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sequencing and bulk RNA
transcriptome sequencing
reveals a heterogeneous immune
landscape and pivotal cell
subpopulations associated with
colorectal cancer prognosis
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Introduction: Colorectal cancer (CRC) is a highly heterogeneous cancer. The

molecular and cellular characteristics differ between the colon and rectal cancer

type due to the differences in their anatomical location and pathological

properties. With the advent of single-cell sequencing, it has become possible

to analyze inter- and intra-tumoral tissue heterogeneities.

Methods: A comprehensive CRC immune atlas, comprising 62,398 immune

cells, was re-structured into 33 immune cell clusters at the single-cell level.

Further, the immune cell lineage heterogeneity of colon, rectal, and

paracancerous tissues was explored. Simultaneously, we characterized the

TAM phenotypes and analyzed the transcriptomic factor regulatory network of

each macrophage subset using SCENIC. In addition, monocle2 was used to

elucidate the B cell developmental trajectory. The crosstalk between immune

cells was explored using CellChat and the patterns of incoming and outgoing

signals within the overall immune cell population were identified. Afterwards, the

bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) were

combined and the relative infi ltration abundance of the identified

subpopulations was analyzed using CIBERSORT. Moreover, cell composition

patterns could be classified into five tumor microenvironment (TME) subtypes by

employing a consistent non-negative matrix algorithm. Finally, the co-

expression and interaction between SPP1+TAMs and Treg cells in the tumor

microenvironment were analyzed by multiplex immunohistochemistry.

Results: In the T cell lineage, we found that CXCL13+T cells were more widely

distributed in colorectal cancer tissues, and the proportion of infiltration was

increased. In addition, Th17 was found accounted for the highest proportion in

CD39+CD101+PD1+T cells. Mover, Ma1-SPP1 showed the characteristics of M2
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phenotypes and displayed an increased proportion in tumor tissues, which may

promote angiogenesis. Plasma cells (PCs) displayed a significantly

heterogeneous distribution in tumor as well as normal tissues. Specifically, the

IgA+ PC population could be shown to be decreased in colorectal tumor tissues

whereas the IgG+ PC one was enriched. In addition, information flow mediated

by SPP1 and CD44, regulate signaling pathways of tumor progression. Among the

five TME subtypes, the TME-1 subtype displayed a markedly reduced proportion

of T-cell infiltration with the highest proportion of macrophages which was

correlated to the worst prognosis. Finally, the co-expression and interaction

between SPP1+TAMs and Treg cells were observed in the CD44 enriched region.

Discussion: The heterogeneity distribution and phenotype of immune cells were

analyzed in colon cancer and rectal cancer at the single-cell level. Further, the

prognostic role of major tumor-infiltrating lymphocytes and TME subtypes in

CRC was evaluated by integrating bulk RNA. These findings provide novel insight

into the immunotherapy of CRC.
KEYWORDS

single cell, immune landscape, colorectal cancer, tumor-associatedmacrophages, Treg,
plasma B cell
Introduction

Colorectal cancer (CRC) is one of the most common malignant

tumors in the digestive system and the third main cause of mortality

related to malignant tumors worldwide (1, 2). CRC often generically

refers to colon cancer and rectal cancer, but in fact, it is a tumor

with high heterogeneity. Of note, the specificity of the proximal

to distal intestinal development creates different microbial

communities and gene and protein expression patterns among

different regions in the intestine during development, resulting in

various physiological functions (3). Consequently, colon and rectal

cancers exhibit differences in pathological features, treatment

regimens, and prognostic outcomes (4–6). Fortunately, the

emergence of single-cell sequencing has enabled the analysis of

inter- and intra-tumor heterogeneity (7, 8). Yet, no study has been

conducted to elucidate the heterogeneity of immune cell

subpopulations in the colon and rectal cancers with single-

cell sequencing.

Breakthroughs in immunotherapy have been achieved in cancer

treatments (9). Nevertheless, immunotherapy is not beneficial for all

tumor patients, as the response to it largely depends on the

characteristics of the tumor microenvironment (TME) (10). The

efficacy of immunotherapy is remarkably affected by the intricate

interaction between cytotoxic T cells and natural killer (NK) cells that

play an important role in immune surveillance, as well as regulatory T

cells (Tregs) and tumor-associated macrophages (TAMs) that

dominate the immunosuppressive microenvironment (11, 12). In

addition, the TME can be reprogrammed by the interconversion of T

cells between the pre-exhausted and exhausted states and

macrophages between the M1 and M2 phenotypes (13, 14).
02
Likewise, the prognosis of tumor patients and their responses to

immunotherapy can be directly affected by the infiltration status

and phenotypic heterogeneity of tumor-infiltrating immune cells,

especially T cells, in solid tumor tissues (15). T cell dysregulation

within tumors is progressive and dynamically process from pre-

exhausted to terminal exhausted, which is considered an important

factor affecting the efficacy of immunotherapy in CRC patients (16).

Early dysfunctional T cells could regain effector function and

reprogrammed into effector T cells through immunotherapy,

which becomes a breakthrough to reverse the exhaustion of T

cells, while late dysfunctional T cells cannot be saved due to their

resistance to therapeutic reprogramming (17). PD1 expression

increases with the progression of T cell exhaustion, in addition to

the co-expression of CD38 and cd101 in late dysfunctional T cells

may reflect fixed dysregulation of CD8+T cells, which indicates an

adverse response to anti-PD1 immunotherapy (18). Whereas the

co-expression of CD39 and CD103 has been suggested to be a

marker of tumor antigen-specific TILs in solid tumors, in some

researches including CRC, CD103+CD39+T cells have been

suggested to be an immune marker to predict patient prognosis

as well as response to ICB therapy (19–21). Therefore, identification

of T cell heterogeneous phenotype could provide an aid for

achieving effective patient stratification in immunotherapy.

