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1Laboratoire Méthodes Formelles, Inria Saclay, France
2Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Vienna
3Quantum Group, Department of Computer Science, University of Oxford
4Department of Physics, Imperial College London
5Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa
6Department of Physics and Astronomy, University College London, London
7Faculty of Physics, University of Vienna
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Given the importance of quantum reference systems to both quantum and grav-

itational physics, it is pertinent to develop a systematic method for switching be-

tween the descriptions of physics relative to different choices of quantum reference

systems. Here, we expand on a unifying approach, begun in [1], which blends the

operational language of [2] with a gravity-inspired symmetry principle. The latter

enforces physics to be relational and leads, thanks to gauge related redundancies,

to a perspective-neutral structure which contains all frame choices at once and via

which frame perspectives can be consistently switched. Formulated in the language of

constrained systems, the perspective-neutral structure turns out to be the constraint

surface classically and the gauge invariant Hilbert space in the Dirac quantized the-

ory. By contrast, a perspective relative to a specific frame corresponds to a gauge

choice and involves a symmetry reduction procedure to an associated reduced phase

and Hilbert space. Quantum reference frame switches thereby amount to a particular

gauge transformation.

Here, we show that they take the form of ‘quantum coordinate changes’. We

illustrate this method in a general mechanical particle model, namely the relational

N -body problem in three-dimensional space with rotational and translational sym-

metry. This model is particularly interesting because it features an analog of the

generic Gribov problem so that globally valid gauge fixing conditions, and thereby

relational frame perspectives, are absent. We will show that the constraint surface

is topologically non-trivial and foliated by three-, five- and six-dimensional gauge or-

bits, where the lower dimensional orbits are a set of measure zero. In consequence,

the N -body problem also does not admit globally valid canonically conjugate pairs

of Dirac observables. These challenges notwithstanding, we exhibit how one can con-

struct the quantum reference frame transformations for the three-body problem. Our

construction also sheds new light on the generic inequivalence of Dirac and reduced

quantization through its interplay with quantum frame perspectives.
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1 Introduction
Reference frames appear ubiquitously in both quantum and gravitational physics. A
concrete description of some physical situation is usually given from the perspective of
some appropriate choice of reference frame. In most cases, such a frame is considered
as an idealized external system that can be used as a vantage point but does not itself
back-react on the remaining physical systems.

Reference frames, however, are always physical systems and treating them fundamen-
tally as being quantum in nature is inevitable in quantum gravity [3–18] and also in
quantum information and foundations, for example once considering that measurements
are carried out with physical systems [19–36]. In fact, every physical measurement is rela-
tional: they relate some physical property of the measured systems to a physical property
of the systems comprising the measurement device. For example, in a Stern-Gerlach
magnet, the spin of the measured particles is related to the (coherent) spin of the atoms
composing the magnet. Treating reference systems fundamentally as quantum objects is
ultimately a consequence of the universality of quantum theory, according to which all
physical systems are subject to its laws.

Both in quantum gravity and quantum foundations it therefore becomes crucial to
clarify how to describe physics relative to quantum reference systems and how the de-
scriptions relative to different such choices are related. Exploiting a fruitful interplay of
ideas from both fields, we began developing a unifying method for transforming between
quantum reference systems in [1] that aims at ultimately encompassing both quantum and
gravitational physics. The key ingredients of this method are a gravity inspired (gauge)
symmetry principle and the relational and operational approach to quantum reference
frames recently put forward in [2].

The symmetry principle is, in fact, inspired by Mach’s principle, which was a pivotal
motivation for the development of general relativity and is closely related to the diffeo-
morphism symmetry of the latter. Mach’s principle essentially states that all physics is
relational [4,37,38]. In particular, what inertial frames are is not determined with respect
to an absolute space (as in Newtonian physics), but by the remaining dynamical content
of the universe. We likewise employ the symmetry principle to enforce physical observ-
ables to be relational in the systems we consider and to generate an inherent redundancy
in their description. Exploiting this redundancy allows us to develop, as proposed in [39],
a perspective-neutral meta-structure, which contains, so to speak, all frame perspectives
at once and via which they are changed.

This symmetry principle is implemented using the language of constrained Hamilto-
nian systems [40, 41], which also underlies the canonical formulation of general relativity
and quantum gravity [4, 13]. In our approach, the perspective-neutral structure corre-
sponds to the constraint surface classically and to the gauge invariant physical Hilbert
space in the Dirac quantized theory. Taking the perspective of a specific frame is closely
related to imposing a gauge that fixes the redundancies in the description and changing
from one frame perspective to another amounts to a symmetry transformation via the
perspective-neutral structure. A specific perspective relative to one choice of frame is clas-
sically encoded in a gauge-fixed reduced phase space and to a symmetry reduced Hilbert
space in the quantum theory. The latter will be the quantum analog of a gauge-fixed
reduced phase space, but not necessarily equivalent to a quantization of it. This gives rise
to a systematic method for changing between the perspectives relative to different choices
of quantum reference systems and can be applied to both temporal and spatial quantum
reference systems and in both quantum and gravitational physics. Compellingly, by al-
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ways passing from one frame perspective through the perspective-neutral Hilbert space in
order to map to a new frame perspective, the quantum reference frame transformations
will take the form of ‘quantum coordinate transformations’.1

Our method extends the approach to changes of temporal quantum reference systems,
i.e. relational ‘clocks’, developed in [14–16] for models of quantum gravity and cosmology,
which precisely uses the above concepts and tools at a semiclassical level. Altogether, our
approach can also be viewed as an expansion of the view, advocated in [44], that gauge
related redundancies are not just a mathematical artifact, but physically crucial for a
completely relational description of the world.

As already indicated, our operational language, ultimately originating in [2], also sheds
new light on the relation between Dirac and reduced quantization – i.e. on the relation
between quantizing first, then solving the constraints, and solving the constraints first,
then quantizing – which has been the topic of a lively debate in the literature [17,18,45–56].
While the agreement is that the two methods are generally not equivalent, the debate also
revolves around the question when one or the other would be the correct one to apply.
In our approach, the Dirac quantized theory provides the perspective-neutral structure
from which internal perspectives are constructed via ‘quantum coordinate maps’. These
are the quantum analog of classical phase space reductions by gauge fixing and map to
symmetry reduced Hilbert spaces; they proceed as follows:

1. Trivialize the symmetry generating quantum constraints. That is, transform them
in such a way that they only apply to (and fix) the subsystem one would like to
use as a reference and, accordingly, whose degrees of freedom one considers as the
redundant ones in this specific description.

2. Condition on the corresponding classical gauge fixing conditions.

The symmetry reduced quantum theories so constructed – constituting the quantum frame
perspectives – will generally be unitarily inequivalent to the quantization of the classically
reduced theories, i.e. the direct quantization of the classical frame perspectives. This
manifests the generic inequivalence between Dirac and reduced quantization; for example,
we will see that the Hamiltonians will differ. However, this is not a problem for our
framework of quantum frame covariance. As we shall argue, it is the Dirac quantized
theory which should be given primacy as this is the one treating all degrees of freedom
on an equal footing and thereby translating the redundancy into the quantum theory
that enables one to define a notion of quantum covariance in the first place. In reduced
quantization one simply generally lacks the structure to relate different frame perspectives
and they will in general not be unitarily equivalent. In other words, both classically and
in the quantum theory, we give primacy to the quantization of the perspective-neutral
structure over the quantization of the internal perspectives; it is the perspective-neutral
structure which links all the internal frame perspectives.

It should be emphasized that it is possible to render Dirac and reduced quantization
equivalent in the class of models considered here by invoking constructions exhibited
in [50, 53]. But this involves a non-standard factor ordering of the physical Hamiltonian
which essentially amounts to somewhat artificially adapting Dirac to reduced quantization
so that the two methods produce equivalent results. This leads to a serious drawback,

1Notice that some authors distinguish between quantum reference frames, i.e., where the reference frame
is treated as a physical system and has a quantum state associated to it, and quantum coordinates [36,
42, 43], where the reference frame transformation is generalised but reference frames are not treated as
physical systems. Here, we do not make this distinction, and use both interchangeably.
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however: the so modified Dirac quantized theory is then equivalent to the quantization
of only one of the classical frame perspectives and explicitly depends on this choice.
Specifically, the modification of the physical Hamiltonian then depends on the choice
of perspective, with different choices leading to inequivalent results, manifesting that the
direct quantizations of the different classical frame perspectives are unitarily inequivalent.
In particular, constructing the quantum frame perspectives either by directly quantizing the
classical frame perspectives or by quantum reduction from the perspective-neutral Hilbert
space are in general two physically inequivalent procedures. We comment further on this
below and in Appendix D.

In [1], we have introduced the general conceptual underpinning of this approach and
illustrated it in a simple N -particle model in one-dimensional space with a single lin-
ear translation generator constraint. Accordingly, globally valid gauge fixing conditions
and thus globally valid relational perspectives on the physics were possible in this simple
model. Using our new method, we recovered in [1] some of the quantum frame transforma-
tions of [2], which were constructed using a different approach, thereby embedding them
in a perspective-neutral framework. These transformations were also employed to show
in [1] how entanglement and classicality of an observed system depend on the quantum
frame perspective.

Here, our aim is to generalize our approach, begun in [1], by applying it to a sig-
nificantly more complicated model, namely the relational N -body problem in three-
dimensional space which now features not only translational, but also rotational invari-
ance. This is a very general mechanical particle model and it will serve to substantiate
both our conceptual and technical line of argumentation, proving the capability of our
approach.

The most crucial difference to the model in [1] is the absence of globally valid internal
perspectives, i.e. any internal perspective will fail to fully describe all physical situations.
This is analogous to the absence of global coordinates on generic spacetime manifolds
and links with the conceptual discussion in [1]. The origin of this property in the present
model is the additional rotational symmetry. The gauge orbits of the rotation group in
the constraint surface are compact (and thus closed) and this results in the impossibility
of finding globally valid gauge fixing conditions. This feature is a mechanical analog of the
Gribov problem in gauge field theories, and it is also the reason why globally valid pairs of
canonically conjugate gauge invariant (i.e. Dirac) observables are absent. In consequence,
it is only possible to develop non-global descriptions of the physics relative to a particular
reference frame in both the classical and quantum theory. This is closely related to the
global problem of time in general relativistic systems [7,8,14–18]. Concretely, this means
that generic relational clocks (temporal quantum reference systems) in these systems
feature turning points – and, accordingly, can start running ‘backwards’ – and thus cannot
be used as globally valid temporal references. Therefore, non-global relational descriptions
appear, and should be expected, in most interesting physical scenarios, as argued also
in [1]. The below is still a fairly benign illustration of this Gribov problem.

It must be emphasized, however, that this is not a problem for the physics per se, but
only of descriptions of it. In fact, the perspective-neutral structures in both the classical
and quantum theory can be formulated globally without any issues. Challenges only arise
when defining specific perspectives and so much of our attention here will be devoted to
exhibiting how to describe physics relative to non-global relational perspectives and how
to nevertheless switch between them via a perspective-neutral structure that itself can be
formulated globally. Moreover, one should keep in mind that in this work, the internal
perspectives only fail on very specific, highly degenerate configurations (typically, when
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all particles are aligned); and moreover that they all fail on the same configurations for
the N = 3 case which we focus on.2 The first of these features shows that the situation is
less severe than, for example, in the case of Schwarzschild coordinates, which leave out a
consequent chunk of spacetime; the second puts it in contrast with the case of spherical
coordinates, in which the failure happens over an arbitrary axis that bears no relationship
with the physical configuration.

The rest of the article is arranged as follows. In sec. 2, we introduce the classical N -
body problem in three-dimensional Newtonian space, but subject to a global rotational
and translational invariance, which renders the spatial physics fully relational and leads
to a redundancy in the description. Here, we discuss all the technical challenges that
arise due to the appearance of the (mechanical analog of the) Gribov problem and how
one can nevertheless choose a frame perspective. In sec. 3, we quantize the three-body
problem in both the Dirac and reduced method. Our main ambition here is to con-
struct explicitly the quantum symmetry reduction, i.e. quantum coordinate maps, from
the Dirac to the reduced quantum theories in the particular frame perspectives and to
compare the result to the quantization of the classical frame perspectives. We finally then
use this quantum reduction method to also construct the quantum reference frame trans-
formation that takes one from a quantum frame perspective to another. Importantly,
this transformation proceeds by inverting the quantum reduction, mapping back to the
perspective-neutral Hilbert space and then performing the forward quantum reduction to
the desired perspective, hence a ‘quantum coordinate transformation’. Despite the ab-
sence of global classical relational perspectives, these quantum frame changes are unitary
for regular Hilbert space states because the pathological configurations comprise a set of
measure zero; for distributional states, the situation differs somewhat. We illustrate the
transformation on example states which show the quantum frame dependence of entan-
glement, before concluding in sec. 4. For better readability, we have moved most technical
details to various appendices and for better orientation, we also provide here a table of
contents.

Contents
1 Introduction 2

2 Internal perspectives in the classical N -body problem 6
2.1 A toy model for Mach’s principle in 3D space . . . . . . . . . . . . . . . . 6
2.2 Choosing an internal perspective = choosing a gauge . . . . . . . . . . . 10
2.3 Switching internal perspectives . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Quantization and relative states 16
3.1 Reduced quantization – quantizing classical internal perspectives . . . . . 16
3.2 Dirac quantization – the perspective-neutral quantum theory . . . . . . . 18

3.2.1 Constructing the translation invariant Hilbert space . . . . . . . . 19
3.2.2 Translational reduction . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Rotational invariance . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Rotational reduction to A’s perspective . . . . . . . . . . . . . . . . . . . 23
3.3.1 Rotational reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2However, the second point will not be true anymore for N > 3; see the discussion at the very end of
Section 3.
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3.3.2 Relation with reduced quantization of A’s classical perspective . . 28
3.4 Transformations between relative states . . . . . . . . . . . . . . . . . . . 30
3.5 Remarks on the unitarity of the quantum frame transformations . . . . . 32

4 Conclusions 33

A The rotation and translation invariant N -body problem 34
A.1 The rotation and translation invariant Lagrangian . . . . . . . . . . . . . 34
A.2 Dependence of constraints on total collisions and collinearity . . . . . . . 36
A.3 Independent Dirac observables on generic N particle configurations . . . . 37
A.4 Absence of global canonically conjugate Dirac observables . . . . . . . . . 38
A.5 Proof of the three-body gauge-fixing in the 3D case . . . . . . . . . . . . . 39
A.6 Solving constraints for the redundant momenta . . . . . . . . . . . . . . . 41
A.7 Switching internal perspectives classically . . . . . . . . . . . . . . . . . . 41

B Using spherical coordinates 43
B.1 Spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.2 Spherical harmonics states . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.3 Spherical coordinates operators . . . . . . . . . . . . . . . . . . . . . . . . 44

C Rotational reduction in the quantum theory 44
C.1 The rotation generator trivialization map and its action on states . . . . . 44
C.2 Trivializing the rotation constraints . . . . . . . . . . . . . . . . . . . . . . 46
C.3 Dirac observables and rotational reduction . . . . . . . . . . . . . . . . . . 47

D Illustration of the Hamiltonian discrepancy between Dirac and reduced quantiza-
tion 48

2 Internal perspectives in the classical N -body problem
2.1 A toy model for Mach’s principle in 3D space
We employ a toy model3 for Mach’s principle in a system of N interacting particles in
three-dimensional space with translation and rotation invariance. This gauge symmetry
implies that the position, orientation and motion of the particles with respect to the
Newtonian background space has no physical significance and that the gauge invariant
information is purely relational. As such, our system bears some resemblance to the
Barbour-Bertotti and related models [37, 38, 57, 58], except that here we will not have
dilation or Hamiltonian constraints.

For simplicity and in analogy to [1], we restrict to unit mass particles and a Euclidean
phase space Q = R3N so that our phase space, coordinatized by particle positions q⃗i and
momenta p⃗i, is T

∗Q = R6N . We take an N particle system whose Lagrangian, described in
Appendix A.1, features the desired gauge symmetries and upon Legendre transformation
leads to the following six (primary) constraints on phase space:4

P a =
∑

i

pa
i ≈ 0 , (1a)

3We thank T. Koslowski for suggesting this model.
4Henceforth, the Einstein convention holds and repeated spatial indices are implicitly summed over.
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Ra =
∑

i

ϵabcqb
ip

c
i ≈ 0 , (1b)

where a, b, c ∈ {x, y, z} denote spatial components. These constraints are independent5

(almost everywhere, see below) and first-class, clearly constituting the generators of the
Euclidean group:

{P a, P b} = 0 , {Ra, Rb} = ϵabcRc ≈ 0 , {P a, Rb} = −ϵabcP c ≈ 0 . (2)

They are conserved so that no secondary constraints arise. The total Hamiltonian follow-
ing from the Lagrangian of Appendix A.1 is

Htot = 1
2

N∑
i=1

p⃗i
2 + V ({|q⃗i − q⃗j |}N

i,j=1) + λaP a + µaRa , (3)

where the λa and µa are six a priori arbitrary Lagrange multipliers, accounting for gauge
freedom, and the potential V depends only on the relative absolute distances between the
particles.

Consequently, the six constraints generate gauge transformations on the constraint
surface; clearly, the P a induce global translations, namely infinitesimally{

qa
i → qa

i + {qa
i , P

b} εb = qa
i + εa ,

pa
i → pa

i + {pa
i , P

b} εb = pa
i ,

(4)

while the Ra are generators of global rotations, infinitesimally given by{
qa

i → qa
i + {qa

i , R
b} εb = qa

i + ϵabc εb qc
i ,

pa
i → pa

i + {pa
i , R

b} εb = pa
i + ϵabc εb pc

i .
(5)

A subtlety arises: while the six constraints (1) are independent on generic points
of the constraint surface C in phase space (so generically, the gauge orbits will be six-
dimensional), there exist special pathological points on C (thus a priori allowed), where
the constraints become partially dependent. These correspond to N particle collisions
and situations when all particles are collinear. As shown in Appendix A.2, in these
cases, only three and five constraints are independent, respectively, and the corresponding
configurations reside in lower dimensional gauge orbits, so that the constraint surface is, in
fact, foliated by six-, five- and three-dimensional gauge orbits. This is a direct consequence
of the compactness of the pure rotation orbits and the (complete or partial) rotational
invariance of these special configurations. Given that total collisions and collinearity are
a set of measure zero, almost all gauge orbits are six-dimensional. However, the lower
dimensional ones are topologically relevant and have physical consequences: globally valid
gauge conditions will not be possible because on the lower dimensional orbits one cannot
fully fix the rotational gauge freedom as some rotations will act trivially (see Appendix
A.2 and the discussion in sec. 2.2).6 Since we will, again, interpret choices of internal
perspectives as gauge fixings, this is the origin of why there will be no globally valid
internal perspectives in this model.

