electronic and Automation Control Conference. (IAEAC): IEEE),
2442–2446.The research and optimization on levenberg-marquard algorithm in neural net

Liu, R., and Li, L. J. (2018). Simulated annealing algorithm coupled with a
deterministic method for parameter extraction of energetic hysteresis model.
54(11), 1–5.

Liu, X., Wen, J., Pan, Y., Wu, P., and Li, J. J. P. S. T. (2017b). OPF control of DC-grid
using improved. PSO algorithm 41 (3), 715–720.doi:10.1016/j.ijepes.2022.108375

Overbye, T. (1995). Comput. a Pract. method restore power flow solvability 10 (1), 280–287.

Overbye, T. (1994). A power flow measure for unsolvable cases. 9(3), 1359–1365.

Portelinha, R. K., and Tortelli, O. L. (2015). IEEE PES Innov. Smart Grid Technol. Lat. Am.
IEEE, 81–86.Three phase fast decoupled power flow for emerging distribution systems

Samsonov, D., and Kuchanskyy, V. J. (2020). Optimization of operation modes bulk
electric power grids, 83–85.

Sharma, C., and Ganness, M. G. "Determination of power system voltage stability
using modal analysis", in: Proceedings of the 2007 International Conference on Power
Engineering,: IEEE, 381–387.

Sun, Q., Chen, H., Yang, J., and Yang, J. J. P. (2014). Analysis on convergence of
Newton-like power flow algorithm. 34(13), 2196–2200.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Wang, T., Tang, Y., Huang, Y., Chen, X., Zhang, S., and Huang, H. (2020). Proceedings of
the IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). IEEE,
694–699.Automatic adjustmentmethod of powerflow calculation convergence for large-scale
power grid based on knowledge experience and deep reinforcement learning

Wei, C., Zhang, Z., Qiao, W., and Qu, L. J. I. T. o. P. E. (2016). An adaptive network-
based reinforcement learning method for MPPT control of PMSG wind energy
conversion systems. 31(11), 7837–7848.

Wu, S., Hu,W., Lu, Z., Gu, Y., Tian, B., Li, H. J. J. o. m. p. s., et al. (2020). Power system flow
adjustment and sample generation based on deep reinforcement learning. 8(6), 1115–1127.

Wu, Z., Gao, W., Gao, T., Yan, W., Zhang, H., Yan, S., et al. (2018). State-of-the-art
review on frequency response of wind power plants in power systems. 6(1), 1–16.

Yan, W., Gevorgian, V., and Shah, S. (2023). Synchronous wind: Evaluating the grid
impact of inverterless grid-forming wind power plants. Golden, CO (United States:
National Renewable Energy Lab.

Yang, M., Chen, X., Du, J., and Cui, Y. J. I. a. (2018). Ultra-short-term multistep wind
power prediction based on improved EMD and reconstruction method using run-
length analysis. 6, 31908–31917.

Zendehboudi, A., Baseer, M. A., and Saidur, R. J. J. o. c. p. (2018). Application of
support vector machine models for forecasting solar and wind energy resources. A Rev.
199, 272–285.doi:10.1016/j.jclepro.2018.07.164

Zeng, J., Qiao, W., and Year, ). (2011).Proceedings of the IEEE/PES power systems
conference and exposition: IEEE), 1–8.Support vector machine-based short-term wind
power forecasting

Zhang, C., Chen, H., Shi, K., Qiu, M., Hua, D., and Ngan, H. J. I. T. o. S. G. (2017). An
interval power flow analysis through optimizing-scenarios method. 9(5), 5217–5226.

Zhang, C., Ding, M., Wang, W., Bi, R., Miao, L., Yu, H., et al. (2019a). An improved
ELM model based on CEEMD-LZC and manifold learning for short-term wind power
prediction. 7, 121472–121481.

Zhang, J., Luo, S., Xia, C., Zhu, Y., and Xia, R. (Year). "Optimal power flow calculation for
wind power grid connection based on adjustable robust optimization theory", in: Proceedings
of the 2022 7th Asia Conference on Power and Electrical Engineering : IEEE, 1927–1931.

Zhang, J., Yan, J., Infield, D., Liu, Y., and Lien, F.-s. J. A. E. (2019b). Short-term
forecasting and uncertainty analysis of wind turbine power based on long short-term
memory network and Gaussian mixture model. 241, 229–244.

Zhao,H., Zhang, J.,Wang,X., Yuan,H.,Gao, T.,Hu,C., et al. (2021). The economyandpolicy
incorporated computing system for social energy and power. Consum. Anal. 13 (18), 10473.
doi:10.3390/su131810473

Zhihuan, L., Yunfei, H., Yinsheng, S., Xin, S., and River, Y. J.(2015). A convergence
adjustment method of power flow based on node type switching. 39(7), 188–193.

Frontiers in Energy Research frontiersin.org13

Jin et al. 10.3389/fenrg.2023.1253206

https://doi.org/10.1016/j.enconman.2019.02.086
https://doi.org/10.7500/AEPS20170406004
https://doi.org/10.1016/j.ijepes.2022.108375
https://doi.org/10.1016/j.jclepro.2018.07.164
https://doi.org/10.3390/su131810473
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1253206

	Data-driven methods for situation awareness and operational adjustment of sustainable energy integration into power systems
	1 Introduction
	2 Data-driven grid operational scheduling framework
	2.1 Overall structure
	2.2 Key technologies
	2.2.1 Deep learning
	2.2.2 Reinforcement learning


	3 Materials and methods
	3.1 New energy forecasting based on CNN-BILSTM
	3.1.1 CNN-BILSTM network construction
	3.1.2 Feature selection and vector weighted combination
	3.1.3 Attention mechanism

	3.2 Power flow adjustment based on DQN
	3.2.1 State space
	3.2.2 Action space
	3.2.3 Reward function


	4 Example verification
	4.1 Power system situational awareness prediction
	4.1.1 Feature vector screening and combination
	4.1.2 Evaluation index
	4.1.3 Experimental result analysis
	4.1.4 Comparison between different models

	4.2 Adaptive operation mode adjustment
	4.2.1 Example preparation and parameter selection
	4.2.2 Experiment part


	5 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