Macrophages are highly heterogeneous cells, among which

tumor-associated macrophages (TAMs) are important immune

cells in TME (22). TAMs can promote tumorigenesis and

metastasis and exert immunosuppressive effects through pro-

angiogenesis, starvation of cytotoxic CD8+T cells, and

recruitment of Tregs (23). Furthermore, TAM targeting has

recently emerged as a hot spot in tumor immunotherapy. For
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instance, a prior study validated that CSF1R inhibitors could reduce

TAMs in the TME and promote macrophage repolarization to M1,

thus showing tremendous potential for clinical application (24).

However, the specific heterogeneity of TAMs and the ambiguous

time course of macrophage recruitment and polarization pose

certain obstacles to TAM-targeted therapy (25). As key antigen-

presenting cells (APCs), the two conventional subsets, cDC1 and

cDC2, are responsible for the presentation of tumor-associated

antigens to CD8+ T cells and CD4+ T cells, respectively (26, 27).

Additionally, the two immunosuppressive APCs, plasmacytoid

dendritic cells (pDCs) and novel mature LAMP3+ DCs, exist in

the TME of various solid tumors and have attracted increasing

attention (28–30). B cells, a major component of the TME, are also

emerging as a key player in the anti-tumor immune response,

whose function and distribution are highly dependent on tertiary

lymphoid structures (TLSs) (31). Specifically, germinal center B cell

clones in mature TLSs differentiate into plasma cells (PCs) that can

produce IgG or IgA antibodies against tumor-related antigens (32).

Importantly, B cells and TLSs have recently been demonstrated as

the key to the clinical outcome of immunotherapy in tumor patients

(33–36). Therefore, a deeper understanding of the immune cell

landscape in the colon and rectal cancers and non-cancerous tissues

can lay an essential theoretical foundation for achieving precision in

immunotherapy for these diseases.

The large-scale single-cell CRC transcriptome database, created

by integrating two published single-cell databases (GSE132465 and

GSE146771) and describing an elaborate molecular signature of

immune cells and the heterogeneity of TME in the colon and rectal

cancers, was thoroughly investigated (37, 38). Importantly, our

study also analyzed the crosstalk between immune cells with

CellChat and identified patterns of incoming and outgoing signals

of the overall immune cell population. Finally, we determined five

TME immune cell infiltration patterns in CRC patients, and their

relationships with CRC progression were investigated. Our research

provides new insights into the immune microenvironment of CRC

and provides new potential targets for CRC immunotherapy.
Materials and methods

Single-cell data processing and
quality control

Firstly, 10x Genomics single-cell data were obtained from the

SMC dataset of GSE132465 and the 10x Genomics dataset of

GSE146771. Because CD45+ cells were isolated by fluorescence-

activated cell sorting in advance, the 10x Genomics data of

GSE146771 contained only the data of immune cells. Since only

immune cells in tissues were analyzed in our study, blood cells in

the GSE146771 dataset were removed and immune cells were

extracted from the SMC dataset, followed by the merging of data

from these two datasets using merge function. Then, 27 colon

cancer tissues, 6 rectal cancer tissues, and 18 adjacent tissues were
Frontiers in Immunology 03
grouped according to the anatomical location provided in the

clinical information table of the datasets for subsequent analyses.

The single-cell RNA-sequencing data were created for Seurat

objects with the Seurat package (4.1.0). Low-quality cells with

unique feature counts > 6000 or < 300 or mitochondrial counts >

15%, as well as ribosomes < 3% and erythrocytes < 0.1%, were

filtered, with 62,398cells remained after quality control.
Unsupervised dimensionality reduction

A total of 62,398 immune cells were identified and classified into

four major immune cell clusters (T cells, NK cells, B cells, and

myeloid cells). These subpopulations were re-clustered into immune

cell lineages. Specifically, the original metadata were normalized using

the NormalizeData function, and the FindVariableFeatures function

was used to select 2,000 hypervariable genes. Next, the data were

scaled using the ScaleData function before the PCA dimension

reduction. Next, the harmony function was used to remove the

batch effect from the data. The FindClusters and cluster functions

were used for cell reclustering. The resolution from 0.1 to 1 was used

to obtain better sub-clusters. Potential marker genes were determined

using the FindAllMarkers function and subjected to t-distributed

Stochastic Neighbor Embedding (t-SNE) analyses. Typical marker

genes were used to annotate cell clusters into known cell lineages.
Pseudotime trajectory analysis

Monocle2 (version 2.20.0) was used for pseudotime analyses

to determine the differentiation trajectory of cell development.

After the UMI matrix was read from the Seurat object, the

newCellDataSet function was utilized to create the object. Genes

with mean expression > 0.1 were selected in the trajectory analysis,

followed by dimension reduction with the DDRTree method and

cell sorting with the orderCells function.
SCENIC analysis

SCENIC (1.2.4) was used to analyze the enrichment of key

transcriptomic factors in macrophage clusters. The motif Hg38 was

selected as the SCENIC dataset, and 1500 cells were randomly

selected to construct a co-expressed gene model. Next, the potential

target genes of transcription factors were identified with GENIE3.