5In the N = 2 case, the system (1) is not independent and there are only five independent constraints,
which induces some peculiarities. In the rest of the paper, unless stated otherwise, we will assume N ≥ 3.

6Also, as a manifestation of the Gribov problem, other gauge fixing surfaces might miss the lower
dimensional orbits entirely.
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This implies significant repercussions for the reduced phase space, which is the set of
all gauge orbits (every gauge orbit is the equivalence class corresponding to one physical
state). Mathematically it is the quotient Pred = C/∼, where ∼ identifies points if they
lie in the same orbit, and so will be topologically non-trivial because of the differing
dimensions of the gauge orbits.

Clearly, this also has consequences for gauge invariance and, specifically, gauge invari-
ant functions, i.e. Dirac observables. Before we discuss these consequences, we recall that
any function can be expressed in terms of our basic phase space variables q⃗i, p⃗j and inquire
what the most general form of a Dirac observable is. Given that the full set of rotations
only leaves inner products invariant, any Dirac observable must be a function of inner
products of our basic variable vectors. These inner products must also be translation
invariant and so any Dirac observable must be a function of

(q⃗i − q⃗j) · (q⃗k − q⃗l), (q⃗i − q⃗j) · p⃗k , p⃗i · p⃗j , i, j, k, l = 1, . . . , N , (6)

which comprise all rotation and translation invariant inner products quadratic in our basic
variables.7 In particular, the unconstrained part of Htot is obviously also gauge invariant.

Again, there is a redundancy among the elementary Dirac observables (6). Indeed, the
N particles have 3N coordinates and the symmetry consists of three global translations
and three global rotations so there can only be (at most) 3N − 6 independent gauge in-
variant configuration degrees of freedom. Similarly, there are 3N momentum coordinates
and six constraints (1) that can be solved for momenta so there can likewise only be (at
most) 3N − 6 independent gauge invariant momentum degrees of freedom. For intuition
of these statements, it is helpful to visualize the N particle motion and its gauge invariant
information geometrically: a generic N particle configuration (i.e., no total collision or
collinearity) corresponds to a triangulation with N vertices in 3D Euclidean space (see
fig. 1) whose 3N − 6 edges are labeled by relative distances

∣∣q⃗i − q⃗j

∣∣ from among the
(square roots of the) configuration observables in (6). In this manner, we argue geometri-
cally in Appendix A.3 that for generic N particle configurations there are indeed 3N − 6
independent configuration and 3N − 6 independent momentum Dirac observables.

But what about N particle collisions and total collinearity where we saw that the
symmetry generators become dependent? We prove in Appendix A.4 that (i) none of the
elementary Dirac observables (6) are independent on the N particle collisions residing in
three-dimensional gauge orbits, and (ii) only 2(N − 1) of them are independent on totally
collinear N particle configurations residing in five-dimensional gauge orbits.

As we also show in Appendix A.4, this has a severe ramification: canonically conjugate
or affine 8 pairs of Dirac observables do not exist globally on C. Accordingly, there are
no canonically (or affinely) conjugate coordinates covering all of the reduced phase space,
manifesting its topologically non-trivial nature alluded to above. A priori this will compli-
cate also the reduced quantization of the physics in any of the internal perspectives, as we
can not simply apply canonical or affine quantization methods [59] to the reduced phase
space as a whole without restricting the dynamics and introducing boundary conditions.
In this sense, also the internal perspectives in the quantum theory will be non-global.

Let us now construct canonically conjugate Dirac observables that are ‘as global as
possible’. Constructing sets of independent (non-global) canonically conjugate Dirac ob-
servables for the N -body problem depends on N and so here we shall only provide such a

7Note that also all Dirac observables which involve cross products will be functions of these combina-
tions.

8 Two phase space variables q, π form an affine (rather than canonical) pair if {q, π} = q. That is, π
is the generator of dilatations (rather than translations) of q.
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Figure 1: (a) Illustration of the three-body problem and gauge invariant configuration degrees of
freedom. Our three configuration Dirac observables from the (almost everywhere) conjugate pairs in (7)
are functions of these: ρBA, ρCA are simply the logs of the relative distances rAB = |q⃗A − q⃗B |, rAC =
|q⃗A − q⃗C | between A and B,C, respectively, while u is (minus) the cotangent of the relative angle
between B and C as seen from A. (b) Illustration of a generic situation in the six-body problem as a
triangulation. In order to fully localize particle F relative to particles A to E, three relative distances
between F and the rest are sufficient and not all relative distances are independent.

set for the three-body problem. Labeling the three particles as before by A,B,C, we as-
sembled a convenient set of 3N − 6 = 3 (almost everywhere) independent and canonically
conjugate Dirac observable pairs for our purposes as follows

ρBA := ln rBA = ln |q⃗B − q⃗A| , pρBA := p⃗B · (q⃗B − q⃗A) ,
ρCA := ln rCA = ln |q⃗C − q⃗A| , pρCA := p⃗C · (q⃗C − q⃗A) , (7)

u := − cot γ = − (q⃗B − q⃗A) · (q⃗C − q⃗A)∣∣(q⃗B − q⃗A) × (q⃗C − q⃗A)
∣∣ ,

pu := sin γ p⃗C ·
(

cos γ (q⃗C − q⃗A) − rCA

rBA
(q⃗B − q⃗A)

)
.

We choose this set as it has a direct geometrical interpretation: the configuration Dirac
observables are the logarithms of the relative distances rBA, rCA ∈ [0,∞) of B and C from
A and (minus) the cotangent of the angle γ ∈ [0, π] in the triangle between B and C at
A (see fig. 1a). However, in contrast to rBA, rCA, γ, our geometric variables ρBA, ρCA, u
each take value in all of R which will be more convenient for quantization. (We choose
u = − cot γ so that u goes from −∞ to +∞ as γ runs from 0 to π.) The momentum
Dirac observables are projections of the particle momenta in the appropriate directions.
The same construction can be carried out, of course, for permutations of A,B,C with the
obvious meaning.

Clearly, this set will not define global coordinates on the reduced phase space as
ρBA, ρCA, pu become singular when A collides with either B or C and u is undefined
in those cases and when the three particles are collinear. (These configurations lie in
the boundary of the gauge invariant configuration space and are a set of measure zero
[60].) For other non-global constructions of canonically conjugate Dirac observables for
the three-body problem, e.g., in terms of Jacobi (mass-weighted difference) vectors, see
[58,60,61].

Our treatment for these illnesses is to dynamically restrict the model: we shall hence-
forth assume (but not explicitly write) that the potential V ({|q⃗i − q⃗j |}i,j=A,B,C) becomes
infinitely repulsive when any of the relative distances vanishes. For example, we might
imagine three electrons and a Coulomb potential. This rules out any particle collisions
(for finite energies) and so the three-dimensional gauge orbits will no longer become dy-
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namically accessible. Note that the pairs (ρBA, pρBA) and (ρCA, pρCA) will then indeed
be canonically conjugate on the dynamically accessible configurations and also pu will
remain finite. Only u will, strictly speaking, remain undefined when A,B,C are collinear,
although γ is well-defined then. Since these configurations also remain a set of measure
zero in the boundary of the gauge invariant configuration space [60], we shall simply in-
terpret the divergence of u for collinearity as ‘infinite distance’ in the variable u. In this
sense, after dynamical restriction, our variables (7) are ‘as good as it gets’ and canonically
conjugate on the dynamically accessible regions of C.

In summary, owing to the gauge symmetry, the N particle system has no physically
meaningful absolute position, orientation and motion in space, yet relative position, ori-
entation and motion among the particles is gauge invariant. Building up on our discussion
in [1], we interpret the structures described here and, in particular, all the structure on the
constraint surface C as a perspective-neutral meta-structure which, thanks to its inherent
redundancy, contains all perspectives at once. Choosing a specific internal perspective of
a particle frame will again amount to a gauge fixing, as we shall discuss shortly.

We noted that there cannot be a globally valid internal perspective on account of the
topological non-trivialities of the gauge orbits. However, it must be emphasized that all
ensuing challenges only arise when collecting the structures necessary for moving into a
specific internal perspective. The perspective-neutral structure has no problems per se as
C can be consistently and globally described in terms of the original phase space variables
q⃗i, p⃗j and, while Dirac observables are necessary for gauge invariance, global canonically
conjugate pairs of them are not required.

2.2 Choosing an internal perspective = choosing a gauge
In order to completely fix the gauge, we have to impose six gauge fixing conditions as we
have six independent first class constraints on generic points of C. Altogether, as already
noted, we then have

F = 6N − 12 (8)

independent gauge invariant phase space degrees of freedom away from pathological con-
figurations – the dimension of the reduced phase space.9

Suppose we want to describe the physics from the internal perspective of particle A.
In complete analogy to the purely translation invariant case of [1], we define A to be the
origin from which all distances are measured:

χa = qa
A

!= 0 , a = x, y, z , (9)

where the symbol
!= means that we demand the equality to hold. However, we also

need to fix the rotational gauge symmetry. Before we move on, we already note that
there can be no globally valid gauge fixing conditions that will pierce every gauge orbit.
This follows from pure dimension counting. Indeed, a set of gauge fixing conditions that
also completely fixes the rotational symmetry for generic configurations must define a
(6N − 12)-dimensional gauge fixing surface G within the (6N − 6)-dimensional constraint
surface C. Locally, within C, G will be described by six independent conditions. We
noted that the gauge orbits in which the total collisions reside are three-dimensional (see
Appendix A.2) and so these will locally, within C, be described by 6N − 9 independent
conditions. Clearly, it is impossible to satisfy the 6 + 6N − 9 = 6N − 3 > 6N − 6

9Except for N = 2, where F = 2.
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⌃
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y
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qz
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qx
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qz
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Figure 2: Illustration of the gauge-fixing procedure (9–12) for the three-body problem. We choose A
as the origin from which to measure all distances, B to define the z-axis and C to define the x-z-plane.
This procedure works in the same way for N > 3 particles by choosing a three-body subsystem.

independent conditions simultaneously within C. The analogous state of affairs holds for
the five-dimensional orbits in which totally collinear configurations reside. Hence, any
gauge fixing surface that fixes the rotational symmetry for generic configurations will
necessarily miss the lower-dimensional gauge orbits. This is an incarnation of the Gribov
problem. Without a global gauge fixing surface, we will also not have a globally valid
internal perspective.

We proceed by focusing on generic configurations and accept that we will have to miss
the lower-dimensional orbits. In order to complete the choice of reference frame, we now
also need to define the three axes of space as seen from particle A, thereby fixing the three
rotational gauge degrees of freedom. This has to be done in terms of the other particles
as these provide the only physically meaningful reference for A. We have illustrated our
gauge-fixing procedure for better visualization in fig. 2. First, picking another particle
B, we can get two gauge conditions by fixing the direction in which A sees B, i.e., the
direction (but not the norm) of q⃗BA = q⃗B − q⃗A ≈ q⃗B. Choosing it as A’s z-axis imposes

ϕ1 = qy
BA

!= 0 , (10a)

ϕ2 = qx
BA

!= 0 . (10b)

There is then only one continuous gauge freedom left, corresponding to the rotation of
direction z around the origin. To fix it, we consider a third particle C, and fix it to lie in
the (x, z) plane:

ϕ3 = qy
CA

!= 0 . (11)

In fact, we have only blocked all continuous gauge transformations, but there remain
some allowed discrete gauge transformations, namely, the rotations of angle π around one
of the axes, whose effect is to invert the two other axes. Indeed, those transformations
leave invariant the gauge-fixing conditions (9–11). This is a consequence of the fact that
the rotational orbits are compact so that the hyperplane defined by (9–11) pierces them
multiple times. To get rid of this residual gauge symmetry, it is necessary and sufficient
to fix the orientation of two of the axes. This can be done with conditions, which fix the
positive part of the z and x axes through:

qz
BA > 0 , (12a)

qx
CA > 0 . (12b)
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With those conditions, B is now constrained to lie on the semi -axis [Az), and C to lie
on the half -plane spanned by the axis (Az) and the semi-axis [Ax), see fig. 2. Indeed,
it is clear from the previous discussion and that in Appendix A.2 that we could not fix
the gauge completely, using B and C as material references, if at least one of them were
coincident with A or the three particles were collinear. Altogether, we then have a system
of 12 second-class constraints (given by (1), (9–12)), that is, a completely gauge-fixed
system, as proven in Appendix A.5.

In summary, a complete gauge fixation is given by the choice of three particles A,B,C10

out of the N particles, provided they are not collinear. We can denote such a gauge choice
as [A,B,C]. Physically, such a gauge choice corresponds to an operational definition of
the axes with which A assesses positions of other particles in space: B provides with the
first axis of reference z, and C defines the plane (Axz). This information is then sufficient
for A to build a non-ambiguous set of orthogonal axes (x, y, z). One can also see this
procedure as an operational construction of spherical coordinates: the origin is defined as
being particle A; the zenith direction z, to which the polar angle θ is relative, is defined as
the direction of particle B; and the plane (Axz), to which the azimuth angle ϕ is relative,
is defined as the one in which C is lying.

We need to check that the gauge choice is consistent with the equations of motion

q̇a
i = ∂Htot

∂pa
i

= pa
i + λa + ϵabcµbqc

i , (13a)

ṗa
i = −∂Htot

∂qa
i

= ϵabcµbpc
i − ∂ V

∂qa
i

. (13b)

The conservation of our gauge conditions fixes the vectors λ⃗ and µ⃗ as defined in (3),

λ⃗ = −p⃗A , (14a)

µy = −px
BA

qz
B

, (14b)

µx = py
BA

qz
B

, (14c)

µz = − 1
qx

C

(
py

CA − qz
C

qz
B

py
BA

)
, (14d)

where we write pij = pi −pj . Putting (14) into (13) then gives us the equations of motion
for all remaining particles as seen from A’s frame. Note that the validity of the latter
requires (12) to hold; qz

B > 0 is implied by our dynamical restriction of infinite repulsion
on collisions. However, qx

C = 0 is not dynamically ruled out and happens on the measure
zero set on the boundary of the gauge invariant configuration space when u → ±∞.

Let us now limit ourselves to N = 3 particles for clarity. The canonically conjugate

10The most general case of gauge choice would be given by introducing gauge parameters, which allow
for example to fix A to lie not at the origin, but at any position in space - the same goes for the directions
of B and C. We will not consider in detail this formal possibility which does not add to the physical
meaning of this analysis.
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Dirac observables (7) take the following form in our gauge (see fig. 2 for illustration):

ρBA ≡ ρB := ln rB = ln qz
B , pρBA ≡ pρ

B := qz
B p

z
B ,

ρCA ≡ ρC := ln rC = ln
√

(qx
C)2 + (qz

C)2 , pρCA ≡ pρ
C := px

C q
x
C + pz

C q
z
C , (15)

u ≡ uC := − cot θC = −qz
C

qx
C

,

pu ≡ pu
C := sin2 θC (qz

C p
x
C − qx

C p
z
C) = sin2 θC R

y
C .

Hence, we may interpret qz
B, rC as the distances of B and C as seen from A, while θC

becomes the angle which A sees between B and C. Note also that C’s angular momentum
around y is essentially conjugate to the angle between B and C.

After having gauge fixed our model, we need to replace the Poisson by Dirac brackets
[40,41]

{F,G}D := {F,G} − {F,Λα}(C−1)αβ{Λβ, G} , (16)

where Λα, α = 1, . . . , 12, runs over the 12 second class constraints (1) and (9–12) and C−1

is given in (88) in Appendix A.5, to construct the bracket structure for our gauge-fixed
reduced phase space. The Dirac brackets of the gauge-fixed qx

A, q
y
A, q

z
A, q

x
B, q

y
B, q

y
C and their

conjugated momenta vanish and we can now drop these variables (the latter being solved
for by the constraints, see Appendix A.6). By contrast, the (qz

B, q
z
C , q

x
C) ∈ R+×R×R+ (due

to (12)11) and their pz
B, p

x
C , p

z
C remain canonically conjugate also with respect to {., .}D,

so we could use them as canonical coordinates on the dynamically accessible region of
the reduced phase space. However, for quantization it will be more convenient to use
the radial and angle coordinates (ρBA, ρCA, u) ∈ R3 and their respective momenta in (15)
which remain canonically conjugate in {., .}D there too.

Before we continue, let us make an important remark. Denote the reduced phase space,
which we have obtained after gauge fixing to A’s perspective, by PBC|A as it encodes the
physics of B and C relative to A. Strictly speaking, PBC|A is not actually equivalent
to the abstract – and, in fact, perspective-neutral – reduced phase space Pred = C/∼,
alluded to in sec. 2.1. Indeed, PBC|A is equivalent to the intersection C ∩ GBC|A (and can
be canonically embedded as such into C), where GBC|A is the gauge fixing surface defined
by the gauge conditions (9–12)). As argued above, GBC|A entirely misses the lower-
dimensional gauge orbits for dimensional reasons and so does not intersect each gauge
orbit once and only once. Hence, total collisions and total colinearity are contained in Pred,
but not in PBC|A. The non-equivalence, of course, only concerns a set of measure zero,
from which we have also dynamically ruled out the total collisions. The configurations
left out in PBC|A for N = 3 do not depend on our choice of perspective; indeed, gauge-
fixing to B’s perspective (i.e. considering PAC|B) or to C’s perspective (PAB|C) would
leave out exactly the same configurations. This is why the internal perspectives will
still be equivalent with one another, even though they are not fully equivalent with the
perspective-neutral Pred. However, the situation changes for N > 3, where gauge choices
relative to distinct particles can fail on different configurations. We have also argued
above that there are no global gauge fixing conditions, due to the Gribov problem, and
so one cannot obtain a gauge fixed phase space that is fully equivalent to Pred. We can
thus take PBC|A (or any similarly gauge fixed phase space) as a best possible description
of the perspective-neutral Pred relative to a choice of reference frame. We shall work with
PBC|A and refer to it as the reduced phase space in A perspective.