DNA-motif enrichment analyses were performed with RcisTarget

(1.14.0) to identify direct binding sites (regulons). The activity of

each regulon in each cell was assessed with AUCell (1.16.0),

followed by the calculation of the area under the receiver

operating characteristic curve (AUC) and the integration of the

expression rank of all genes in the regulon. The RegulonAUC

matrix was imported into Seurat for the cluster analysis and

visualization of single-cell data.
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Cell–cell communication analysis
using CellChat

The intercellular communication between immune cell subsets in

colon and rectal cancers was predicted with the Cellchat package (1.1.3)

based on the analysis of ligand-receptor interactions. With the

normalized Seurat data as the Cellchat object, CellChatDB.human was

selected as the receptor-ligand interaction database. The communication

probabilities were calculated with the computeCommunProb function to

demonstrate cell interactions in terms of both the number and weight of

interactions. The extractEnrichedLR function was utilized to extract all of

the important interacting L-R pairs and related signaling genes of a given

signaling pathway to present cell-cell communication mediated by a

single L-R pair. In addition, global communication patterns and signal

networks were analyzed with the CellChat adopted pattern recognition

method based on non-negative matrix factorization (NMF).
Gene set variation analysis pathway
enrichment analysis

Hallmarks gene sets were downloaded from the Molecular

Signatures Database (MSigdb). Afterwards, GSVA enrichment

analyses were performed for cell subsets with the GSVA package

(version 1.40.1). Additionally, the AverageExpression function was

used to calculate the average gene expression in all cells of each

subpopulation. The R package CluserProfiler (V4.0.5) was used for

the pathway enrichment analysis of specific gene sets, with Adj.p.val

< 0.05 considered significantly enriched pathways. Then, the key

pathways were selected for visualization.
Scoring of macrophage M1 and M2

The score of the macrophage subgroups M1 and M2

phenotypes referred to the average normalized expression of the

characteristic genes related to classically activated M1 macrophages

(SOCS1, NOS2, TNF, CXCL9, CXCL10, CXCL11, CD86, IL1A,

IL1B, IL6, CCL5, IRF5, IRF1, and CCR7) and alternatively activated

M2 macrophages (IL4R, CCL4, CCL18, CCL22, MARCO, VEGFA,

CTSA, CTSB, TGFB1, MMP9, CLEC7A, MSR1, IRF4, CD163,

TGM2, and MRC1).
Distribution and proportion of CD39
+CD101+PD1+T cells in CRC

If the cells conformed to the condition that the gene expression

of CD39, CD101, or PD1 was > 0, they were defined as positive for

the target gene. If the simultaneous expression of two or three target

genes was > 0 at the same time, the cells were defined as double- or

triple-positive. Only cells that simultaneously met the requirement

of the expression of CD39, CD101 or PD1 being 0 were counted as
Frontiers in Immunology 04
triple-negative cells. The proportion of cells meeting these

conditions was counted, and t-SNE was used to visualize the

distribution of cells with different phenotypes.
Cell subtype deconvolution based on bulk
RNA-sequencing data and tumor
microenvironment classification

The gene expression matrix was generated based on single-cell

RNA (scRNA) sequencing (seq) data to characterize cell clusters.

The CIBERSORT deconvolution algorithm was used to assess the

relative infiltration abundance of each cell cluster in the colon

adenocarcinoma (COAD; 480 tumor samples and 41 normal

samples) and rectum adenocarcinoma (READ; 167 tumor

samples and 10 normal samples) cohort from The Cancer

Genome Atlas (TCGA). Then, the difference in the obtained

relative infiltration abundance between tumor and normal tissues

was calculated with the Wilcoxon test. The ConsensusClusterPlus

package (1.58.0) (39) was utilized to determine the optimal K value

and identify the cellular subtypes.
Clinical sample collection

Approved by the Ethics Committee of the General Hospital of

the Northern Theatre Command, PLA, China, we collected 9 tumor

cases and adjacent normal tissues from 9 patients with the

pathological diagnosis of CRC during surgical resection. All

patients were diagnosed with primary colorectal tumors and were

treatment Naïve. They ranged in age from 31 to 67, with a median

age of 58. The clinical characteristics of these patients, including

age, gender, pathological classification and stage, are shown in Table

S1. The tissues were embedded in paraffin and sectioned at 4 m M

for subsequent immunofluorescence assay.
The multiplex immunohistochemistry

We performed multiple immunohistochemical staining

according to the kit manufacturer’ s instruction (Wuhan Powerful

Biotechnology Co., LTD). In brief, after multiple rounds of repeated

antigen repair, incubation of primary antibody, HRP labeling of

secondary antibody and amplification of TSA fluorescence signal, a

paraffin section was marked with multiple target fluorescence

labeling, and finally DAPI was used to re-stain the nucleus.

Spectral imaging was performed with a multi-spectral tissue

imaging system (FI3, Nikon, Japan), followed by Image scanning

and analysis using caseviewer and Image J. The antibodies used in

the experiment were as follows IgA (Abcam, ab124716), IgG

(Abcam, ab109489), CD163 (Abcam, ab182422), CD44 (Abcam,

ab6124), SPP1 (Osteopontin) (Abcam, ab214050), pan Cytokeratin

(Abcam, ab7753), Foxp3 (Abcam, ab215206).
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Statistical analysis

Statistical analysis was performed with R 4.2.3, SPSS v26, and

Prism 8.0. Data with normal distribution were compared by the 2-

tailed Student’s t-test, and data with abnormal distribution were

compared by Wilcoxon’s rank-sum test. The Kruskal-Wallis test, a

nonparametric test, was utilized for comparisons among three or

more independent groups. Survival was analyzed with the Kaplan-

Meier method and log-rank test.
Results

Single-cell profiling of immunogenomic
landscape in the microenvironment of CRC

10x scRNA-seq data were obtained from GSE132465 and

GSE146771 datasets, including 18 adjacent normal samples (10

from GSE132465 and 8 from GSE146771), 27 colon tumor samples

(20 from GSE132465 and 7 from GSE146771), and 6 rectal tumor

samples (3 from GSE132465 and 3 from GSE146771). The clinical

information of all patients is detailed in Table S2. A schematic chat of

the experimental design was showed in Figure 1A. These two datasets

were integrated by removing the batch effect of samples, and the

obtained major cell types were derived from different patients with

low patient specificity. After quality control and filtration, 62,398

immune cells were retained for unsupervised clustering, including

24,698 cells from adjacent normal tissues, 30,579 cells from colon

cancer tissues, and 7,121 cells from rectal cancer tissues. 10 major

immune cell subpopulations, including CD8+ T cells, CD4+ T cells,

NK cells, B cells, plasma cells, cycling cells, macrophages, monocytes,

dendritic cells (DCs), and mast cells, were successfully identified

according to their typical marker genes using the T-distributed

randomly adjacent embedding (t-SNE) dimension reduction

method. Cells stemming from different datasets and tissues were

classified and color-coded. All cellular subgroups were evenly

distributed resulting in no obvious patient- or disease-specific

pattern (Figure 1B). The typical marker genes for each cluster were

visualized using t-SNE plots and the top5 genes were displayed using

the bubble plot (Figures 1C, E). T lymphocytes are the main tumor-

infiltrating immune cells in the TME of CRC however, the proportion

of total T lymphoid lineage cells did not display differences between

tissues. We found that the B lineage had a decreased proportion in

CRC samples compared to normal tissues, conversely, myeloid cells

had a higher proportion in tumor tissues (Figure 1D). Taken together,

we performed an unsupervised re-clustering of major immune cell

subpopulations to comprehensively explore the heterogeneity of the

colorectal cancer microenvironment.
Characterization of the heterogeneity of T
and NK cell subtypes in CRC

After the unsupervised clustering, the obtained 32,879 T cells

were classified into five CD4+ clusters (CD4+ Naïve, CD4+ Tem, Tfh,

Th17, and Treg) and five CD8+ clusters (CD8+ Tem-KLRD1, CD8+
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Tem-GZMK, Trm,MAIT and CD8+ Tex) (Figure 2A). Naïve CD4+ T

cell cluster exhibited the high expression of Naïve T cell marker genes

CCR7, TCF7, and SELL. However, no Naïve CD8+ T cells were

identified. Additionally, a subpopulation of Memory CD4+ T cells

was identified, which was characterized by the expression of ANXA1,

GPR183, and IL7R (Supplementary Figure 1A). No cytotoxic genes

and exhaustion marker genes were found to be highly expressed in

the CD4+ Tem cluster (Figure 2I). According to the phenotypes of

effector molecules, two effector memory CD8+T cells were identified:

CD8+Tem-GZMK with high expression effector molecule GZMK,

and the CD8+ Tem-KLRD1 cluster was characterized by the high

expression of the NK cell inhibitory receptor KLRD1 Meanwhile,

GZMK was almost not expressed in the CD8+ Tem-KLRD1 cluster,

and the effector molecules NKG7, GZMA and IFNG were highly

expressed in both subclusters with higher expression in the

CD8+Tem-GZMK cluster, suggesting a predominance of

cytotoxicity (Supplementary Figure 1C, Figure 2I).

The CD8+ Tex cluster exhibited the high expression of

exhaustion markers including HAVCR2, PDCD1, CTLA4, and

LAG3. The majority of effector molecules such as GNLY, GZMK,

GZMA and NKG7 were also expressed in the CD8+ Tex cluster.

Furthermore, co-expression of CD38/CD101 is a marker of

terminal exhaustion T cells. In this study, CD38 and CD101 were

expressed at higher levels in the CD8+ Tex cluster, suggesting that

the CD8+ Tex cluster was in a state of terminal exhaustion

(Figure 2I). Likewise, the proliferation- and cell cycle-related

genes MKI67, STMN1, and TOP2A were also upregulated in the

CD8+ Tex cluster, indicating that certain CD8+ Tex cells were in a

proliferative state (Figure 2B). In fact, prior studies have confirmed

exhausted CD8+ T cells as the highly proliferating cell population in

the TME at a specific stage (40, 41). In addition, the Treg cluster

characteristically expressed the marker genes FOXP3 and IL2RA

while highly expressed the T cell co-stimulatory factors TNFRSF4,

TNFRSF18, TNFRSF9, CD27, and ICOS, especially TNFRSF9,

which is a known activation marker for antigen-specific Tregs. Of

note, the Treg cluster had higher expression of CTLA4 and TIGIT

than any other exhausted T cell clusters (Figure 2I). Therefore, it

could be concluded that the Treg cluster might play a pivotal role in

the immunosuppression of CRC due to its higher infiltration level

in tumor tissues and lower infiltration level in normal tissues.

A unique class of unconventional mucosal associated invariant

(MAIT) cells with a profile of the marker genes KLRB1 (CD161),

NCR3, RORA, and SLC4A10 and the inhibitory NK cell receptors

KLRG1, KLRB1, and IL4I1 (a tumor-derived tryptophan catabolic

enzyme that promotes tumor invasion) exists in the intestinal

mucosal tissues. Likewise, the MAIT cluster was also noted to

characteristically overexpress CEBPD, a transcription factor

associated with a variety of malignancies (Supplementary

Figure 2C). Intriguingly, the MAIT cluster maintained the activity

of cytotoxic effectors. Meanwhile, PDCD1, CTLA4, HAVCR2, and

LAG3 were differentially expressed, among which LAG3 was the

most significantly expressed, but CD38 and CD101 were not

expressed in this cluster (Figure 2I). Therefore, we speculated that

the MAIT cluster might be a kind of T cell in an exhausted state but

might be in a pre-exhausted state compared with the CD8+

Tex cluster.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1184167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1184167
A CD8+ T cell cluster characterized by high expression of

ITGAE (CD103) and CD69 represented tissue-resident memory T

(Trm) cells, which permanently reside in tissues instead of

returning to the blood circulation and can mediate rapid immune

responses. Trm cells exert an immunosurveillance effect, which has

been implicated in preventing the development of solid tumors. In
Frontiers in Immunology 06
the Trm cluster, the cytotoxic factors GZMA, GZMB, NKG7, and