11The gauge invariant configuration space of the three-body problem is homeomorphic to half of R3

with all collisional and collinear configurations residing in the boundary [60].
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Using the constraint solutions for the redundant momenta (see Appendix A.6), we can
now express our Hamiltonian (3) in terms of the surviving degrees of freedom on PBC|A:

HBC|A = (pz
B)2 + (pz

C)2 + (px
C)2 + pz

B p
z
C + 1

(qz
B)2 (Ry

C)2 − px
C

qz
B

Ry
C + V (qz

B, q
z
C , q

x
C) . (17)

This is the Hamiltonian for the dynamics of particles B and C, as seen by A. The term
pz

B p
z
C and the lack of 1/2 factors in front of the squared momenta correctly take into

account the relative forces originating in the potential in (3) (e.g., an interaction between
A and C will also affect the position of B relative to A even if B and C do not interact,

see [1] for further details). The term 1
(qz

B)2 (Ry
C)2 − px

C
qz

B
Ry

C constitutes an effective potential
that generally becomes infinitely repulsive on approach of particle A (where our condition
(12a) no longer holds) because B is used to relationally define the non-negative z-direction
from A’s perspective. This singularity in the effective potential can be viewed in some
analogy to the coordinate singularity in the Schwarzschild spacetime: it is not a physical
singularity, but merely signifies that the chosen phase space coordinates become invalid,
here due to the global gauge-fixing issues elaborated on above. Indeed, the physical
Hamiltonian Htot does not feature any such singular behaviour that is independent of the
actual potential V .

This Hamiltonian can also be expressed in terms of the (gauge-fixed) canonically
conjugate Dirac observables (15) as

HBC|A = 1
2h

µν(ρB, ρC , uC)pµpν + V (ρB, ρC , uC) , (18)

where the index µ is such that pµ runs over pρ
B, p

ρ
C , p

u
C in (15) and we have the physical

configuration space metric

hµν = 2 × (19)
e−2ρB − 1

2e
−ρB−ρC uC√

1+u2
C

− 1
2e

−ρB−ρC
√

1 + u2
C

− 1
2e

−ρB−ρC uC√
1+u2

C

e−2ρC − 1
2e

−ρB−ρC
√

1 + u2
C

− 1
2e

−ρB−ρC
√

1 + u2
C − 1

2e
−ρB−ρC

√
1 + u2

C (e−2ρB + e−2ρC )(1 + u2
C)2 + e−ρB−ρCuC(1 + u2

C) 3
2


with determinant

h = 6e−2ρB−2ρC (1 + u2
C)

3
2

(
(e−2ρB + e−2ρC )

√
1 + u2

C + e−ρB−ρCuC

)
. (20)

It can be checked that h > 0 for all finite values of ρB, ρC , uC so that h = |h|. However,
clearly for ρB, ρC → −∞ and uC → ±∞, i.e. the configurational pathologies, the metric
components diverge. This expression will be useful for directly quantizing A’s classical
perspective, i.e. for reduced quantization, and subsequent comparison with Dirac quanti-
zation of the perspective-neutral structure.

It is instructive to look at what (17) becomes, had we permitted the particles to have
different masses mi:

HBC|A = 1
2( 1

mA
+ 1

mB
)(pz

B)2 + 1
2( 1

mA
+ 1

mC
)(pz

C)2 + 1
2( 1

mA
+ 1

mC
)(px

C)2 + 1
mA

pz
Bp

z
C

+ 1
mB

1
(qz

B)2 (Ry
C)2 − 1

mA

1
qz

B
px

CR
y
C + V (qz

B, q
z
C , q

x
C) .

Note that in the limitmA → ∞ this Hamiltonian becomes of standard form (with effective
potential), in agreement with the fact that an infinite mass reference system constitutes
an inertial frame.
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2.3 Switching internal perspectives
Going from the internal perspective of reference frame A to that of, e.g., particle C
amounts to a gauge transformation plus a swap of what one considers the redundant and
the relevant Dirac observables (e.g., one would have to exchange the A and C labels in
(7, 15)). This requires one to firstly embed the reduced phase space in A perspective into
the perspective-neutral constraint surface, subsequently performing the pertinent gauge
transformation and, finally, projecting again to the reduced phase space in C perspective.
We shall only be schematic here as the situation is geometrically transparent. The details
of the following discussion can be found in Appendix A.7 (see also [1]).

There exists a canonical embedding map12

ιBC|A : PBC|A ↪→ C , (21)

with image C ∩ GBC|A, that can be reversed by a ‘projection’

πBC|A : C ∩ GBC|A → PBC|A , (22)

which drops all redundant embedding information, so that πBC|A ◦ ιBC|A = IdPBC|A . By
exchanging A and C labels, the same construction holds for the reduced phase space
PAB|C in C perspective.

Switching from A to C perspective requires the gauge transformation αA→C , generated
by the constraints P a, Ra, that maps one embedding C ∩GBC|A to the other C ∩GAB|C . We
emphasize that here we take GAB|C as being the analogous gauge fixing condition to (9–
12), except that A and C are everywhere exchanged. That means, we use the analogous
gauge fixing procedure as in fig. 2, but seen from the perspective of particle C. It is
clear that the sought-after transformation amounts to a few translations and rotations
of the particles. In Appendix A.7, we construct it explicitly and show how this yields a
map SA→C : PBC|A → PAB|C , that we also spell out explicitly in coordinates, and which
satisfies the following commutative diagram:

Pred = C/∼

C ∩ GBC|A C ∩ GAB|C

PBC|A PAB|C

ζCζ−1
A

αA→C

πAB|CιBC|A

SA→C

For completeness, we have here also included the perspective-neutral reduced phase space
Pred = C/∼; ζA is the map that associates with each element of C/∼, i.e. gauge orbit in
C, the point on it defined by the intersection with the gauge-fixing surface GBC|A. Owing
to the global gauge fixing issues, this map is not globally defined on Pred and its inverse
is to be understood accordingly. The same applies to ζC .

Note that, in the N = 3 case to which this paper restricts itself, α is an isomorphism,
and all perspectives are therefore fully equivalent. This is due to the fact that all per-
spectives leave out the same set of points (those for which the three particles are aligned).

12The physical interpretation of PBC|A as the physics seen by A singles out this embedding, which
otherwise would be ambiguous.
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This will however not be the case anymore for N > 3, where there can be inequivalent
perspectives, due to the different possible choices of three-points subsets in this case; see
the discussion at the end of Section 3.

Altogether, our change of internal perspective first maps the old perspective back
into the perspective-neutral structure, carries out a gauge transformation, and finally
projects into a new perspective. The diagram highlights the similarity to coordinate
transformations: defining φA := πBC|A◦ζA, and similarly for C, we have SA→C = φC◦φ−1

A .

3 Quantization and relative states
We shall now quantize the perspective-neutral structure using the Dirac method. This
will endow the Dirac quantized theory with the interpretation of the perspective-neutral
quantum theory from which we will then derive the quantum descriptions relative to in-
ternal frame perspectives through a quantum symmetry reduction procedure that will
constitute the ‘quantum coordinate maps’. We shall support this interpretation by ex-
ploiting these quantum coordinate maps to derive the transformations that take one from
the internal perspective of one quantum reference frame to that of another. On account
of the exhibited absence of globally valid internal perspectives, the reduced quantum
theories and the transformations between them will also fail to be globally valid, when
we take distributional states (classical configurations) into account. For general Hilbert
space elements, however, the pathological configurations, being a set of measure zero [60]
in the integration, will essentially be irrelevant. Our exposition below will thereby serve
to substantiate our discussion in [1] by extending it to a rather general particle model.
In order to compare the symmetry reduced quantum theories, obtained upon applying
the quantum coordinate maps to the perspective-neutral quantum theory, with the direct
quantization of the classical frame perspectives, we shall begin with the reduced quan-
tization of the latter. As we shall see, the two quantizations will not agree in general,
exemplifying the generic difference between Dirac and reduced quantization. We will con-
clude from this that in general we have to give primacy to Dirac quantization because it
treats all degrees of freedom on an equal footing and translates the classical redundancy
in the description into the quantum theory which ultimately is a prerequisite for defining
a notion of quantum frame covariance.

Given that we will encounter a considerable number of Hilbert spaces and transfor-
mations between them, we organize the main steps in fig. 3 to support the orientation
within our construction.

3.1 Reduced quantization – quantizing classical internal perspectives
We begin by quantizing the reduced phase space PBC|A in A perspective. For conve-
nience, we choose the canonically conjugate set (15), as the configuration Dirac observ-
ables ρB, ρC , u take value in all of R.13 We promote these variables directly to operators
satisfying the canonical commutation relations14

[ρ̂B, π̂
ρ
B] = [ρ̂C , π̂

ρ
C ] = [ûC , π̂

u
C ] = i , (23)

on the Hilbert space HBC|A = L2(R3, dρB dρC duC), see fig. 3. We have called our mo-
mentum operators π̂ in order to distinguish them from the momentum operators that we

13Otherwise, we would have to deal with global non-trivialities [59] in the quantization.
14Henceforth, we work in units where h̄ = 1.
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original phase space T ∗Q ≃ R18 PBC|A

Hkin

HTI HTI
A,BC HTI

BC|A

Hphys Hphys
A,BC Hphys

BC|A Hphys
B,C|A HBC|A

P⃗ =R⃗=χ⃗=ϕ⃗=0

Dirac quantization

reduced quantizationδ(P̂ a)

δ(R̂a)

TA,BC

δ(R̂a
B+R̂a

C)

A⟨χ⃗=0|

δ(R̂a
B+R̂a

C)

TA,BC A⟨χ⃗=0| RB,C ⟨ϕ⃗=0|

Figure 3: Diagram of the two quantization methods of sec. 3 for the three-body problem and their
relation (see also Table 1 for a summary of the notations used). Each column represents a step from
the Dirac to the reduced quantum theory, as explained in the main text. Vertical arrows on the left side
correspond to constraint imposition. The horizontal arrows between Hilbert spaces are all isometries and
correspond to the quantum reduction steps. They are a sequence of: (1) trivialization of the translation
generators, (2) conditioning on the classical conditions χ⃗ = 0 that fix the translational gauge freedom,
(3) trivialization of the rotation generators, and (4) conditioning on the classical conditions ϕ⃗ = 0
fixing the rotational gauge freedom. The two squared diagrams among Hilbert spaces on the lower left
are commutative. For better visualization, we have summarized the relevant phase and Hilbert spaces
appearing in this diagram in a table. The last reduction map ⟨ϕ⃗ = 0| is not globally defined owing to
the global gauge fixing issues. It does, however, act as an isometry on its image.

will introduce for the Dirac quantization. In position representation, we will represent
them as usual π̂ρ

B = −i∂ρB , etc. An arbitrary reduced quantum state can now be written
as

|ψ⟩BC|A =
∫

dρB dρC duC ψBC|A(ρB, ρC , uC) |ρB⟩ |ρC⟩ |uC⟩ (24)

and we choose the standard inner product
∫

R3 dρBdρCuC ϕ
∗
BC|A(ρB, ρC , uC)ψBC|A(ρB, ρC , uC).

To quantize the reduced Hamiltonian (18), we choose the standard operator ordering in
which the kinetic term in (18) is promoted to an operator which is equivalent to (minus)
the covariant Laplace-Beltrami operator associated with the metric hµν in (19),15 which
yields

Ĥred
BC|A = 1

2 |h|−
1
4 π̂µ |h|

1
2 hµν π̂ν |h|−

1
4 + V (ρ̂B, ρ̂C , ûC) . (25)

Being the direct quantization of A’s classical frame perspective on the dynamics of
particles B and C, we can interpret the result for the time being as one a priori possible
quantum theory describing B and C relative to A. We will later argue, however, that
this is not the appropriate quantum theory describing the perspective of the quantum
reference frame associated with A. Notice that this quantum theory does not include
total collisions (which, in any case, we had ruled out dynamically) or total collinearity of
the three particles because neither did PBC|A. Indeed, collisions happen for ρB, ρC → −∞

15More precisely, the covariant Laplace-Beltrami operator is usually (e.g., see [50]) given in the form
−∆h = |h|−1/4 p̂µ |h|1/2hµν p̂ν |h|−1/4, where p̂µ = −i|h|−1/4∂µ |h|−1/4, and both ∆h and p̂µ are self-
adjoint with respect to the inner product

∫
dqn

√
|h| ϕ̃∗(qµ)ψ̃(qµ), i.e. one which differs from ours through

the density
√

|h|. However, it can be easily checked that −∆h in the measure dqn
√

|h| is equivalent to
|h|−

1
4 π̂µ |h|

1
2 hµν π̂ν |h|−

1
4 in the measure dqn if the wave functions in the two representations are related

by ψ̃ = |h|1/4ψ.

Accepted in Quantum 2023-05-09, click title to verify. Published under CC-BY 4.0. 17



and total collinearity as uC → ±∞. Given the normalization conditions in HBC|A, any
ψBC|A(ρB, ρC , uC) will have to have vanishing support there. In this sense, it thus is a
quantum theory that is not globally valid. Also, the Hamiltonian (25), while precluding
collisions, can still evolve to states with collinear situations in finite time even for initial
states that do not have support on it. However, since the pathological configurations
comprise a measure zero set, this is not a serious problem and the evolution should be well-
defined for a dense set of states. It is only an issue when considering distributional states
with support on these pathologies. Given the absence of global relational perspectives,
we have to accept this peculiarity for the direct quantization of the classical perspective
of A.

Later, we will compare this reduced quantized theory to the reduced theory obtained
by symmetry reducing the Dirac quantized model. While their structure will look very
similar, they will be inequivalent, unless certain somewhat artificial choices are made
in Dirac quantization. On the one hand, this will demonstrate that a quantum frame
perspective will generally not be equivalent to the direct quantization of a classical frame
perspective. On the other, it will nevertheless provide intuition for why we will identify
the quantum symmetry reduced theories with quantum frame perspectives.

3.2 Dirac quantization – the perspective-neutral quantum theory
Next, we quantize the perspective-neutral structure the Dirac way. That is, we quantize
the original phase space T ∗Q ≃ R18, by promoting all canonical pairs (qa

i , p
a
i ) to operators

on a kinematical Hilbert space Hkin := L2(R9), satisfying the canonical commutation
relations [q̂a

i , p̂
b
j ] = i δab δij . This permits us to quantize the constraints (1) and our aim

would be to find physical states |ψ⟩phys that solve them:

P̂ a |ψ⟩phys =
∑

i=A,B,C

p̂a
i |ψ⟩phys = 0 , (26a)

R̂a |ψ⟩phys =
∑

i=A,B,C

ϵabc q̂b
i p̂

c
i |ψ⟩phys = 0 . (26b)

In addition, we quantize the Hamiltonian (3) in a standard way, as

Ĥtot = 1
2 (ˆ⃗pA

2 + ˆ⃗pB
2 + ˆ⃗pC

2) + V ( ̂|q⃗AB|, ̂|q⃗AC |, ̂|q⃗BC |) . (27)

The classical constraint algebra (2) of the Euclidean group directly attains a quantum
representation:

[P̂ a, P̂ b] = 0 , [R̂a, R̂b] = iϵabcR̂c , [P̂ a, R̂b] = −iϵabcP̂ c . (28)

Notice that the three conditions (26b) are equivalent to a single (quadratic) constraint:

⃗̂
R 2 |ψ⟩phys = 0 . (29)

The shape of this algebra permits us to decompose the constraint imposition into conve-
nient steps:

1. We construct the translation invariant Hilbert space HTI (see fig. 3) by firstly solving
the translation constraints P̂ a. Given that the latter have a continuous spectrum
around zero, their solutions will not be normalizable in Hkin so that HTI will not
actually be a proper subspace of it. A new translation invariant inner product,
normalizing translation invariant states will be required. This will be the topic of
sec. 3.2.1.
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2. Since [P̂ a, R̂b] = −iϵabcP̂ c, the angular momentum constraints R̂a will commute
with the translation generators P̂ a on HTI. Hence, the R̂a will leave HTI invariant
and we can consistently treat them as translation invariant observables on it. We
could therefore then simply impose (26b) on HTI. Given that the spectrum of the
R̂a is discrete, solutions to them will be normalizable in HTI and so the translation
invariant inner product will also constitute the physical inner product. That is, the
physical Hilbert space Hphys (see fig. 3) of translation and rotation invariant states
(26) will be a proper subspace of HTI.

Notice that the reverse ordering of these steps would be more cumbersome as the
translation generators would a priori not leave a rotation invariant Hilbert space invariant.

Nevertheless, for our purposes it will be even more convenient to proceed slightly
differently. Our ultimate goal is to construct the transformation that switches the internal
perspective from HBC|A to HAB|C , i.e. from A to C perspective. To that end, it will

not actually be necessary to explicitly construct Hphys, although the transformation will
switch via Hphys from one perspective to another. While constructing Hphys is certainly
feasible, rotation invariant states of three particles will be unnecessarily convoluted and
we shall therefore abstain from explicitly exhibiting them.

Instead, we will sidestep the construction of Hphys by including an additional step
in-between steps 1 and 2 above. Indeed, we will insert a partial reduction step through a
map TA,BC that ‘trivializes’ the translation generator constraints, pushing all redundancy
onto particle A and yielding the Hilbert space HTI

A,BC in fig. 3. This step, followed by a
subsequent conditioning A ⟨q⃗ = 0|, is the quantum analog of imposing the classical gauge
condition q⃗A = 0 and will yield the translation invariant two-body Hilbert space HTI

BC|A,
see fig. 3. At this stage, we have a two-body problem of B and C, and imposing rotational
invariance will become substantially simpler. In this manner, we explicitly construct
Hphys

BC|A in fig. 3, replacing step 2 above that would yield Hphys. We show, however,

that the imposition of the rotation constraints δ(R̂a) commutes with the trivialization
map TA,BC and that Hphys

BC|A will thereby be equivalent to Hphys. This procedure will be
detailed in secs. 3.2.2 and 3.2.3.

The remaining reduction steps to HBC|A in fig. 3 will be discussed in sec. 3.3.

3.2.1 Constructing the translation invariant Hilbert space

Given the linearity of the translation generators P̂ a, it is not difficult to construct the
translation invariant Hilbert space HTI. As this step is already carried out in [1],16 we
shall be brief here and refer to this reference for further details.

We invoke group averaging [13,62,63] to define an (improper) projector onto solutions
of (26a):17

δ( ⃗̂P ) : Hkin → HTI

|ψ⟩kin 7→ |ψ⟩TI :=
( 1

(2π)3

∫ +∞

−∞
dsx dsy dsz eisaP̂ a

)
|ψ⟩kin .

(30)

16In [1], this step is carried out for the one-dimensional three-body problem, however, extension to three
dimensions is trivial and amounts to simply ‘attaching a vector symbol ⃗ to the basic variables’.

17See [64] for an alternative method that adapts the underlying Hilbert space topology.
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PBC|A Classical phase space after reduction to the perspective of A

Hkin Kinematical (‘total’) Hilbert space

HTI Translation-invariant Hilbert space

HTI
A,BC Image of the prior under translational trivialization TA,BC

HTI
BC|A Image of the prior under reduction by A ⟨χ = 0|

Hphys Physical (i.e. translation and rotation-invariant) Hilbert space

Hphys
A,BC Image of the prior under transformation TA,BC

Hphys
BC|A Image of the prior under reduction by A ⟨χ = 0|

Hphys
B,C|A Image of the prior under the rotational trivialization RB,C

HBC|A Can be defined as both:

(i) Image of the prior under conditioning by ⟨θB, φB, φC = 0|

(ii) Result of the quantization of PBC|A

Table 1: A summary of the notations used.

A general translation invariant state then takes any of the following forms

|ψ⟩TI =
∫

d3p⃗B d3p⃗C ψTI
BC|A(p⃗B, p⃗C) |−p⃗B − p⃗C⟩A |p⃗B⟩B |p⃗C⟩C

=
∫

d3p⃗A d3p⃗C ψTI
AC|B(p⃗A, p⃗C) |p⃗A⟩A |−p⃗A − p⃗C⟩B |p⃗C⟩C (31)

=
∫

d3p⃗A d3p⃗B ψTI
AB|C(p⃗A, p⃗B) |p⃗A⟩A |p⃗B⟩B |−p⃗A − p⃗B⟩C ,

depending on which particle’s momentum is solved for, where for later use we have defined

ψTI
BC|A(p⃗B, p⃗C) := ψkin(−p⃗B − p⃗C , p⃗B, p⃗C) ,

ψTI
AC|B(p⃗A, p⃗C) := ψkin(p⃗A,−p⃗A − p⃗C , p⃗C) , (32)

ψTI
AB|C(p⃗A, p⃗B) := ψkin(p⃗A, p⃗B,−p⃗A − p⃗B) .

This yields three different descriptions of the same translation invariant state |ψ⟩TI and
will be of use later, corresponding to different internal frame perspectives. The translation
invariant inner product, normalizing these states, reads

(ψTI, ϕTI)TI := kin ⟨ψ| δ( ⃗̂P ) |ϕ⟩kin , (33)

where ⟨·|·⟩ denotes the inner product of Hkin. Based on these structures, one can Cauchy
complete the space of solutions of (26a) to a Hilbert space HTI.

The conjugate Dirac observables (in perspective-neutral form) (7) are, in particular,
translation invariant. We can thus represent them already on HTI. We choose a symmetric
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factor ordering:

ρ̂BA = ln
√
q⃗ 2

BÂ, p̂ρBA = 1
2(⃗̂pB · ⃗̂qBA + ⃗̂qBA · ⃗̂pB) ,

ρ̂CA = ln
√
q⃗ 2

CÂ, p̂ρCA = 1
2(⃗̂pC · ⃗̂qCA + ⃗̂qCA · ⃗̂pC) ,

û = −|q⃗BA × q⃗CA|−1̂ · ⃗̂qBA · ⃗̂qCA = −ĉot γ , (34)

p̂u = 1
2
(
(−û (1 + u2)−1̂ ⃗̂qCA − (1 + u2)−1/2̂ eρ̂CA−ρ̂BA ˆ⃗qBA) · ⃗̂pC

+ ⃗̂pC · (−û (1 + u2)−1̂ ⃗̂qCA − (1 + u2)−1/2̂ eρ̂CA−ρ̂BA ⃗̂qBA)
)

= 1
2
(
(ŝin γ ̂cos γ ⃗̂qCA − ŝin γ eρ̂CA−ρ̂BA ⃗̂qBA) · ⃗̂pC

+⃗̂pC · (ŝin γ ̂cos γ ⃗̂qCA − ŝin γ eρ̂CA−ρ̂BA ⃗̂qBA)
)
.

Some of these operators have to be understood in terms of spectral decomposition. As
noted above, Hphys is a proper subspace of HTI so that these operators here already de-
fine a representation of the Dirac observables (7) on Hphys too. It is clear that some of
these Dirac observable operators will be unbounded on states with support on total colli-
sions. Since these pathological configurations are a set of measure zero [60], there is still a
chance that these operators may be densely defined and ultimately essentially self-adjoint.
However, we shall not enter into such subtleties here, as our focus is on symmetry reduc-
tion to a quantum frame perspective; our construction will thus be somewhat informal.
We also recall that we have dynamically ruled out total collisions through a potential
that becomes infinitely repulsive there. The quantized translation and rotation invariant
Hamiltonian (27) is an observable on both HTI and Hphys. In particular, on Hphys (which
we do not construct explicitly), this will mean that, starting with finite-energy states that
do not have support on total collisions, will not dynamically produce states that do if
evolved with Ĥtot. On these dynamically accessible states, ρ̂BA, p̂ρBA , ρ̂CA, p̂ρCA and p̂u

will remain bounded and only û will be unbounded for states having support on collinear
configurations.

It must be emphasized that, clearly, one can promote other Dirac observables to self-
adjoint operators on both HTI and Hphys. For example. the ‘basis set’ of Dirac observables
(6) does not feature any pathologies and can be turned into self-adjoint operators, e.g.
through a symmetric factor ordering. Hence, the perspective-neutral quantum theory will
not have any issues per se. The pathologies are purely related to choosing observables
that (i) have a direct interpretation in the specific perspective of A and (ii) are canonically
conjugate (where defined) so that later we can relate them to the reduced quantum theory
on HBC|A. As argued in sec. 2.1, better conjugate observables do not exist in this model
due to the Gribov problem.

3.2.2 Translational reduction

As explained above, instead of directly continuing with the imposition of the rotation
constraints, we firstly include the step of translational reduction to effectively produce a
two-body problem that simplifies solving the (then transformed) constraints. This step
is the quantum analog of gauge fixing to q⃗A = 0 in (9). Clearly, in the quantum theory
we can not gauge fix because imposing the translation constraints (30) directly produces
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translation invariant states.18 In order to remove redundant degrees of freedom and reduce
the quantum theory, we thus have to proceed differently. As shown in [1], this works by
firstly trivializing the constraints and subsequently projecting onto the classical gauge
fixing conditions. Some of the below is a repetition of steps carried out in [1] and so we
shall be brief.

We define the constraint trivialization map, TA,BC : HTI → HTI
A,BC , see fig. 3,

TA,BC =
∏
a

exp
(
i q̂a

A(p̂a
B + p̂a

C)
)
, (35)

which is unitary on Hkin, trivializes the translation generators into the A tensor factor

TA,BC P̂
a T †

A,BC = p̂a
A , (36)

where † is defined with respect to Hkin, and maps translation invariant states to

|ψ⟩TI
A,BC = TA,BC |ψ⟩TI = |p⃗ = 0⟩A ⊗

( ∫
d3p⃗B d3p⃗C ψTI

BC|A(p⃗B, p⃗C) |p⃗B⟩B |p⃗C⟩C

)
. (37)

Hence, the A tensor factor of the state carries no relevant information about the original
state and has become redundant. We can remove it through a Page-Wootters-like [65]
conditioning on the classical gauge-fixing conditions (9),19 producing states in a novel
Hilbert space HTI

BC|A in fig. 3

|ψ⟩TI
BC|A := (2π)3/2

A ⟨q⃗ = 0 |ψ⟩TI
A,BC =

∫
d3p⃗B d3p⃗C ψTI

BC|A(p⃗B, p⃗C) |p⃗B⟩B |p⃗C⟩C . (38)

As shown in [1], this defines an isometry from HTI to HTI
BC|A, where the inner product on

the latter is just the standard one with integration over B and C variables only.
Crucial for us is also how it transforms basic translation invariant operators

TA,BC (⃗̂qi − ⃗̂qA) T †
A,BC = ⃗̂qi , TA,BC

⃗̂pi T †
A,BC = ⃗̂pi , i = B,C , (39)

and the Hamiltonian (27), which becomes20

Ĥtot
A,BC := TA,BC Ĥ

tot T †
A,BC = ⃗̂pB

2 + ⃗̂pC
2 + ⃗̂pB · ⃗̂pC + V (|̂q⃗B|, |̂q⃗C |, ̂|q⃗BC |) . (40)

The Dirac observables (34) simplify under transformation (39); we shall not spell out
their transformed form as it is clear that it amounts to simply dropping the A-label from
all expressions in (34).21 As one can easily check using (36, 39), this translation generator
trivialization map leaves the rotation generators (26b) invariant:

TA,BC R̂
a T †

A,BC = R̂a . (41)

18As a consequence of the uncertainty relations, projecting onto the zero-eigenvectors of the total mo-
mentum leads to a maximal spread in gauge variables conjugate to it and thereby to translation invariance.

19Equivalence of this reduction procedure with the Page-Wootters formalism has been demonstrated in
later work [66,67].

20We have not written the terms which are null on HTI
A,BC .

21In some cases, this has to be justified by considering the operator functions as Taylor series away from
pathological configurations.
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This implies that imposing (29) and applying the trivialization map TA,BC commutes on
HTI such that the square on the lower left of fig. 3 is indeed commutative. Noting the
shape of (37), this leads to the following equivalences

R̂a |ψ⟩TI = 0 ⇔ (R̂a
B + R̂a

C) |ψ⟩TI
A,BC = 0 ⇔ (R̂a

B + R̂a
C) |ψ⟩TI

BC|A = 0 .

Hence, we lose no information by imposing two-body rotational invariance on states in
HTI

BC|A, rather than three-body rotational invariance in HTI, thereby simplifying the task.
Note how this means that we effectively turned the situation into a two-body problem.

Indeed, the use of the constraint trivialization map TA,BC mapped us to a description in
which A’s degrees of freedom have become pure gauge, so that only B and C’s degrees of
freedom are potentially meaningful (although they still include some rotational gauge).
However, the “two bodies” here are not strictly speaking B and C; rather, they correspond
to B and C’s positions relative to A. The intuition is that, as in [1], trivialising the
translational gauge effectively amounts to eliminating one of the particles by moving to
a description in which positions are defined relative to it.

3.2.3 Rotational invariance

We continue with the two-body problem on HTI
BC|A ≃ L2(R3)⊗L2(R3). In order to impose

rotational invariance, it will be more convenient to Fourier transform to configuration
space and to switch to polar coordinates (r, θ, ϕ), so we can use spherical harmonics
Y j,m(θ, φ) to define a basis for L2(R3)

|r; j,m⟩ =
∫

dΩ Y j,m(θ, φ) |r, θ, φ⟩ , (42)

where r = |q⃗ |. Here, |j,m⟩ are the usual simultaneous eigenstates of the angular mo-
mentum operators R̂2 and R̂z. This construction is done more carefully in Appendix
B.

According to the Clebsch-Gordan coefficients for the decomposition of angular mo-
mentum eigenstates, we can then write an arbitrary zero-total-angular-momentum state
in HTI

BC|A as:

|ψ⟩phys
BC|A =

∫
drB drC r2

B r
2
C

∞∑
j=0

ψphys
BC|A(rB, rC ; j) |Φ(rB, rC ; j)⟩ , (43)

where

|Φ(rB, rC ; j)⟩ =
∑

|m|≤j

(−1)j−m

√
2j + 1

|rB; j,−m⟩B |rC ; j,+m⟩C . (44)

Notice that these states lie in a proper subspace of HTI
BC|A, which we will label by Hphys

BC|A
(see fig. 3), given that it now also includes rotational invariance. The transformations
of the Dirac observables (34) alluded to in sec. 3.2.2 (i.e., those in (34) with all A-labels
dropped), are also observables on Hphys

BC|A. From the discussion above it follows that this

Hilbert space is equivalent to Hphys, including the evaluation of the (transformed) Dirac
observables.

3.3 Rotational reduction to A’s perspective
We have implemented translational invariance, a subsequent translational reduction and
rotational invariance. There is therefore still redundancy in the description which we have
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to remove in order to fully construct A’s quantum frame perspective from the perspective-
neutral Dirac quantized theory and to compare the result to the reduced quantum theory
on HBC|A of sec. 3.1, In particular, we now also have to carry out a rotational reduction,

which will be the quantum analog of the classical gauge fixing ϕ⃗ = 0 in (10–12) that
fixes the rotational gauge freedom for generic configurations. Since we cannot directly
gauge fix in the Dirac quantized theory (the system is already translation and rotation
invariant after imposition of the quantum constraints), we have to proceed differently.
As explained through the translational reduction in sec. 3.2.2 (and in [1]), the quantum
analog is (1) trivialize the relevant constraints, and (2) condition on the classical gauge
fixing conditions. We will now show how this works for the rotation generators.

3.3.1 Rotational reduction

We define a rotation generator trivialization map

RB,C = exp
(
i φ̂BR̂

z
C

)
exp

(
i θ̂BR̂

y
C

)
exp

(
i φ̂BR̂

z
C

)
, (45)

where the angular operators θ̂ and φ̂ can be defined in terms of the states |r, θ, φ⟩, see
Appendix B.3. As shown in Appendix C.1, geometrically, this sequence of rotations
of particle C effectively rotates its polar coordinate system until its polar angle θC is
measured relative to the direction of B. Hence, θC will coincide with the relative angle γ
between B and C (essentially the Dirac observable u in (7)), see also figs. 1a and 2. This
procedure is thus reminiscent of the one followed classically. Appendix C.1 also proves
that RB,C maps |ψ⟩phys

BC|A as defined in (43) to

|ψ⟩phys
B,C|A = RB,C |ψ⟩phys

BC|A =
∫

drB drC r2
B r

2
C

∞∑
j=0

(−1)jψphys
BC|A(rB, rC ; j) |rB; 0, 0⟩B |rC ; j, 0⟩C ,

(46)
i.e. to a state of zero total angular momentum in B and zero angular momentum around
z in C, and that this is an isometry from Hphys

BC|A to a new Hilbert subspace Hphys
B,C|A :=

RB,C(Hphys
BC|A) ⊂ HTI

BC|A (see fig. 3). In other words, Hphys
B,C|A is spanned by states of the

form |rB; 0, 0⟩B |rC ; j, 0⟩C .
As can be expected from the shape of (46) and shown in Appendix C.2, RB,C indeed

trivializes the rotation constraints with RB,C ( ⃗̂RB + ⃗̂
RC)2 R−1

B,C being equivalent to

( ⃗̂RB)2 |ψ⟩phys
B,C|A = R̂z

C |ψ⟩phys
B,C|A = 0 . (47)

It is also necessary to check how the Dirac observables (34) transform under RB,C .
To this end, recall that we have carried out a translational reduction in sec. 3.2.2, which
corresponded to simply dropping the A labels from all expressions in (34). In Appendix
C.3, we show that (these transformations are only valid on states without support on
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pathological configurations):22

RB,C ρ̂B R−1
B,C = ρ̂B , RB,C p̂

ρ
B R−1

B,C = p̂ρ
B ,

RB,C ρ̂C R−1
B,C = ρ̂C , RB,C p̂

ρ
C R−1

B,C = p̂ρ
C , (48)

RB,C ûC R−1
B,C = − ̂cot θC ,

RB,C p̂
u
C R−1

B,C = −1
2
(
− ̂cos θC

̂sin θC
⃗̂qC · ⃗̂pC + r̂C

̂sin θC p̂
z
C − ⃗̂pC · ⃗̂qC

̂cos θC
̂sin θC

+p̂z
C r̂C

̂sin θC

)
.

The key point of those transformations is that γ̂ gets mapped to θ̂C :

RB,C γ̂R−1
B,C = θ̂C . (49)

This is in harmony with the above observation that the transformation RB,C has the
property of transforming the description of particle C so that its polar angle now physically
corresponds to the relative angle that it forms with the direction of B. Under these
transformations, the Hamiltonian (40) is mapped to23

Ĥtot
B,C|A := RB,C Ĥ

tot
A,BC R−1

B,C

= e−2ρ̂B p̂ρ
B

2 + e−2ρ̂C p̂ρ
C

2 +
(

(e−2ρ̂B + e−2ρ̂C )(1 + û2
C)2 + e−ρ̂B−ρ̂C ûC(1 + u2

C)
3
2̂

)
p̂u

C
2

− e−ρ̂B−ρ̂C

(√
1 + u2

Ĉ(p̂u
C p̂

ρ
B + p̂u

C p̂
ρ
C) + uc√

1+u2
Ĉ

p̂ρ
B p̂

ρ
C

)
+ 2ie−2ρ̂B p̂ρ

B + 2ie−2ρ̂C p̂ρ
C

− i

(
4(ûC + û3

C)(e−2ρ̂B + e−2ρ̂C ) + 2e−ρ̂B−ρ̂C (1 + 2û2
C)
√

1 + u2
Ĉ

)
p̂u

C

− 9
4(e−2ρ̂B + e−2ρ̂C )(1 + û2

C) − 9
4e

−ρ̂B−ρ̂C ûC

√
1 + u2

Ĉ + V (ρ̂B, ρ̂C , ûC) .
(50)

We now wish to complete the rotational reduction, removing – in analogy to the
translational reduction in sec. 3.2.2 (and in [1]) – any redundant information from our
states (46) and recovering the reduced quantum theory on HBC|A in A perspective from
sec. 3.1. This second step will, again, be achieved by a conditioning on the classical gauge
fixing conditions and a variable change.