GNLY were upregulated. Trm cells have been verified to still

maintain the ability to produce cytotoxic molecules and effector

cytokines despite the high expression of the immune checkpoints

HAVCR2, LAG3, and TIGIT in these cells, suggesting that CD103+

Trm is more resistant to exhaustion than circulating T cells. Unlike
B
C

D E

A

FIGURE 1

Landscape of immune cells in the microenvironment of colon cancer, rectal cancer, and adjacent normal tissues at the single-cell transcription level.
(A)Schematic diagram explaining the workflow of the experimental design. (B) t-SNE (t-distributed Stochastic Neighbor Embedding) plot of 62,398
high-quality immune cells showing the major immune cell type clusters in the tumor microenvironment (TME) of colorectal cancer (CRC) and
adjacent normal tissues, color-coded by dataset, tissue types, and patients. (C) t-SNE plots showing the expression levels of representative marker
genes for major immune cell clusters, color-coded by gene expression levels. (D) Stacked bar plots showing the cell fractions of major immune cell
types in colon cancer, rectal cancer, and adjacent normal samples. (E) Bubble plot showing the average expression level of the top 5 marker genes
for the 10 major immune cell clusters.
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CD8+ Tex, Trm cells can restore immune function when re-exposed

to appropriate antigens. Moreover, ENTPD1 (CD39) was higher

expression in the Trm cluster, demonstrating that Trm cells were

reactive tumor-infiltrating lymphocytes (TILs) distinct from

bystander T cells (Figure 2I).
Frontiers in Immunology 07
CD39, CD103, and PD-1 have been independently considered

markers of tumor-reactive CD8+ TILs (20). Co-expression of PD-1,

CD103, and CD39 is crucial for stratifying patients receiving

immunotherapy. It is generally believed that CD39, CD103, and

PD-1 are co-expressed, and triple-positive TILs may be related to
B

C

D

E

F

G

H

I

A

FIGURE 2

Characterization of phenotypes of T cells and NK cells in colon cancer, rectal cancer and adjacent normal tissues. (A) t-SNE plot of a total of 32,879
T cells re-clustered into 10 clusters and 1,898 NK cells re-clustered into 2 clusters using color-coded by cell type. (B) t-SNE projections showing the
expression and distribution of phenotypic marker genres CD39, CD103, and PD1 in T andNK clusters. Each dot represents a cell defined as positive
expression of marker genes. (C) Stacked bar plots displaying the percentages of each cluster from T and NK subpopulations with different CD39,
CD103, and PD1phenotypes. (D) Heatmap showing the expression profile of canonical chemokines and chemokine receptors of T and NK clusters.
(E) Heatmap demonstrating the expression characteristics of special functional genes in two NK subgroups with different phenotypes (F) t-SNE
projections of CXCL13 expression distribution in normal, colon and rectal tissues. (G) Box plot comparing the expression levels of CXCL13 in T
andNK lineage among calculated using Kruskal-Wallis test, ***p< 0.001, ns p > 0.05. (H) Fractions of CXCL13+ cells among T andNK subpopulations
in different tissues from scRNA-seq datasets. (I) Heatmap of the relative expression of function related genes, including naïve, cytotoxic, exhaustion,
co-stimulatory and resident in T andNK cell subsets.
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improved response rates and prognostic outcomes (42, 43).

Nevertheless, our study found that PD1+CD39+CD103+ T cells

were rarely observed in CRC and that these small numbers of triple-

positive cells were mainly distributed in the Th17 and CD8+Tem-

KLRD1 subsets. Similarly, compared with other T cell

subpopulations, Th17 and CD8+ Tem-KLRD1 cells accounted for

a higher proportion of PD1+CD103+ T and CD39+PD1+ T cells, and

CD8+Trm accounted for the highest proportion of CD39+CD103+

T cells (Figures 2B, C). Different phenotypes of Th17 cells,

especially CD39+CD101+PD1+ Th17 cells, may be critical for the

prediction of tumor-reactive TILs; however, such studies are

currently lacking. We also found that PD1 was poorly expressed

in tissue-resident T cells, whereas HAVCR2 was highly expressed

(Figure 2I). Therefore, we speculate that this type of TRM might

respond better to anti-TIM3 treatment.

The 1,898 NK cells were mainly divided into two clusters: the

NK-KLRC1 cluster expressing the inhibitory receptors KLRC

(NKG2A) and KLBR1; the NK-GZMH cluster expressing the

inhibitory receptors KLRD1, as well as cytotoxic molecules

GZMH and PRF1. Meanwhile, the NK-GZMH cluster had a high

level of the exhaustion markers HAVCR2 and LAG3, while the NK-

KLRC1 cluster expressed HAVCR2 and CD38, indicating that both

NK cell clusters were representative of a certain degree of

exhaustion (Figure 2I). Furthermore, CD16 and FGFBP2 (CD14)

were highly expressed in the NK-KLRC1 cluster and, conversely,

poorly expressed in the NK-GZMH cluster (Figure 2E). It is widely

recognized that most NK cells in the blood have the characteristics

of CD16+ FGFBP2+ (CD14+), so it is hypothesized that the NK-

KLRC1 cluster infiltrated in tissues is derived from NK cells in the

blood. Meanwhile, chemokines were identified to show different

expression levels between the two NK clusters, among which XCL1

and XCL2 were the main chemokines expressed in the less cytotoxic

NK-KLRC1 cluster (Figure 2E). Importantly, these two chemokines

are extensively accepted to recruit XCR1+ cross-presenting DCs

into the tumor to cause tumor-driving inflammation, thus changing

a “cold tumor” into a “hot tumor”.