To this end, it is convenient to rewrite the states (46) in polar coordinates as follows

|Ψ⟩phys
B,C|A =

∫
drB r2

B dΩB drC r2
CdΩCψ

phys
BC|A(rB, rC , θC) |rB, θB, φB⟩B |rC , θC , φC⟩C ,

(51)

where, using the ingredients of Appendix C.1, we have defined

ψphys
BC|A(rB, rC , θC) :=

∞∑
j=0

(−1)jψphys
BC|A(rB, rC ; j)

√
2j + 1
4π Pj(cos θC) , (52)

22Notice that these observables are, in fact, somewhat better behaved as those in (34) because the
operator θC appearing here is fully defined on all states, thanks to the conditions in Appendix B.3 which
we had not applied similarly to γ appearing in (34).

23We have not written the terms which are null on Hphys
B,C|A. Furthermore, for brevity we have chosen a

factor ordering where the momenta always stand on the right. Despite its appearance, this Hamiltonian
is actually a symmetric operator.

Accepted in Quantum 2023-05-09, click title to verify. Published under CC-BY 4.0. 25



and Pj is the Legendre polynomial of degree j. As a result, we now have a wave function
of the polar coordinates and we see that it depends only on the physically meaningful
rB, rC , θC that also survived the classical gauge fixing (see fig. 2). In contrast, the three
other configuration degrees of freedom θB, φB, φC are pure gauge, and thus the distribu-
tion of any |ψ⟩phys

B,C|A is uniform with respect to each of them; these degrees of freedom
are hence now redundant and we can remove them without loss of information. This is
completely analogous to the translational case in sec. 3.2.2 and we shall now condition on
the classical gauge fixing conditions ϕ⃗ = 0 (in polar coordinates) in (9–11)

|ψ⟩BC|A := ⟨θB = 0, φB = 0, φC = 0 |ψ⟩phys
B,C|A

=
∫

drB r2
B drC r2

C dθC sin θC ψphys
BC|A(rB, rC , θC) |rB⟩ |rC⟩ |θC⟩ , (53)

(where we have made use of the normalization (101) in Appendix B). This is an isometry
because, as one can easily check, phys

BC|A ⟨ϕ|ψ⟩phys
BC|A ≡ BC|A ⟨ϕ|ψ⟩BC|A. However, we recall

that the gauge fixing conditions θB = 0, φB = 0, φC = 0 are not globally valid. While this
is a problem for distributional states with support on pathological configurations, this is
not one for generic Hilbert space states since the troublesome configurations comprise a
set of measure zero.

We shall now show that the resulting symmetry reduced quantum state lies in HBC|A,
i.e. in the Hilbert space corresponding to directly quantizing A’s classical perspective. To
this end, we switch variables (rB, rC , θC) 7→ (ρB, ρC , uC) in line with sec. 3.1, producing

|ψ⟩BC|A =
∫ ∞

−∞
dρB dρC duC e

3ρBe3ρC

( 1
1 + u2

C

) 3
2

× ψphys
BC|A(ρB, ρC , uC) |rB(ρB)⟩ |rC(ρC)⟩ |θC(uC)⟩ . (54)

Due to (101) in Appendix B, we have the normalization

⟨rB|r′
B⟩ = δ(rB − r′

B)
r2

B

, ⟨rC |r′
C⟩ = δ(rC − r′

C)
r2

C

,

⟨θC |θ′
C⟩ = δ(θC − θ′

C)
sin θC

, (55)

which differs from that in (24). Hence, redefining

ψBC|A(ρB, ρC , uC) :=
(
e3ρBe3ρC

( 1
1 + u2

C

) 3
2

) 1
2

ψphys
BC|A(ρB, ρC , uC) , (56)

and

|ρB⟩ |ρC⟩ |uC⟩ :=
(
e3ρBe3ρC

( 1
1 + u2

C

) 3
2

) 1
2

|rB(ρB)⟩ |rC(ρC)⟩ |θC(uC)⟩ , (57)

we recover exactly the shape of the reduced states (24) with correct normalization

|ψ⟩BC|A =
∫ ∞

−∞
dρB dρC duC ψBC|A(ρB, ρC , uC) |ρB⟩ |ρC⟩ |uC⟩ . (58)

This redefinition is not a surprise because the Dirac quantization brought us to a kinemati-
cal Hilbert space with measure dµ =

∏
i d3q⃗i, from which the measure in polar coordinates
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on Hphys
B,C|A is directly inherited, whereas the reduced quantization started with a measure

dµ = dρB dρC duC on HBC|A.
We need to check whether also the basic observables generating the commutator al-

gebra behave correctly. It is clear that the translationally and rotationally reduced Dirac
observables (48) are unaffected by the projection (53). The variable shift (rB, rC , θC) 7→
(ρB, ρC , uC) could have been carried out prior to the projection. However, this shift will
affect the precise representation of these observables. Indeed, the configuration Dirac
observables on Hphys

B,C|A, ρ̂B, ρ̂C and RB,C ûCR̂−1
B,C = − ̂cot θC , will act simply as mul-

tiplication operators both before and after the projection and regardless of the wave
function redefinition (56). They just directly become the observables of the reduced the-
ory. On the other hand, as can be checked, the momentum Dirac observables, p̂ρ

B, p̂
ρ
C

and RB,C p̂
u
C R−1

B,C are represented in terms of derivatives on wave function ψphys
BC|A in (54)

as:24

p̂ρ
B = −i∂ρB − 3

2 i , (59a)

p̂ρ
C = −i∂ρC − 3

2 i , (59b)

RB,C p̂
u
C R−1

B,C = −i∂uC + 3
2 i

uC

1 + u2
C

. (59c)

It is straightforward to prove that, due to the redefinition of the wave function normal-
ization, this is equivalent to the following action on ψBC|A in (58)

(
e3ρBe3ρC

( 1
1 + u2

C

) 3
2

) 1
2

p̂ρ
B

(
e3ρBe3ρC

( 1
1 + u2

C

) 3
2

)− 1
2

= −i∂ρB ,

(
e3ρBe3ρC

( 1
1 + u2

C

) 3
2

) 1
2

p̂ρ
C

(
e3ρBe3ρC

( 1
1 + u2

C

) 3
2

)− 1
2

= −i∂ρC ,

(
e3ρBe3ρC

( 1
1 + u2

C

) 3
2

) 1
2

RB,C p̂
u
C R̂−1

B,C

(
e3ρBe3ρC

( 1
1 + u2

C

) 3
2

)− 1
2

= −i∂uC .

We have thereby proved that our basic Dirac observables (34) ultimately transform cor-
rectly under the various reduction maps to the observables π̂µ of the reduced quantized
theory in A perspective. In particular, given that we have carried out a sequence of
isometries, the expectation values of these observables will be equivalent to those of the
reduced theory in sec. 3.1.

Crucially, notice that the wave function redefinition in (56) takes care of the fact that,
since total collisions and collinearity happen as ρB, ρC → −∞ and uC → ±∞, states
in the reduced theory of sec. 3.1 have a vanishing support there, while the Dirac theory
does admit states with support on such configurations. Indeed, the rescaling factor in
(56) vanishes on approach of such pathological configurations and thus extinguishes any
support physical states might have there.

This completes our reduction procedure in the quantum theory (see fig. 3 for a sum-
mary), the result of which we take as A’s quantum frame perspective.

24This ultimately follows from their representation in terms of Cartesian coordinates q⃗i on Hkin in the
standard measure of sec. 3.2.1 and the subsequent transformations.
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3.3.2 Relation with reduced quantization of A’s classical perspective

Our complete quantum reduction map, Φ′
A : HTI → HBC|A, given by

Φ′
A := ⟨θB = 0, φB = 0, φC = 0| RB,Cδ(R̂a

B + R̂a
C) ⟨χ⃗A = 0| TA,BC (60)

from the translation invariant Hilbert space HTI to what we identify as A’s quantum
frame perspective thus yields the Hilbert space HBC|A and the basic operators of the
reduced quantized theory of sec. 3.1. We recall that this procedure is equivalent to the
quantum symmetry reduction, i.e. the ‘quantum coordinate map’ ΦA : Hphys → HBC|A,

ΦA := ⟨θB = 0, φB = 0, φC = 0| RB,C ⟨χ⃗A = 0| TA,BC (61)

from the perspective-neutral Hilbert space to HBC|A (see fig. 3). We also emphasize that

ΦA will in fact be invertible on its domain in Hphys despite the appearance of conditionings
in its construction. A conditioning such as ⟨χ⃗A = 0| would indeed not be invertible on the
kinematical Hilbert space Hkin as this operation would project away non-trivial and in
general independent information about A. Thanks to the redundancy in the description
of Hphys (in terms of kinematical variables) though, a conditioning such as ⟨χ⃗A = 0| only
removes redundant information from an invariant state. For example, the factor |p⃗A = 0⟩
in (37) carries no more independent information. This operation will thus be invertible for
physical states. The analogous argument holds for the other conditioning in ΦA. Hence,
ΦA will be invertible on its domain and this is crucial for transforming observables from
Hphys to HBC|A which requires a conjugation with this map. We emphasize that ΦA

provides a general method for comparing Dirac with reduced quantization.
At first sight it thus seems as though ΦA just recovered the direct quantization of

A’s classical frame perspective from the perspective-neutral quantum theory on Hphys.
However, this is not the case because composite operators constructed from the elementary
ones in Dirac quantization do not in general map under ΦA to the corresponding composite
operators constructed on HBC|A in reduced quantization. In particular, as we explain
in appendix D, the Hamiltonians of the two quantizations are inequivalent; the total
Hamiltonian Ĥtot in (27), which recall is an observable on Hphys, does not reduce under
ΦA to the Hamiltonian (25) of reduced quantization, i.e. ΦA Ĥtot Φ−1

A ̸= Ĥred
BC|A, where

ΦA Ĥtot Φ−1
A is simply equal to expression (50) with the p̂’s replaced by π̂’s. The difference

between the two only involves configuration variables. Both the dynamics and spectra
will thus differ.

This is in line with previous reports in the literature that the Hamiltonians in Dirac
and reduced quantization are typically inequivalent, e.g. see [45,52,55,56,68–70]. This dis-
crepancy can ultimately be traced back to an ambiguity in the ordering of gauge-invariant
operators in Dirac quantization, arising due to the contribution of the volume of gauge
orbits to the Hilbert space measure [53]. As demonstrated in [53, 68], for systems with
constraints linear in momenta as in our model, one can always modify Dirac quantiza-
tion through factor ordering in such a way that the Hamiltonians will agree. While this
yields a well-defined procedure, it is somewhat artificial from the point of view of Dirac
quantization. We will briefly illustrate this procedure in appendix D and show that it
leads to a Hamiltonian on Hphys that in fact no longer treats all degrees of freedom on
an equal footing, but is special to a frame choice. Hence, in order to ensure equivalence
between Dirac and reduced quantization, one will have to modify Dirac quantization ac-
cording to the reduced theory one is interested in and different frame choices will therefore
lead to inequivalent modifications; the reduced quantizations of different classical frame
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perspectives are unitarily inequivalent. This is untenable in light of intending to con-
struct a notion of quantum frame covariance. Instead, we propose to embrace the general
inequivalence of Dirac and reduced quantization and accept its consequences.

The conclusion we draw from this is that it is generally not equivalent to construct
the quantum frame perspective of A from the perspective-neutral quantum theory, or to
directly quantize A’s classical frame perspective. So which version should one identify as
A’s quantum frame perspective? Our proposal is to give primacy to the more fundamen-
tal perspective-neutral structure in both the classical and quantum theory from which
the internal perspectives are derived. In the context of quantum reference frames, this
means giving Dirac quantization primacy over the reduced quantization method. We
therefore identify the quantum symmetry reduced theory obtained from the perspective-
neutral structure via ΦA as A’s internal quantum frame perspective and not the direct
quantization of A’s classical frame perspective.

Our reasoning for this is as follows: Dirac quantization treats all degrees of freedom,
including whatever we may choose as a reference frame, on an equal footing and in par-
ticular translates the classical redundancy in the description of physics into the quantum
theory. This redundancy is the prerequisite for being able to describe the same physical
situation in many different ways and therefore for establishing a notion of quantum frame
covariance. Such a covariance is a necessity in the presence of many physically equally
good choices of quantum reference frames within a given problem, and in reduced quanti-
zation one generally lacks the linking structure between the quantizations of the different
classical frame perspectives which, as mentioned, are unitarily inequivalent. By contrast,
in Dirac quantization one obtains a perspective-neutral structure by construction which
links the different possible internal frame perspectives in the form of quantum coordinate
transformations, as we shall illustrate in the next section, extending [1]. This is the natu-
ral quantum analog of classical frame changes through coordinate transformations and in
line with quantum reference frame transformations being merely changes of description.
In short, quantum covariance is in our view the reason one should give Dirac quantization
precedence.

This upgrades the arguments for preferring Dirac over reduced quantization usually
found in the literature according to which the former should be considered more general
because in the latter the reference system has already been removed prior to quantiza-
tion such that it can never feature any quantum fluctuations. While it is correct that
the reference frame is absent from reduced quantization, this reasoning is somewhat mis-
leading as in Dirac quantization too the reference frame no longer features independent
quantum fluctuations after its degrees of freedom have been selected as the redundant
ones. This is ultimately the reason why in the quantum symmetry reduced theory the
frame degrees of freedom too are absent just like in reduced quantization. However, what
our framework underlines is that, while the reference system does not feature them in
its own perspective, it can feature independent quantum fluctuations in the perspective
of a different quantum reference frame, while maintaining a link between the different
perspectives through the perspective-neutral Hilbert space. We will illustrate this next.

In summary, although experiments will ultimately have to decide which quantization
method is the appropriate one,25 our conceptual proposal in the context of quantum
reference frames is to retain only the Dirac quantized theory (and the various symmetry
reduced theories obtained from it), while discarding the reduced quantizations as unitarily

25 This requires better understanding measurements in the context of quantum frames, e.g. by building
up on [71].
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inequivalent theories altogether.26

3.4 Transformations between relative states
In this section, we give the transformation of the quantum state when changing from the
perspective of A to the perspective of C, expanding the framework of [1]. It is clear that,
starting from the perspective-neutral theory, we could equally well have chosen to go into
the perspective of system C, and that this can be achieved by following the same steps
explained previously, but swapping all A and C labels. Once in a specific perspective,
we can transform all the way back to the physical Hilbert space Hphys, exploiting the
invertibility of ΦA (cf. sec. 3.3.2), as shown in the following diagram:

Hphys

Hphys
A,BC Hphys

C,AB

Hphys
BC|A Hphys

AB|C

Hphys
B,C|A Hphys

B,A|C

HBC|A HBA|C

TC,AB
T −1

A,BC

C⟨χ=0||p⃗=0⟩A⊗(·)phys
BC|A

ST
A→C

RB,AR−1
B,C

⟨θB ,φB ,φA=0||jA=0;mB=0,mC=0⟩⊗(·)BC|A

SA→C

where (·)BC|A means inserting the input state from HBC|A into the brackets, upon which
the new tensor factor equipping the arrow is appended to the input state. The quantum
reference frame transformation from A’s to C’s perspective thus takes the form of a
quantum coordinate transformation, SA→C : HBC|A → HAB|C ,

SA→C := ΦC ◦ Φ−1
A (62)

which passes through the perspective-neutral Hilbert space Hphys. Note, however, that
in practice we never need to explicitly go back to Hphys, which we also never fully con-
structed. Instead, we can sidestep it, as we now explain.

It is worth stressing that, in order to transform from HBC|A to Hphys
B,C|A, one needs

to tensor by |jA = 0;mB = 0,mC = 0⟩⊗ (·)BC|A = 1
2
√

2π

∫
dΩBdϕC |θB;ϕB;ϕC⟩⊗ (·)BC|A,

which corresponds to averaging over the classical gauge conditions. This operation inverts
the conditioning on the classical gauge fixing conditions, and restores the gauge invariance
of the model.

26 In particular, it is not a problem that the acts of (i) reducing perspective-neutral states via the
instantaneous map (61) (cf. sec. 3.3.1) to ones on HBC|A (the Hilbert space of both reduced quantization
and symmetry reducing the Dirac quantized theory), and (ii) time evolving with either Ĥtot on Hphys

or Hred
BC|A on HBC|A do not commute, as a result of the two Hamiltonians being unitarily inequivalent.

This is just a manifestation of the dynamical inequivalence of Dirac and reduced quantization and we
henceforth only work with the former. Indeed, in our proposal, the correct Hamiltonian on HBC|A is
the quantum symmetry reduced one ΦAĤtotΦ−1

A , and (i) and (ii) do commute when replacing Hred
BC|A

with it. The quantum frame perspectives are thus dynamically consistent with the perspective-neutral
descriptions.
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Informally, the steps from HBC|A to HAB|C can be written as

SA→C = ⟨θB = 0;ϕB = 0;ϕC = 0| RB,CST
A→CR−1

B,A |jA = 0;mB = 0,mC = 0⟩ ⊗ (·)BC|A .
(63)

Here, ST
A→C : Hphys

BC|A → Hphys
AB|C is the three-dimensional analog of the relative state

transformation in the translational case of [1, 2], which provides a shortcut, sidestepping
Hphys, in the above diagram and mapping directly between the Hilbert spaces that have
been reduced with respect to translation invariance only:

ST
A→C := PCA exp(i ⃗̂qC · ⃗̂pB) , (64)

where PCA is now a three-dimensional parity swap:

PCA |p⃗⟩A = |−p⃗⟩C . (65)

Explicitly evaluated on some arbitrary initial state in HBC|A

|ψ⟩BC|A =
∫
drBdrCdθC sin(θC)r2

Br
2
CψBC|A(rB, rC , θC) |rB⟩B |rC⟩C |θC⟩C (66)

this yields |ψ⟩BA|C = SA→C |ψ⟩BC|A, where

|ψ⟩BA|C =
∫
drA drB dθA sin(θA)r2

B r
2
A ψBC|A(dAB, rA, γB|C) |rA⟩A |rB⟩B |θA⟩A , (67)

and where dAB is the distance between A and B and γB|C is the old angle θC , both
expressed in terms of the variables relative to C as

dAB =
√
r2

A + r2
B − 2rArB cos θA, (68)

cos γB|C = rA − rB cos θA√
r2

A + r2
B − 2rArB cos θA

. (69)

This is a result which has to be expected geometrically. It corresponds to replacing the
relative distances between A and B by that between C and B and having now the angle
θA as the one between A and B as seen from C.

It is easy to show that, similarly to what happens in the one-dimensional case explored
in [2] and [1], entanglement and superposition are QRF-dependent features. Here, we
illustrate this operational consequence of the framework on the angular degrees of freedom,
whose treatment is a novel aspect of this work. For the purpose of illustrating this
effect, it is enough to consider, in the initial QRF of A, a (non-normalised) separable
state consisting in a superposition of two angles, and sharply localised in the two radial
components of B and C. For example, assuming θi ̸= 0 and ri ̸= 0, i = 1, 2, so that we
are not dealing with total collisions or collinearity,

|ψ⟩BC|A = r2
1r

2
2 |r1⟩B |r2⟩C

1√
2

(sin θ1 |θ1⟩C + sin θ2 |θ2⟩C) . (70)

From the perspective of C, it is straightforward to show that, via Eq. (67)

|ψ⟩AB|C = r1r
2
2 |r2⟩A

1√
2

(q1 cos θ1 |q1⟩B |ϕ1⟩A + q2 cos θ2 |q2⟩B |ϕ2⟩A) , (71)

Accepted in Quantum 2023-05-09, click title to verify. Published under CC-BY 4.0. 31



where, for i = 1, 2, we have

qi =
√
r2

1 + r2
2 − 2r1r2 cos θi

cosϕi = r2 − r1 cos θi√
r2

1 + r2
2 − 2r1r2 cos θi

.
(72)

From the previous expression, it is clear that entanglement is QRF-dependent, thus gen-
eralising the result of [2] and [1] to the three-dimensional case.

3.5 Remarks on the unitarity of the quantum frame transformations
Let us now come to the important question of whether our quantum frame transformations
in (63) are unitary. We will be somewhat informal in our answer, in line with the previous
discussion, as a rigorous statement would require substantially more efforts that go beyond
the scope of this manuscript. Our answer has two parts, one pertaining to proper Hilbert
space states, the other to distributional states.

For proper Hilbert space elements, the transformation will, informally at least, be
unitary in the sense of being both invertible and an isometry. Firstly, the operator ST

A→C

in (64) is clearly unitary (see also [1, 2]). The more subtle part are the transforma-
tions RB,C and RB,A and the conditioning on the classical gauge fixing condition, such
as ⟨θB = 0;ϕB = 0;ϕC = 0|, which is not globally defined on the classical configuration
space, owing to the mechanical analog of the Gribov problem. However, as noted before,
the pathological configurations – total collisions and collinearity – comprise a set of mea-
sure zero in the gauge invariant configuration space [60]. It follows from appendix C.1
that RB,C is invertible and isometric on its domain and, given that the pathological

configurations are a measure zero set, this should be a dense subspace of Hphys
BC|A such

that it is unitary (similarly with A,C interchanged). The above conditioning, on the
other hand, is well-defined on states of the form |jA = 0;mB = 0,mC = 0⟩ ⊗ |ψ⟩BC|A,

which comprise the Hilbert space Hphys
B,C|A (cf. the expressions in equations (51,52)), where

|jA = 0;mB = 0,mC = 0⟩ = 1
2
√

2π

∫
dΩBdϕC |θB;ϕB;ϕC⟩. As observed in secs. 3.3.1 and

3.3.2, the conditioning is an isometry and invertible, as it only removes redundant infor-
mation; indeed, as discussed above, the inverse operation is given by appending the tensor
factor |jA = 0;mB = 0,mC = 0⟩ ⊗ (·)BC|A. We therefore conclude that, for Hilbert space
elements, the quantum frame transformation SA→C in (63) is unitary. While we have
argued here for three particles, the same will hold for arbitrary N , as the pathological
configurations always constitute a measure zero set in the gauge-invariant configuration
space.

What about distributional states with support on the classically pathological configu-
rations? For those states, the quantum frame transformation SA→C in (63) is not defined,
in particular, because the rotational trivializations RB,C and RB,A are not defined (cf.
appendix C.1). Note, however, that the classical gauge fixing conditions associated with
A’s perspective will fail if and only if the gauge fixing conditions of C’s (and B’s) per-
spective fail; for three particles collinearity and total collision mean the failure of either
internal perspective, see fig. 2. All the valid configurations of A’s perspective can there-
fore be mapped into valid configurations in C’s perspective and vice versa; in this sense
the quantum frame transformations SA→C is invertible for distributional states for three
particles too.

The situation for distributional states will, however, be different in general withN > 3.
In that case, it will generally no longer be true that the gauge associated with one frame’s
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perspective fails if and only if the gauge associated with the second frame’s perspective
fails. The two frames may use non-overlapping subsets of particles to set up there local
orientation relationally. When the particles used by the first frame are collinear or col-
lide, the particles employed by the second frame may be in a generic configuration. In
such a case, the transformation between the first and second frame will only be defined
on those distributional states which correspond to global particle configurations that are
not pathological for both frame perspectives. This means that, in those cases, the quan-
tum reference frame transformation will only be invertible on a subset of distributional
states that are valid in either perspective. The absence of globally valid classical frame
perspectives thus only plays a significant role for distributional states.

4 Conclusions
In this article, we have expanded on the systematic approach to quantum reference frame
transformations started in [1], by applying it to the relational N -body problem in three-
dimensional space with translational and rotational invariance. As discussed in detail,
this model is particularly interesting because it is subject to a mechanical analog of the
Gribov problem in gauge field theories and thereby does not permit globally valid reference
frame perspectives. Since this is a property of generic systems with gauge symmetry, this
example serves as an illustration how our approach can also handle challenges that arise
in generic situations.

In particular, the N -body problem features a number of technical challenges – all of
which are a consequence of the compactness of the rotational gauge orbits –, such as a
constraint surface that is foliated by gauge orbits of different dimension and an absence of
globally valid pairs of canonically conjugate Dirac observables. As a result, our descrip-
tions relative to specific frame perspectives are not valid on all states; in particular, the
invariant observables which we choose to describe the physics relative to specific choices
of frames become unbounded on collisional or collinear configurations (a set of measure
zero). But given the absence of global perspectives, this is inevitable and will appear, in
one form or another, in most interesting systems. These challenges notwithstanding, we
demonstrate how one can use the quantum reduction method, consisting of a constraint
trivialization and a conditioning on the classical gauge fixing conditions, to systematically
construct transformations between different quantum reference frame perspectives in the
three-body problem. In particular, for Hilbert space states, these transformations are
unitary, despite the absence of classically global internal perspective. This is because the
pathological configurations comprise a set of measure zero in the gauge-invariant configu-
ration space. For distributional states, on the other hand, this transformation will not be
invertible in general situations with N > 3. We have also shown that the transformations
lead to a quantum frame dependence of entanglement. This work thereby generalizes the
approach to constructing quantum reference frame transformations of both [1, 2], which
only considered one-dimensional particle models, to a three-dimensional setting including
rotations.

This article also substantiates our conceptual argumentation in [1]. Specifically, it
shows that also in this more general setting, and despite the absence of global relational
perspectives, our interpretation of the classical constraint surface and the Dirac quan-
tized physical Hilbert space as perspective-neutral structures remains valid. Similarly,
our interpretation of (specifically) gauge-fixed reduced phase spaces and quantum sym-
metry reduced Hilbert spaces as the physics seen from a particular frame perspective is
supported by the N -body problem. In particular, our work also sheds novel light on
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the relation between Dirac and reduced quantization from the perspective of quantum
reference frames. As we have seen, quantizing a classical frame perspective is generally
inequivalent to constructing the quantum frame perspective by symmetry reducing the
perspective-neutral structure obtained through Dirac quantization. The general inequiv-
alence of Dirac and reduced quantization [17, 18, 45–56] can be phrased more physically
as ‘frame associated symmetry reduction and quantization don’t commute’. Based on
quantum frame covariance, we have argued that precedence should be given to Dirac
quantization and hence the perspective-neutral structure from which internal frame per-
spectives are derived.

As an outlook, our method is further developed by applying it to quantum cosmological
models in [72,73] to demonstrate how one can also witch temporal reference systems, i.e.
relational clocks, in a quantum theory. This, in fact, also inspires a new perspective on
the ‘wave function of the universe’. As will be exhibited in [74], our frame transformation
method is actually equivalent to that originally developed in [14–16], provided one restricts
to a semiclassical regime within which the latter was constructed. Finally, an extension of
the original quantum reference frame approach of [2] to relativistic systems with internal
spin degrees of freedom is presented in [75] together with an analysis of the operational
consequences of such extended quantum frame transformations.
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A The rotation and translation invariant N -body problem
A.1 The rotation and translation invariant Lagrangian
We shall take the N particles to be of unit mass and the configuration manifold as
Q = R3N . The tangent bundle is therefore TQ ≃ R6N . We define the positions relative
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to the center of mass (which are translation invariant),

qa
0i = qi

a − qi
CM = qi

a − 1
N

 N∑
j=1

qi
a

 , (73)

as well as their derivatives q̇a
0i. We also define the total angular momentum,

L⃗ =
N∑

i=1
q⃗0i × ˙⃗q0i , (74)

and the moment of inertia 3 × 3 matrix,

Mab =
N∑

i=1
|q⃗0i|2δab − qa

0iq
b
0i. (75)

We then define the Lagrangian as27

L = 1
2

N∑
i=1

⃗̇q0i
2 − 1

2 L⃗ ·M−1 · L⃗︸ ︷︷ ︸
Erot

kin

− V
(
{|q⃗i − q⃗j |}N

i,j=1

)

= 1
2

N∑
i=1

⃗̇qi
2 − 1

2N

(
N∑

i=1

⃗̇qi

)2

︸ ︷︷ ︸
Ecm

kin

− 1
2 L⃗ ·M−1 · L⃗︸ ︷︷ ︸

Erot
kin

− V
(
{|q⃗i − q⃗j |}N

i,j=1

)
, (76)

where V is invariant under translations and rotations, and thus depends only on the
absolute distances between the particles. We have subtracted the kinetic energy Ecm

kin
of the center of mass, so that only the motion relative to the latter contributes to the
energy; and the rotational kinetic energy Erot

kin, so that the global state of rotation of the
system does not contribute to the energy. In consequence, this Lagrangian is singular and
features gauge symmetries. It is easy to see that L is invariant under global translations
since q⃗0i is translation invariant,

(qa
i , q̇

a
i ) 7→ (qa

i + fa(t), q̇a
i + ḟa(t)), (77)

where the fa(t) are arbitrary functions of time that do not depend on particle i. In
addition, L is invariant under rotations, that is

(q⃗i, ˙⃗qi) 7→ (R(t) · q⃗i, R(t) · ˙⃗qi + Ṙ(t) · q⃗i), (78)

where R(t) is a rotation matrix dependent on time. Indeed, if we look at infinitesimal
rotations,

(q⃗i, ˙⃗qi) 7→ (q⃗i + ϵ ω⃗(t) × q⃗i, ˙⃗qi + ϵ ω⃗(t) × ˙⃗qi + ϵ ˙⃗ω(t) × q⃗i), (79)

27Of course the definition of this Lagrangian crucially depends on the invertibility of the inertia matrix
M . Interestingly, the subset of the tangent bundle on which M is not invertible is not exactly equivalent
to the subset of the cotangent bundle on which the canonical constraints become dependent. For example,
when all the positions of the particles are aligned but not their momenta, the canonical constraints are
still independent but M is not invertible.
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then we have the transformations

1
2

N∑
i=1

q̇2
i − Ecm

kin → 1
2

N∑
i=1

q̇2
i − Ecm

kin + ϵ ˙⃗ω · L⃗ , (80a)

L⃗ → L⃗+ ϵM · ˙⃗ω + ϵ ω⃗ × L⃗ , (80b)

(
M−1

)ab
→
(
M−1

)ab
− ϵ

(
M−1

)ac
(

N∑
i=1

(ω⃗ × q⃗0i)cqd
0i + qc

0i(ω⃗ × q⃗0i)d

)(
M−1

)db
, (80c)

which, when combined, give L → L.
This symmetry becomes even more explicit in the canonical formulation. Indeed, the

Legendre transformation to (q⃗i, p⃗i) ∈ T ∗Q ≃ R6N is given by

pa
i = ∂L

∂q̇a
i

= q̇a
0i +

(
q⃗0i ×

(
M−1 · L⃗

))a
, (81)

and those momenta can be checked to verify the constraints (1). The Hamiltonian then
obtained is (3); indeed, the easiest way to see this is by applying the Legendre transfor-
mation (81) to (3) to reconstruct the Lagrangian

L̃ =
∑

i

p⃗i · ˙⃗qi −H

=
∑

i

(
˙⃗q0i + q⃗0i × (M−1 · L⃗)

)
· ˙⃗qi − 1

2
∑

i

(
˙⃗q0i + q⃗0i × (M−1 · L⃗)

)2

= 1
2
∑

i

q̇2
i − Ecm

kin − 1
2
(
q⃗0i × (M−1 · L⃗)

)2
.

(82)

Using the formula for the squared norm of a cross product, the last term can be com-
puted to be exactly Erot

kin, thus proving that L̃ = L. Note that this reconstruction of the
Lagrangian does not mean inverting the Legendre transformation (81) which defines a
map from TQ to the constraint surface C ⊂ T ∗Q and which thus is not invertible [41].

A.2 Dependence of constraints on total collisions and collinearity
Here, we show that the six constraints (1) become linearly dependent on total collisions
and when all particles are collinear. Moreover, it will follow that the gauge orbits contain-
ing these pathological configurations are only three- and five-dimensional, respectively.

The simplest (and most extreme) situation is the N particle collision at the origin
q⃗i = p⃗i = 0, i = 1, . . . , N , where the (phase space) gradients of the rotation generators
Ra vanish and only the translation generators P a define independent flows. The origin
does not rotate and this means the gauge orbit in which it lies is only three-dimensional.
Indeed, neither the rotation (1b) nor translation generators (1a) can change p⃗i = 0, ∀ i (see
(4, 5)), and only the translation generators can change the location of the total collision,
however, not the fact that q⃗i = q⃗, ∀ i. For p⃗i = 0 and q⃗i = q⃗, ∀ i, one has dRa = ϵabcqb dP c

and so the gradients of the rotation generators will always be linearly dependent on the
gradients of the translation generators. Such a gauge orbit is then three-dimensional.

Similarly, if the N particles are collinear and the momenta are also aligned with the
axis of collinearity, only two of the three gradients of Ra are linearly independent because
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the rotation around the axis of collinearity acts trivially on the particles. More precisely,
collinearity means that q⃗i − q⃗j = qij v⃗, p⃗i = pi v⃗, i, j = 1, . . . , N , for some v⃗ ∈ R3. On any
such configuration

va dRa = vaϵabcvb 1
N − 1

∑
i,j

qij dpc
i − 1

N − 1
∑

j

vaϵabcqb
j dP c + vaϵabcvc

∑
i

pi dqb
i

= − 1
N − 1

∑
j

vaϵabcqb
j dP c ,

which defines a linear dependence among the six constraints (1). Note that any such
configuration can be mapped to q⃗i = qi v⃗ and p⃗i = pi v⃗, where even v

a dRa = 0, through a
global translation that puts the configuration origin on the axis of collinearity. Since no
other special direction exists for such configurations, this is the only linear dependence
and so two of the three rotation generator gradients are linearly independent. Neither
rotations nor translations can change the collinearity of the particles in both configurations
and momenta and so on every point of such a gauge orbit there will always be just
five independent constraints. This means that the gauge orbits in which such collinear
scenarios reside are only five-dimensional.

Since the translation generators are always independent and it is not possible that
only one rotation generator is independent (it would have to leave two linearly indepen-
dent vectors invariant), there are no other types of lower dimensional orbits. Hence, the
constraint surface is foliated by six-, five- and three-dimensional gauge orbits.

A.3 Independent Dirac observables on generic N particle configurations
There are various ways to convince oneself geometrically that only 3N − 6 of the

(N
2
)

relative distances |q⃗i − q⃗j | are independent. Our entire discussion below is for generic
configurations, i.e. away from pathologies such as total collision or collinearity of all
N particles. For example, for N = 3, the particles form a triangle and all three relative
distances are independent. Owing to the gauge symmetry, the orientation and localization
of this triangle in Newtonian background space is unphysical. Now add a fourth particle;
evidently, this particle requires three additional relative distances to be fully localized in
relation to the other three particles in the triangle. The physically relevant configurational
information of the four particles is thus now contained in the edge lengths of a tetrahedron
and again all

(4
2
)

= 6 relative distances are independent. Redundancy now comes in if one
adds a fifth particle: in order to fully localize it with respect to the other four, only the
relative distances to three of the four particles, forming a triangle, are required, see fig.
1. The fifth particle forms another tetrahedron with the three particles relative to which
it has been localized. The relational information in the configurations is thus stored in
two tetrahedra that are glued together along a common triangle. There are thus nine
independent edge lengths and the tenth relative distance (the one between the fifth and
fourth particle) is automatically determined from the others, no matter how the glued
tetrahedra are embedded in the ambient three-dimensional Newtonian background space.
This construction generalizes to an arbitrary number N of particles: for each further
particle, only three independent relative distances are needed to fully localize it relative
to the previous ones and all other relative distances between it and the rest are redundant.
The independent relational information in the configurations can thus be encoded in a
3D triangulation with N vertices in Euclidean space and this triangulation has 3N − 6
edges. There are thus 3N −6 independent absolute relative distances for N ≥ 3 particles.
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Likewise, it is not hard to see that indeed only 3N − 6 of the N(N+1)
2 momentum

Dirac observables p⃗i · p⃗j are independent. Thanks to (1a), there are (at most) two linearly
independent momenta for N = 3 and their three inner products are independent. For
N = 4, one has (at most) three linearly independent momenta, thus forming a basis,
and their six inner products again are independent. Now for any additional particle k:
the three inner products of its momentum vector p⃗k with the three basis vectors are
independent and clearly determine the inner product of p⃗k with any other momentum
vector. Hence, there are 3N − 6 independent Dirac observables among the p⃗i · p⃗j .