Cluster analysis was performed on the expression patterns of

major chemokines and receptors of T and natural killer (NK) cell

subgroups in the tumor microenvironment of colorectal cancer.

The results indicated that the CD8+Tex subgroup highly expressed

chemokines that promoted angiogenesis and participated in the

migration of inhibitory immune cells, such as CCL15, CXCL1, and

CXCL12. In addition to the well-known chemokine receptor CCR4,

the Treg cell subset also higher expression CCL22, CCL14, CXCL17,

CCR3, and CCR8. Chemokines CCL24, CCL1, and CXC12 were

highly expressed in the NK-GZMH subgroup, while chemokine

CCL26 and chemokine receptors CXCR1 and CXCR2 were highly

expressed in the NK-KLRC1 subgroup. The CD8+Tem GZMK

subgroup highly expressed CXCR3, and the chemokines CXCL19,

CXCL10, and CXCL11 interacted with the immune cells of CXCR3+

to recruit cells with anti-angiogenesis function. The follicular helper

T (Tfh) cell subgroup higher expression chemokines CXCL11,

CXCL13, and CXCR5 (Figure 2D). The CXCL13-CXCR5 axis can

induce tumorigenicity or anti-tumor immune response in the

tumor microenvironment by recruiting multiple lymphocyte

populations. On the one hand, the CXCL13 signal plays a leading
Frontiers in Immunology 08
role in the recruitment of B cells and the formation of tertiary

lymphoid structures, activating the immune response of some

tumors (44); on the other hand, CXCL13 is critical for driving the

occurrence, development, and metastasis of malignant tumor (45).

We analyzed the expression and distribution of CXCL13 in the

tumor microenvironment of CRC (Figure 2F). Compared with that

in normal tissues, the expression of CXCL13 in colon cancer tissues

was significantly increased, but there was no significant difference in

rectal cancer tissues (Figure 2H). The distribution of CXCL13+ T

cells in normal, colon, and rectal cancer tissues had significant

heterogeneity. In normal tissues, CXCL13+ T cells were mainly

distributed in CD4+ Tfh and CD8+ Tex subgroups. However,

CXCL13+ T cells showed a wider distribution in cancer tissues. In

addition to CD4+ Tfh and CD8+ Tex subsets, CXCL13+ T cells also

had a high proportion in Th17 and CD8+ Tem subsets in cancer

tissues (Figure 2G). We speculated that the differential expression of

CXCL13 in different cell subsets may play distinct roles in tumor

progression and immune promotion.
Landscape of the heterogeneity and
diversity of myeloid cell in the TME of CRC

A total of 10,514 macrophages underwent unsupervised re-

clustering into five macrophage clusters (3,748), four monocyte

clusters (4,925), three DC clusters (1,025), mast cell cluster (1,025)

and neutrophils (95) (Figure 3A). The Ma0 subgroup was

characterized by SEPP1 expression, in which the complement

pathway-related genes such as C1QA, C1QB, and C1QC were

prominently expressed and the orphan nuclear receptors (NR4A1,

NR4A2, and NR3A3) that mediate macrophage-induced

inflammation were up-regulated. Furthermore, the abundant

expression of MHC II molecules in this cluster indicated that

SEPP1+ TAM possessed a strong ability of antigen presentation

(Figure 3E). Among the hallmark gene sets for Gene Set Variation

Analysis (GSVA), TGFb and KRAS signaling pathways were found

to be enriched mainly in the Ma0 subgroup (Figure 3F).

The Ma1 cluster characteristically expressed SPP1, as well as

high expression of marco which can promote M2 macrophage

polarization, meanwhile CXCL5, which promotes tumor metastasis,

was also highly expressed in this subpopulation. Likewise,

metallothionein including MT2A, MT1E, and MT1F was

abundantly expressed in this cluster, therefore assuming a crucial

role in the formation, progression, and drug resistance of tumors. In

addition, S100A proteins were also upregulated in the Ma1

subgroup (Figure 3E, Supplementary Figure 2A). Ma1 cells were

involved in angiogenesis, epithelial mesenchymal transformation

and inflammation-related signaling pathways (Figure 3F) Ma2 had

higher APOE expression than other macrophage subtypes

(Figure 3E, Supplementary Figure 2A), which was mainly related

to lipid metabolism and reactive oxygen species (Figure 3F). Ma3

exhibited T cell gene profile with highly expressive of T cell

signature genes, which were associated with interferon-a and

interferon-g response pathways (Supplementary Figure 2A,

Figure 3F). Ma4 was with the characteristic high expression of the

proliferation-related genes KIAA0101, TOP2A and MKI67 and the
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abundant expression of the cell cycle-related genes (CDK1,

CDKN2C, CDKN3, and CDK4) (Figure 3E. The results of GSVA

demonstrated that the cluster was located mainly in DNA repair,

MYC and cell cycle related signaling pathways (Figure 3F).

Macrophage clusters were scored based on the average expression

of M1 and M2-like signature genes. The results showed that Ma0,
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Ma1, and Ma2 tended to be M2-like phenotypes and Ma3 cluster

was inclined to the M1-like phenotypes, while Ma4 had no

significant difference in the two phenotypes (Figure 3C).