A.4 Absence of global canonically conjugate Dirac observables
Recall from sec. 2.1 that any Dirac observable is a function of the basic gauge invariant
combinations

fijkl := (q⃗i − q⃗j) · (q⃗k − q⃗l), gijk := (q⃗i − q⃗j) · p⃗k , hij := p⃗i · p⃗j . (83)

It follows from Appendix A.3 that, on generic configurations, there will be 3N − 6 inde-
pendent configuration and 3N − 6 momentum Dirac observables among this set. There
cannot be more independent ones because the phase space is 6N -dimensional and, on
generic points of C, all six first class constraints (1) are independent, i.e. their gradients
are linearly independent and tangential to C.

To analyze what happens for N particle collisions and collinearity, we need to be
more precise. (In)dependence of phase space functions is defined in terms of linear
(in)dependence of their phase space gradients. Clearly, at the origin of phase space,
q⃗i = p⃗i = 0, ∀ i, which is contained in C and lies on a three-dimensional gauge or-
bit (see Appendix A.2), all gradients of the basic Dirac observables above vanish, i.e.
dfijkl = dgijk = dhij = 0. In this sense, there are no independent Dirac observables
among the set (83) at the origin; the phase space flows they generate (and which are
always tangential to C) vanish at this point on C. This will already be enough to argue
that there can be no global canonically conjugate Dirac observables on C.

Nevertheless, it is also interesting to firstly consider what happens when all N particles
are collinear and also their momenta are aligned along this axis, i.e. q⃗i−q⃗j = qij v⃗, p⃗i = pi v⃗,
∀ i, j, and some v⃗ ∈ R3. We noted in Appendix A.2 that such configurations reside in
five-dimensional gauge orbits. The differentials of the basic Dirac observables (83) read
on such configurations

dfijkl = qij v⃗ · (dq⃗k − dq⃗l) + qkl v⃗ · (dq⃗i − dq⃗j) ,
dgijk = pi v⃗ · (dq⃗i − dq⃗j) + qij v⃗ · dp⃗k , (84)
dhij = pi v⃗ · dp⃗j + pj v⃗ · dp⃗i .

Hence, the only differentials appearing in these equations are v⃗ · (dq⃗i − dq⃗j) and v⃗ · dp⃗i.
Now there are only N − 1 linearly independent differences v⃗ · (dq⃗i − dq⃗j) as v⃗ · dq⃗i − dq⃗j =
v⃗ · (dq⃗k − dq⃗j) − v⃗ · (dq⃗k − dq⃗i). Similarly, we have v⃗ · dP⃗ =

∑
i v⃗ · dp⃗i. Thus, altogether, on

such collinear configurations there will only be 2(N−1)+1 linearly independent gradients
of the observables (83), of which 2(N−1) are non-trivial observables (instead of 6N−12))
and the additional one corresponds to a linear combination of the momentum constraints
v⃗ · dP⃗ . That is, 4N − 10 otherwise independent flows generated by the Dirac observables
(83) vanish for such collinear scenarios.

These observations imply that there can be no global canonically conjugate Dirac
observable pairs, for if there were, their gradients would have to be non-vanishing on
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all of C. In fact, suppose there were a full set of global canonically conjugate Dirac
observables Qα,Πβ, α, β = 1, . . . , 3N − 6. They would define a matrix of their gradients
with rank equal to 6N − 12 everywhere on C, thanks to

{Qα,Πβ} = Ωµν ∂µQ
α ∂ν Πβ !≈ δαβ, (85)

where Ω is an antisymmetric, contravariant tensor whose components in our coordinates
read

Ωµν = {zµ, zν} =
(

0 1

−1 0

)
,

and the zµ, µ = 1, . . . , 6N , label the canonical phase space coordinates qx
1 , q

y
1 , q

z
1 , q

x
2 , . . . ,

px
1 , p

y
1, p

z
1, p

x
2 , . . ., while ∂µ := ∂

∂zµ . Indeed, given that Ωµν is invertible, validity of (85) on
all of C would imply that ∂µQ

α, ∂νΠβ constitute 6N − 12 linearly independent gradients
everywhere on C. But this is in conflict with our observation that all Dirac observables are
functions of fijkl, gijk, hij in (83) and that the latter have identically vanishing gradients at
the origin of phase space, which lies on C, or only 2(N −1) linearly independent gradients
on totally collinear configurations. More precisely, summarizing fijkl, gijk, hij in one label
set OΓ, where Γ runs over as many values as there are functions in (83), we can write
Qα(OΓ),Πβ(OΓ′). Note that these will not be unique functional dependences because the
basic Dirac observables (83) have some obvious dependences among them. However, for
any consistent such choice of functional dependence, one finds, using the chain rule,

{Qα,Πβ} = Ωµν ∂µO
Γ ∂ν O

Γ′
∂ΓQ

α ∂Γ′ Πβ !≈ δαβ , (86)

where ∂Γ := ∂/∂OΓ. Given that Ω is invertible and ∂µO
Γ vanishes at the origin and

defines a matrix of rank equal to 2(N − 1) for total collinearity, the right hand side is
impossible to achieve with non-singular ∂ΓQ

α, ∂Γ Πβ. But if the latter become singular,
then also the gradients ∂µQ

α = ∂µO
Γ ∂ΓQ

α, etc., become ill-defined and so Qα,Πβ,
despite possibly being non-singular as functions (such as, e.g., the relative distances |q⃗i −
q⃗j |), cannot be conjugate on such pathological configurations.

In summary, there are no global canonically conjugate Dirac observable pairs on C and
the same, in fact, immediately implies to Dirac observable pairs with affine conjugation
relations, where, instead of {Qα,Πβ} ≈ δαβ, one would have {Qα,Πβ} ≈ δαβ Qα (no sum
over α). The global absence of either makes reduced quantization a priori challenging as
neither canonical nor affine quantization [59] can be applied without imposing additional
boundary conditions.

A.5 Proof of the three-body gauge-fixing in the 3D case
Let us formally prove that the gauge is indeed totally fixed. One way is to consider the
Poisson-bracket Matrix C of all our constraints and show that it is invertible. Concate-
nating all our constraints in a 12-list (Λα) = (P 1, P 2, P 3, R1, R2, R3, χx, χy, χz, ϕ1, ϕ2, ϕ3),
C is a 12 × 12 antisymmetric matrix defined by Cαβ = {Λα,Λβ}. Computation of C gives
(with all 12 constraints imposed):
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C =



0
−1 0 0
0 −1 0
0 0 −1

0

0 qz
B 0 0
0 −qz

B qz
C

0 0 −qx
C

1 0 0
0 1 0
0 0 1

0

0 −qz
B 0 0

0 qz
B 0

0 −qz
C qx

C

0



. (87)

C is then invertible, with its inverse being:

(C−1) =



0

1 0 0
0 1 0
0 0 1

0

0
− 1

qz
B

0 0
0 1

qz
B

0
0 − qz

C
qz

Bqx
C

1
qx

C

−1 0 0
0 −1 0
0 0 −1

0

0
1

qz
B

0 0
0 − 1

qz
B

qz
C

qz
Bqx

C

0 0 − 1
qx

C

0



. (88)

Note that this matrix is indeed only invertible when also (12) are imposed.
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A.6 Solving constraints for the redundant momenta
Using the constraints (1), we can express the momentum degrees of freedom that we are
getting rid of in terms of the six surviving phase space degrees of freedom:

py
B = 0 ,

px
B = − 1

qz
B

Ry
C = − 1

qz
B

(qz
Cp

x
C − qx

Cp
z
C) ,

py
C = 0 , (89)

px
A = −px

B − px
C = −px

C + 1
qz

B

(qz
Cp

x
C − qx

Cp
z
C) ,

py
A = −py

B − py
C = 0

pz
A = −pz

B − pz
C .

Note that this constitutes a (non-global) constraint abelianization [41].

A.7 Switching internal perspectives classically
Using (89), the canonical embedding map of the reduced phase space in A perspective
into C reads

ιBC|A : PBC|A ↪→ C
(qz

B > 0, pz
B, q

x
C > 0, px

C , q
z
C , p

z
C) 7→ (qz

B > 0, pz
B, q

x
C > 0, px

C , q
z
C , p

z
C , q⃗A = 0, p⃗A = −p⃗B − p⃗C ,

qx
B = qy

B = qy
C = py

B = py
C = 0, px

B = − 1
qz

B

(qz
Cp

x
C − qx

Cp
z
C)
)

and its image is precisely C ∩ GBC|A. Conversely, the projection

πBC|A : C ∩ GBC|A → PBC|A

does precisely the opposite, dropping all redundant information, so that πBC|A ◦ ιBC|A =
IdPBC|A . Clearly, the same structures can be constructed for C perspective.

Let us construct the gauge transformation αA→C , taking us from C ∩ GBC|A to C ∩
GAB|C , where GAB|C is defined by (9–12), in four steps. The flow on C generated by
some constraint C will be denoted by αs

C , where s is the flow parameter. The gauge
transformation of some phase space function F simply drags its argument along the flow
αs

C · F (X) = F (αs
C(X)), where X ∈ C, Written explicitly,

αs
C · F (X) =

∞∑
k=0

sk

k! {F,C}k(X) , (90)

where {F,C}k = {. . . {{F,C}, C}, . . . , C} is the k-nested Poisson bracket of F with C.

1. First, we translate B along z to the origin. Using (4), the corresponding gauge
transformation is easy to evaluate on the canonical variables, starting at some X0 ∈
C

αs1
P z · qz

i (X0) = qz
i (X0) + s1 , (91)

leaving all other variables invariant. Clearly, α
−qz

B(X0)
P z does the job, so we flow with

parameter distance s1 = −qz
B(X0), where qz

B(X0) is the actual value of the relative
distance of B from A before the translation at X0.
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2. Next, we rotate around the y-axis until C lies on the z-axis. The necessary angle is
the one between A and C, as seen from B and can be found from gauge-invariant
quantities by using:

cos ΘAC|B = l2BC + l2AB − l2AC

2lABlBC
, (92)

where l2ij = q⃗ij
2 is the squared distance between particles i and j. Using (5, 90),

this transformation is easy to evaluate on the canonical variables. Writing X1 =
α

−qz
B(X0)

P z (X0), we find

αs2
Ry · qx

i (X1) = cos s2 q
x
i (X1) + sin s2 q

z
i (X1) , (93)

αs2
Ry · px

i (X1) = cos s2 p
x
i (X1) + sin s2 p

z
i (X1) , (94)

αs2
Ry · qz

i (X1) = cos s2 q
z
i (X1) − sin s2 q

x
i (X1) , (95)

αs2
Ry · pz

i (X1) = cos s2 p
z
i (X1) − sin s2 p

x
i (X1) , (96)

leaving all other variables invariant. Evidently, α
−ΘAC|B
Ry achieves the desired trans-

formation.

3. Now that C lies on the z-axis, we translate it to the origin. Writing X2 :=
α

−ΘAC|B
Ry (X1), it is clear that

α
−qz

C(X2)
P z (97)

accomplishes the desired transformation.

4. However, after this sequence of transformations, we will have qx
A < 0 and so we

finally rotate once more by an angle π around the z-axis απ
Rz , so that now qx

A > 0.

In conjunction, jumping from the reference frame of A to the reference frame of C can
be achieved through the sequence of gauge transformations

αA→C := απ
Rz ◦ α−qz

C(X2)
P z ◦ α−ΘAC|B

Ry ◦ α−qz
B(X0)

P z , (98)

which completes the map, depicted in the diagram of sec. 2.3,

SA→C := πAB|C ◦ αA→C ◦ ιBC|A : PBC|A → PAB|C . (99)

Recalling that one has to swap some redundant and non-redundant Dirac observables (in
line with the A,C label exchange), it reads in coordinates:

(qz
B > 0, pz

B, q
x
C > 0, px

C , q
z
C , p

z
C)

7→
(
q′x

A = qz
B q

x
C

rBC
, p′x

A = r2
C − qz

Bq
z
C

rC rBC
(px

B + px
C) − qx

C

rBC
(pz

B + pz
C),

q′z
A = r2

C − qz
Bq

z
C

rBC
, p′z

A = −r2
C − qz

Bq
z
C

rC rBC
(pz

B + pz
C) − qx

C

rBC
(px

B + px
C) ,

q′z
B = rBC , p

′z
B = r2

C − qz
Bq

z
C

rC rBC
pz

B − qx
C

rBC qz
B

(qz
Cp

x
C − qx

Cp
z
C)
)
,

where the primed and unprimed variables are the ones after and before the total transfor-

mation SA→C , respectively, and rC =
√

(qx
C)2 + (qz

C)2 and rBC =
√

(qx
C)2 + (qz

B − qz
C)2.
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B Using spherical coordinates
B.1 Spherical coordinates
In L2(R3), we define spherical-coordinates eigenstates by:

|r, θ, φ⟩ = |x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ⟩ , ∀ r > 0, θ ∈ [0, π], φ ∈ [0, 2π[ .
(100)

We have to remember that those states are normalized slightly differently,

⟨r′, θ′, φ′|r, θ, φ⟩ = 1
r2 sin θ δ(r − r′) δ(θ − θ′) δ(φ− φ′) , (101)

but they define a basis for L2(R3), except for the fact that there are pathological situations
at r = 0 and θ = 0, π. One way to see this situation is that the use of spherical coordinates
corresponds to an isometry between L2(R3) and Hsphe, the subspace of L2(R+×S2) defined
by the following conditions on a wave function g

g(r = 0, θ, φ) = α , (102a)

g(r, θ = 0, φ) = β(r) , (102b)

g(r, θ = π, φ) = γ(r) , (102c)

and where the integration measure is dµ = r2 dΩ = r2 dθ sin θ dφ.
A state |ϕ⟩ associated to the density g in spherical coordinates (verifying conditions

(102)) should be written:

|ϕ⟩ =
∫

dr r2 dΩ g(r, θ, φ) |r, θ, φ⟩ . (103)

In this way one has

⟨ϕ1|ϕ2⟩ =
∫

dr r2 dΩ g1(r, θ, φ)∗g2(r, θ, φ) (104)

and
| ⟨r, θ, φ|ϕ⟩ |2 = |g(r, θ, φ)|2 , (105)

so one sees that g(r, θ, ϕ) can physically be considered as the density of probability that
|ϕ⟩ is measured at the position (r, θ, φ) in spherical coordinates, as should be expected.

B.2 Spherical harmonics states
Let us restrict ourselves for a moment to C∞

L (R3) = C∞(R3) ∩ L2(R3), which is dense in
L2(R3). It is spanned by the:

|r; j,m⟩ =
∫

dΩ Y j,m(θ, φ) |r, θ, φ⟩ , (106)

where the Y j,m are the usual spherical harmonics. Those states are built on the usual
basis |j,m⟩ (where j ≥ 0 and |m| ≤ j) of common eigenstates of R̂z and R̂2.

A state in C∞
L (R3) can then be decomposed as:

|ϕ⟩ =
∫

dr r2
∞∑

j=0

∑
|m|≤j

f(r; j,m) |r; j,m⟩ , (107)
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where the only remaining condition on f , stemming from (102a), is:

f(r = 0; j,m) = α δj,0 δm,0 (108)

As C∞
L (R3) is dense in L2(R3), decomposition (107) (where f verifies (108)) is also

valid for any |ϕ⟩ ∈ L2(R3).

B.3 Spherical coordinates operators
Lastly, let us define operators r̂, θ̂ and φ̂. A natural way to do so would be to define it
on the orthogonal basis defined in (100):

r̂ |r, θ, φ⟩ = r |r, θ, φ⟩ , (109a)

θ̂ |r, θ, φ⟩ = θ |r, θ, φ⟩ , (109b)

φ̂ |r, θ, φ⟩ = φ |r, θ, φ⟩ . (109c)

Yet, θ̂ and φ̂ defined in this way are not well-defined everywhere, as the action of both
of them on states with r = 0, as well as the action of φ̂ on states with θ = 0 and θ = π,
would then map on states which do not verify conditions (102). This is why we will say
that definition (109) is assumed only out of these pathological cases, on which we will
complete it by the convention:

θ̂ |r = 0, θ, φ⟩ = 0 , (110a)

φ̂ |r = 0, θ, φ⟩ = 0 , (110b)

φ̂ |r, θ = 0, φ⟩ = 0 , (110c)

φ̂ |r, θ = π, φ⟩ = 0 . (110d)

It is important to note that the choice of definition (110) will have practical consequences
only when we consider states comprising a Dirac distribution at r = 0, θ = 0, or θ = π;
otherwise they do not matter as they only impact states with a zero measure. Note that
r = 0 will correspond to collisions in our model, which we have ruled out dynamically.

C Rotational reduction in the quantum theory
C.1 The rotation generator trivialization map and its action on states
We had defined the transformation (45)

RB,C = exp
(
i φ̂BR̂

z
C

)
exp

(
i θ̂BR̂

y
C

)
exp

(
i φ̂BR̂

z
C

)
. (111)

It is instructive to understand the construction of RB,C by first having a look at the
following unitary transformation on L2(R3):

R(θ, φ) = exp
(
i φR̂z

)
exp

(
i θR̂y

)
exp

(
i φR̂z

)
(112)

Let us look at its effect on a state |q⃗0⟩ where q⃗0 = (r0 sin θ0 cosφ0, r0 sin θ0 sinφ0, r0 cos θ0).
We know that R̂z and R̂y are the generators of rotations around the z- and y-axes,
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respectively, so:

R(θ, φ) |q⃗0⟩ = exp
(
i φR̂z

)
exp

(
i θR̂y

)
exp

(
i φR̂z

)
|q⃗0⟩

= exp
(
i φR̂z

)
exp

(
i θR̂y

)
|q⃗1⟩

= exp
(
i φR̂z

)
|q⃗2⟩ = |q⃗3⟩ ,

(113)

where (we only give the values of the important coordinates):

q⃗1 = (r0 sin θ0 cos(φ0 − φ), r0 sin θ0 sin(φ0 − φ), r0 cos θ0) (114a)

qz
2 = qz

3 = r0 cos θ0 cos θ + r0 sin θ0 cos(φ0 − φ) sin θ . (114b)

q⃗3 can then itself be rewritten in spherical coordinates as q⃗3 = (r0 sin γ cos η, r0 sin γ sin η, r0 cos γ),
where the new angular coordinates γ ∈ [0, π], η ∈ [0, 2π[ are defined by:

cos(γ(θ, θ0, φ− φ0)) = qz
3/r0 = cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0) , (115a)

sin(η(θ, θ0, φ− φ0)) sin(γ(θ, θ0, φ− φ0)) = qy
3/r0 . (115b)

The geometrical interpretation of (115a) is that γ(θ, θ0, φ− φ0) is the angle between the
directions (θ, φ) and (θ0, φ0), or equivalently the polar coordinate of the direction (θ0, φ0)
if one takes direction (θ, φ) to be the new z-axis; η is not relevant to us.

Going back to RB,C , one can now see that:

RB,C |rB, θB, φB⟩B |rC , θC , φC⟩C = |rB, θB, φB⟩B ⊗ (R(θB, φB) |rC , θC , φC⟩C) (116)
= |rB, θB, φB⟩B ⊗

|rC , γ(θB, θC , φB − φC), η(θB, θC , φB − φC)⟩C ,

so we see that RB,C acts as a rotation on the C-factor of the tensor product, mapping
it to a description in spherical coordinates where the polar angle γ is now relative to the
direction of B. The azimuth angle η after transformation RB,C is not relevant for our
analysis, as we shall see shortly.

Hphys
BC|A is spanned by the states |Φ(rB, rC ; j)⟩ as defined in (43, 44). Let us therefore

determine the action of RB,C on the |Φ(rB, rC ; j)⟩. Using 116, we find:

RB,C |Φ(rB, rC ; j)⟩ = (−1)j
∫

dΩB dΩC

∑
|m|≤j

(−1)m

√
2j + 1

Y j,−m(θB, φB)Y j,m(θC , φC)

|rB, θB, φB⟩B |rC , γ(θB, θC , φB − φC), η(θB, θC , φB − φC)⟩C .

(117)

The Legendre addition theorem states that:

∑
|m|≤j

(−1)m

√
2j + 1

Y j,−m(θB, φB)Y j,m(θC , φC) =
√

2j + 1
4π Pj(cos γ) , (118)

where γ is defined as in (115a) and Pj is the Legendre polynomial of degree j. The change
of variables (θC , φC) → (γ, η) leaves the element of integration invariant and yields:

RB,C |Φ(rB, rC ; j)⟩=(−1)j
∫

dΩBdγ sin γdη 1
2
√
π

√
2j + 1

4π Pj(cos γ) |rB, θB, φB⟩B |rC , γ, η⟩C .

(119)
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One can recognize the spherical harmonics Y 0,0(θB, φB)= 1
2
√

π
and Y j,0(γ, η)=

√
2j+1

4π Pj(cos γ),
and thus finally rewrite:

RB,C |Φ(rB, rC ; j)⟩ = (−1)j |rB; 0, 0⟩B |rC ; j, 0⟩C (120)

Hence, RB,C maps a given |ψ⟩phys
BC|A ∈ Hphys

BC|A as decomposed in (43) to:

|ψ⟩phys
B,C|A := RB,C |ψ⟩phys

BC|A =
∫

drB drC r2
B r

2
C

∞∑
j=0

(−1)jψphys
BC|A(rB, rC ; j) |rB; 0, 0⟩B |rC ; j, 0⟩C .

(121)
Recall that Hphys

BC|A is a proper subspace of HTI
BC|A and so inherits its inner product

from the latter. Now RB,C leaves HTI
BC|A invariant and so just rotates Hphys

BC|A into a

new Hilbert subspace Hphys
B,C|A := RB,C(Hphys

BC|A) ⊂ HTI
BC|A (see fig. 3). It can be easily

checked by direct calculation that RB,C leaves the inner product invariant and so it

defines an isometry from Hphys
BC|A to Hphys

B,C|A. Notice also that it is invertible (away from

the pathological states (110)) with

R−1
B,C = exp

(
− i φ̂BR̂

z
C

)
exp

(
− i θ̂BR̂

y
C

)
exp

(
− i φ̂BR̂

z
C

)
. (122)

C.2 Trivializing the rotation constraints
Let us look at how the constraints (26b), which define Hphys

BC|A as a subspace of HTI
BC|A,

transform under RB,C . We will give the results of the calculations, which were done using
the usual commutation relations between the R̂a and using their representation in polar
coordinates:

R̂x = i(sinφ∂θ + cot θ cosφ∂φ) , (123a)

R̂y = i(− cosφ∂θ + cot θ sinφ∂φ) , (123b)

R̂x = −i∂φ . (123c)

In terms of action on the coefficient function ψphys
B,C|A, the constraints get mapped to:

RB,C (R̂x
B + R̂x

C) R−1
B,Cψ

phys
B,C|A (124a)

= (i sinφB∂θB
+ i cot θB cosφB(∂φB − ∂φC ) − i

cosφB

sin θB
∂φB )ψphys

B,C|A = 0

RB,C (R̂y
B + R̂y

C) R−1
B,Cψ

phys
B,C|A (124b)

= (i cosφB∂θB
+ i cot θB sinφB(∂φB − ∂φC ) − i

sinφB

sin θB
∂φB )ψphys

B,C|A = 0

RB,C (R̂z
B + R̂z

C) R−1
B,Cψ

phys
B,C|A = −i(∂φB − ∂φC )ψphys

B,C|A = 0 (124c)

This can also be written in terms of the R̂s acting on the state |ψ⟩phys
B,C|A:

RB,C (R̂x
B + R̂x

C) R−1
B,C |ψ⟩phys

B,C|A = (sin φ̂B(sin φ̂BR̂
x
B − cos φ̂BR̂

y
B) (125a)

+ cot θ̂B cosφB(R̂z
C − R̂z

B) +
̂cosφB

sin θB
R̂z

B) |ψ⟩phys
B,C|A = 0 .
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RB,C (R̂y
B + R̂y

C) R−1
B,C |ψ⟩phys

B,C|A = (cos φ̂B(sin φ̂BR̂
x
B − cos φ̂BR̂

y
B) (125b)

+ cot θ̂B sinφB(R̂z
C − R̂z

B) +
̂sinφB

sin θB
R̂z

B) |ψ⟩phys
B,C|A = 0 .

RB,C (R̂z
B + R̂z

C) R−1
B,C |ψ⟩phys

B,C|A = (R̂z
C − R̂z

B) |ψ⟩phys
B,C|A = 0 (125c)

Inserting (124c) in (124a) and (124b), and then rotating them by angle φB, one finds that
(124) implies:

∂θB
ψphys

B,C|A = 0 (126a)

∂φBψ
phys
B,C|A = 0 (126b)

∂φCψ
phys
B,C|A = 0 (126c)

which is equivalent to the system of constraints:

R̂x
B |ψ⟩phys

B,C|A = R̂y
B |ψ⟩phys

B,C|A = R̂z
B |ψ⟩phys

B,C|A = R̂z
C |ψ⟩phys

B,C|A = 0 . (127)

This is, of course, exactly what one would expect from the shape of (121). In turn,
it is easy to see that (127) implies (124); thus (127) can indeed be taken as the set of
constraints which defines Hphys

B,C|A as a subset of HTI
BC|A.

C.3 Dirac observables and rotational reduction
Next, we have to check how our Dirac observables, written in (34) equivalently for Hphys

and HTI, transform under RB,C . Since we apply this map to Hphys
BC|A, we have to check

how the translationally reduced Dirac observables transform under RB,C . Recall from
sec. 3.2.2 that the translational reduction of the Dirac observables in (34) amounts to
simply dropping the A labels on all sides.

It will also be convenient to write the operator corresponding to the angle γ between
B and C as seen from A (essentially û in (34)) on Hphys

BC|A as follows:

γ̂ = arccos
(

cos θ̂B cos θ̂C + sin θ̂B sin θ̂C cos(φ̂C − φ̂B)
)

= arccos
( ̂q⃗B · q⃗C

rBrC

) (128)

To compute how the observables transform, one can remember that RB,C acts on the

p̂a
C and q̂a

C as a sequence of rotations (whose ‘parameters’ are the operators θ̂B and φ̂B).
Indeed, if s ∈ {p, q}:

RB,C ŝ
x
C R−1

B,C = cos φ̂B(sin θ̂B ŝ
z
C + cos θ̂B(cos φ̂B ŝ

x
C − sin φ̂B ŝ

y
C))

− sin φ̂B(sin φ̂B ŝ
x
C + cos φ̂B ŝ

y
C)

RB,C ŝ
y
C R−1

B,C = sin φ̂B(sin θ̂B ŝ
z
C + cos θ̂B(cos φ̂B ŝ

x
C − sin φ̂B ŝ

y
C))

+ cos φ̂B(sin φ̂B ŝ
x
C + cos φ̂B ŝ

y
C)

RB,C ŝ
z
C R−1

B,C = cos θ̂B ŝ
z
C − sin θ̂B(cos φ̂B ŝ

x
C − sin φ̂B ŝ

y
C))

The key point of those transformations is that γ̂ in (128), gets mapped to θ̂C :

RB,C γ̂R−1
B,C = θ̂C . (130)
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Moreover, the calculations give that the forms of ρ̂B, ρ̂C , p̂
ρ
B and p̂ρ

C remain invariant
under RB,C ; only ûC and p̂u

C have non trivial transformations (these transformations are
only valid on states without support on pathological configuratoins):

RB,C ûC R−1
B,C = −

√
(qx

C)2+(qy
C)2

qz
Ĉ

= − ̂cot θC

RB,C p̂
u
C R−1

B,C

= −1
2
(

− q̂z
C

√
(qx

C)2 + (qy
C)2̂((qz

C)2 + (qx
C)2 + (qy

C)2)−1̂ ⃗̂qC · ⃗̂pC +
√

(qx
C)2 + (qy

C)2̂ p̂z
C

− ⃗̂pC · ⃗̂qC q̂
z
C

√
(qx

C)2 + (qy
C)2̂((qz

C)2 + (qx
C)2 + (qy

C)2)−1̂ + p̂z
C

√
(qx

C)2 + (qy
C)2̂

)
= −1

2
(

− ̂cos θC
̂sin θC

⃗̂qC · ⃗̂pC + r̂C
̂sin θC p̂

z
C − ⃗̂pC · ⃗̂qC

̂cos θC
̂sin θC + p̂z

C r̂C
̂sin θC

)
.

D Illustration of the Hamiltonian discrepancy between Dirac and re-
duced quantization

It can be computed that the Hamiltonians Ĥred
BC|A and Φ′

A Ĥtot Φ′−1
A , where Φ′

A is given by

(60), respectively obtained through reduced quantization and through Dirac quantization
followed by our quantum reduction method, differ by a term only involving configuration
observables:

Ĥred
BC|A − Φ′

A Ĥtot Φ′−1
A = 1

16(1 + û2
C)

3
2

((
300 (e3ρ̂B−ρ̂C + e3ρ̂C−ρ̂B ) + 567 eρ̂B+ρ̂C

)
ûC(1 + û2

C)

+
(
100 (e2ρ̂B−2ρ̂C + e2ρ̂C−2ρ̂B ) + 267 (e2ρ̂B + e2ρ̂C )

)
(1 + û2

C)
3
2

+ 133 eρ̂B+ρ̂C û3
C + 333 (e2ρ̂B + e2ρ̂C )u2

C(1 + û2
C)

1
2

)

·
(
(e2ρB + e2ρC ) (1 + u2

C) + eρB+ρCuC(1 + u2
C)

1
2
)−2̂

.

(131)

We note that Φ′
A Ĥtot Φ′−1

A is equal to ΦA Ĥtot Φ−1
A , which is the Hamiltonian reduced from

the physical Hilbert space to HBC|A because the lower left diagram in fig. 3 commutes

and Ĥtot takes the same form on HTI as it does on Hphys. However, as argued in the main
body, in practice it is easier to construct Φ′

A. The discrepancy between the Hamiltonians
thus arises relative to standard choices in Dirac quantization.

There are ways to modify Dirac quantization for systems with constraints linear in
momenta, as in the present manuscript, such that it agrees with reduced quantization [53,
68]. While [68] modifies the quantization of gauge degrees of freedom and only constructs
a Hilbert space for gauge invariant degrees of freedom, [53] modifies the quantization of
the gauge-invariant degrees of freedom in Dirac quantization. For example, the method
in [53] constructs the Hamiltonian only on the physical Hilbert space Hphys in such a way
that it is self-adjoint with respect to the measure

√
|hγ|, where h, given in (20) is the

measure on the physical configuration space, and γ is the measure on the gauge orbits.28

28γ is the determinant of γαβ , the induced metric for displacements along gauge orbits, given by γαβ =∑
a
Ka

αK
a
β , where the Kα denote the six constraints (1).
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Applied to our model, it is thus defined not in terms of the momentum operators p̂a
i

on Hkin, but in terms of the momentum operators π̂phys
µ (where µ ∈ {ρBA, ρCA, u}) on

Hphys, which are self-adjoint with respect to the measure
√

|γ h|. The Hamiltonian is then
however given by [53]

Ĥ ′
tot = 1

2 |h|−
1
4 π̂phys

µ |h|
1
2 hµν π̂phys

ν |h|−
1
4 + V (ρ̂BA, ρ̂CA, û) . (132)

Specifically, the Laplace-Beltrami operator is now constructed with respect to the measure√
|h| and no longer with respect to the measure

√
|γh|. Furthermore, the Hamiltonian

is already written with respect to a special choice of gauge invariant degrees of freedom,
here associated with the reference frame choice A. A different reference frame choice,
say C, would yield a different Hamiltonian when written out similarly because it would
be based on different canonical pairs. As is well known through the Groenewold-van-
Hove phenomenon, classical canonical transformations will in general not translate into
unitary transformations in the quantum theory, especially when the variable change is
nonlinear [76].

Applying our quantum reduction procedure to this modified quantization, the effect of
its successive steps will simply be to rotate the physical Hilbert space so as to replace the
labels ρBA, ρCA, u with, respectively, ρB, ρC , uC , and to modify the measure of this space
so that the π̂phys

µ are ultimately mapped to the π̂µ obtained through reduced quantization.

The Hamiltonian (132) will, by construction, be mapped precisely to Ĥred
BC|A as defined in

(25), thus ensuring that the Dirac and reduced quantized theories are equivalent under our
quantum reduction procedure, as far as the dynamics is concerned. For other composite
operators one may similarly have to modify the quantization. While this method is
interesting for understanding the relation between Dirac and reduced quantization, the
modifications in this construction are not particularly natural from the point of view of
the former. Especially the fact that the gauge invariant Hamiltonian (132) does away
with the redundancy inherent in Dirac quantization and is special to a choice of frame is
breaking the strength of Dirac quantization that we exploited in the main body for defining
a notion of quantum frame covariance. In particular, this means that the modification
one has to apply to Dirac quantization in order to obtain equivalence with the reduced
quantization of a classical frame perspective will depend on the choice of that frame
because the different reduced quantizations are unitarily inequivalent. This is in conflict
with quantum frame covariance.

By contrast, in our construction Ĥtot does not face any factor ordering ambiguities
on Hkin, which comes with a standard Lebesgue measure, and neither on Hphys, when
expressed in the individual kinematical particle variables. Most importantly, our construc-
tion admits the redundancy underlying quantum frame covariance and the Hamiltonian
Ĥtot treats all degrees of freedom on an equal footing.
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[39] P. A. Höhn, “Reflections on the information paradigm in quantum and
gravitational physics,” J. Phys. Conf. Ser. 880 no. 1, (2017) 012014,
arXiv:1706.06882 [hep-th].

[40] P. A. Dirac, Lectures on Quantum Mechanics. Yeshiva University Press, 1964.

[41] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems. Princeton
University Press, 1992.

[42] L. Hardy, “Implementation of the Quantum Equivalence Principle,” in Progress and
Visions in Quantum Theory in View of Gravity: Bridging foundations of physics
and mathematics. 3, 2019. arXiv:1903.01289 [quant-ph].

[43] M. Zych, F. Costa, and T. C. Ralph, “Relativity of quantum superpositions,”
arXiv:1809.04999 [quant-ph].

[44] C. Rovelli, “Why Gauge?,” Found. Phys. 44 no. 1, (2014) 91–104,
arXiv:1308.5599 [hep-th].

[45] A. Ashtekar and G. t. Horowitz, “On the canonical approach to quantum gravity,”
Phys. Rev. D26 (1982) 3342–3353.

[46] V. Guillemin and S. Sternberg, “Geometric quantization and multiplicities of group
representations,” Inventiones mathematicae 67 (10, 1982) 515–538.

[47] Y. Tian and W. Zhang, “An analytic proof of the geometric quantization conjecture
of guillemin-sternberg,” Inventiones mathematicae 132 no. 2, (1998) 229–259.

[48] P. Hochs and N. Landsman, “The guillemin–sternberg conjecture for noncompact
groups and spaces,” Journal of K-theory 1 no. 3, (2008) 473–533,
arXiv:math-ph/0512022.

[49] M. J. Gotay, “Constraints, Reduction, and Quantization,” J. Math. Phys. 27 (1986)
2051–2066.
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