Analysis of the proportion of each macrophage subgroup

showed that Ma0 had the largest proportion, and Ma0 was the

dominant macrophage subgroup in both normal and CRC tissues.
B
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FIGURE 3

Identification of the heterogeneity of myeloid cells in colon cancer, rectal cancer, and adjacent normal tissues. (A) t-SNE plot of 10,514 myeloid cells
re-clustered into 15 clusters. (B) Pie chart presenting the proportion of five different phenotypes macrophage in the whole macrophage lineage.
(C) Violin plot comparing the scores of M1 and M2 macrophage clusters by wilcox. test, ***p < 0.001, ns p > 0.05. (D) Pie chart presenting the
proportion of four different dendritic cell (DC) subtypes in the whole DC lineage. (E) Heatmap showing the key differentially expressed genes (DEGs)
of each macrophage cluster. (F) Heatmap showing the enriched pathways from hallmark gene sets in macrophage clusters using gene set variation
analysis (GSVA). (G) Heatmap of the top 30 regulators with the highest area under curve (AUC) scores showing the activity of transcription factors
(TFs) in macrophage clusters using single-cell regulatory network inference and clustering (SCENIC). (H) Protein-protein interaction (PPI) networks
of prominent TF-target genes in 5 macrophage clusters.
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In normal paracancerous tissues, Ma3 was the main macrophage

subgroup, except for Ma0; however, in CRC tissues, Ma1 was the

dominant subgroup, except for Ma0, and Ma3 accounted for the

lowest proportion (Figure 3B). The proportions of macrophage

subgroups in myeloid cells from various tissues were further

analyzed. Compared to normal tissues, colon cancer tissues had a

significantly increased proportion of Ma1 and Ma4 but only a

slightly increased proportion of Ma2. There were no significant

differences in the proportions of Ma0 and Ma3 in the various

tissues. However, there was no significant difference in the

proportion of macrophages in various rectal cancer subtypes

compared to that in colon cancer or normal tissues.

(Supplementary Figure 2I). Therefore, we speculate that Ma1 is a

major tumor-associated macrophage with immunosuppressive

effects in colon cancer.

SCENIC was used to analyze the key transcription factors (TFs)

that may regulate macrophages, followed by identification of the top

30 TFs ranked by the relative activity scores of regulons. The results

showed that two important TAM-related transcription factors,

BHLHE40 and ATF3, were highly expressed at Ma0. BHLHE40

promotes the expression of proinflammatory genes in macrophages

(46), while ATF3 negatively regulates macrophages (47). FOS and

JUN proto-oncogenes were also upregulated in the Ma0 cell subsets.

CREB5 and KLF13, which influence macrophage polarization, were

highly expressed in the Ma1 cluster. The Kruppel-like Factor (KLF)

family is vital for regulating macrophage-mediated inflammation

(48). For example, KLF13 knockdown downregulates the expression

of M1 macrophage-related factors induced by lipopolysaccharides

(49). In addition, ARID3A, a gene involved in the maturation of

macrophages and the promotion of M2 macrophage polarization

(50), was highly expressed in the Ma2 cluster (Figure 3G). A

protein–protein interaction (PPI) network was constructed for

key regulatory transcription factors and core target genes of the

macrophage subgroups. The results showed that the number of

interactions between transcription factors and target genes in Ma0

was the largest and that the target genes were jointly regulated by

multiple TFs (Figure 3H).

Monocytes were further re-clustered into four clusters as per

CD14 and CD16 expression: Mo0 (CD14++CD16-), Mo1 (CD14+

+CD16+), Mo2 (CD14+CD16-), and Mo3 (CD14+CD16+)

(Supplementary Figure 2C). Mo0 stimulated the release of

cytokines and chemokines such as IL6, IL1A, CXCL1, CXCL5,

and CCL20, which can induce monocyte recruitment to tumor. In

addition, high expression of INHBA is thought to promote the

proliferation of colon cancer cells (51). Mo1 had different gene

expression patterns from Mo0, and some chemokines, CXCL9,

CXCL10 and CXCL11, were significantly increased in this

subgroup. In addition, IFN induction genes IFIT2 and IFIT3 are

highly expressed. We also found significant upregulation of IDO1

expression in this subpopulation. Mo2 subgroup expressed

macrophage characteristic genes, such as complement pathway

related genes C1QA, C1QB, C1QC, and lipid metabolism related

genes APOE and APOC1(Supplementary Figure 2D).

Dendritic cells (DCs) were re-clustered into four clusters

according to the characteristic marker genes, including cDC1

(CLEC9A and BATF3), cDC2 (CLEC10A, CD1C, and FCER1A),
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pDC (CLECA4, IL3RA, and LILRA4), and LAMP3+ DC (CCR7 and

LAMP3) (Supplementary Figure 2B). We identified a mature DC

cell, LAMP3 +DC, in CRC, which is believed to play a role in tumor

cell migration in a variety of cancers. LAMP3+DC highly expresses

chemokine CCL19 and its receptor CCR7, which may recruit other

immune cells to migrate to tumor tissues through the CCL19-CCR7

axis. In addition, IDO1 was found to be significantly higher

expression in LAMP3+DC (Supplementary Figure 2G). GSVA

results indicated that the LAMP3+ DC cluster was related to IL2,

IL6, and interferon signaling pathways (Supplementary Figure 2F).

Plasmacytoid dendritic cells (pDCs) comprise a subset of dendritic

cells characterized by the ability to participate in inflammatory

responses and exert immunosuppressive actions. However, we

found that GZMB was abundantly expressed in the pDC

subgroup (Supplementary Figure 2G). Consistently, previous

studiesalso confirmed that pDCs were the main source of GZMB.

The high expression of GZMB in pDCs may be induced by

interleukin. The cytotoxicity function of this derived GZMB is

inferior to its immune regulation. Hence, it does not directly

induce apoptosis of target cells, but the proliferation of T cells

can be inhibited in a GZMB-dependent manner (52, 53). The pDC

cluster correlated to DNA repair, KRAS, mTOR, and CRC signaling

pathways (Supplementary Figure 2F). The proportion of the pDC

subgroup was increased significantly in cancer tissues, while the

proportion of cDC1 in colon cancer DC cells was significantly

reduced (Figure 3D). The analysis of DC proportion in various

tissues showed that the proportion of pDCs in colon cancer and

rectal cancer tissues was increased to a certain extent compared with

that in normal tissues (p < 0.05), while the proportion of cDC1 in

colon cancer tissues was decreased significantly (p < 0.001).

However, there was no significant difference in LAMP3+ DC

proportion among groups (p > 0.05) (Supplementary Figure 2I).
Identification of landscape of B
lymphocytes and developmental trajectory
states of B lineage of CRC

A total of 17,107 B cells were determined and then clustered

with unsupervised clustering into six clusters, Naïve B cell cluster

(6,849), germinal center B cell cluster (671), two plasma cell clusters

IgA+ plasma cell cluster (8,190) and IgG+ plasma cell cluster (1,118),

one memory B cell cluster (131), and one cycling B cell cluster (148)

(Figure 4A). We found that the infiltration of plasma cells (PCs) was

significantly heterogeneous among different tissues. Compared with

normal tissues, the infiltration abundance of IgA+ PCs in CRC

decreased. In contrast, the proportion of IgG+ PC was elevated

significantly in colon cancer tissues compared to normal tissues but

not statistically significant increase in the rectal cancer group

(Supplementary Figure 3A). Meanwhile, analysis of B cell DEGs

among different tissues revealed that IgG-related gene (IGHG1-4)

was highly expressed in colon cancer (Supplementary Figure 3B).

The results of immunofluorescence also verified that IgA was

mainly enriched in the mucosal layer of normal tissue, while IgG

was more abundant in the intermuscular stroma of normal tissue.

The average expression level of IgA in normal tissue was higher
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than that of IgG. On the contrary, in cancer tissues, IgG enrichment

was observed, but not IgA (Figure 4C, D).

In terms of molecular phenotype, PCs and Cycling B were

featured by low expression of CD19 and MS4A1 (CD20). In

additional, PCs showed CD138+CD27+CD38+ phenotype. CD24
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was poorly expressed in the IgA+ PCs, while it expressed in the IgG+

plasma cluster (Supplementary Figure 3C). Cycling B cell cluster

was named according to previous studies (54), which exhibited the

characteristics of both B and T cells and the upregulation of the

effector molecules of T cells including KLRB1, ANXA1, NKG7,
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FIGURE 4

Characterization of the landscape of B lymphocytes and developmental trajectories of B lineage in CRC. (A) t-SNE projections of 17,107 B cells re-
clustered into 6 major clusters. (B) Violin plot of relative expression of key characteristic genes in B lineage clusters. (C) Representative images of
fluorescence staining showing the expression and distribution of IgA and IgG in normal intestinal tissue (left) and CRC tissue (right), respectively. Red
representing IgA, green representing IgG, and blue representing DAPI, scale bar=50mm. (D) Statistical analysis results of immunofluorescence
staining indicating the average expression of IgA decreased in CRC tissues compared with normal intestinal epithelium (left), whereas the average
expression of IgG increased (middle), and the expression of IgG higher than that of IgA in tumor stroma (left). (E) Developmental trajectories of B
lineage inferred using monocle2, each cell subtype marked with a different color. (F) Cell density variation of B cell subtypes during the pseudotime
(top), pseudo-heatmap of the representative DEGs in differentiation branches (left bottom), Gene Ontology (GO) functional enrichment analysis of
DEGs re-clustered into 4 clusters (right bottom). (G) Pseudo-scatter plots showing the expression variation and distribution of some specific genes
during the pseudotime, color-coded by cell types.
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GZMA and IL7R. Furthermore, the memory B cell cluster also

expressed T cell signature genes and effector molecules, with a

similar high expression gene pattern to the cycling B cell cluster.

Interestingly, these two clusters were noticeably different regarding

B cell signature genes. The memory B cell cluster had the high

expression of CD19 and MS4A1 (CD20) and FCER2 (CD23) and

the low expression of CD38, SDC1 (CD138), and IgA (IGHA1 and

IGHA2) and IgM (IGHM) related genes, which was contrary to the

cycling B cell cluster. More importantly, IGHM expression was

significantly higher in the cycling B cell cluster than in other

clusters, indicating that cycling B cells were immature B cell

(Supplementary Figure 3D). Additionally, both the Naïve B and

Germinal Center B cell clusters were characterized by the high

expression of CD19, MS4A1 (CD20), CD24, and CD40 and the low

expression of CD27, and SDC1 (CD138). The germinal center B cell

cluster characteristically expressed the high level of the

proliferation-related genes MKI67 and TOP2A (Figure 4B).

The pseudotime trajectory analysis of B cell clusters was

performed with Monocle2 to elucidate the B cell developmental

trajectory, as well as the distribution of branches and the cell density

of each cluster. Among these clusters, naïve B cells were located at

the beginning of the branch and subsequently differentiated to

memory B cells. Germinal center B cells were distributed

throughout the trajectory and eventually differentiated to IgA+

PCs, IgG+ PCs and Cycling B cells at the end of the trajectory

(Figure 4E). A total of 459 differential genes were yielded through

the pseudotime trajectory analysis and allocated to 4 clusters based

on gene classification with similar patterns. As reflected by the

results of GO enrichment analyses, genes in Cluster 1 were mainly

enriched in the signaling pathways that modulate protein

biosynthesis, genes in Cluster 2 and 3 majorly in the signaling

pathways involved in the immune response process, and genes in

Cluster 4 primarily related to the signaling pathways implicated in

cell cycle processes (Figure 4F). The pseudotime dynamic changes

of key genes during the development of B cells were analyzed. The

results revealed that CD19, MS4A1 and CD24 were mainly

expressed in Naïve B cells at the early stage of development and

gradually decreased with the development of B cells, while CD38

was mainly expressed in PCs at the late stage of development and

increased first and then decreased with time. In addition, CD138

was also expressed in PCs, and its expression gradually increased

with time. Immunoglobulin-related genes were rearranged during B

cell development. IGHD was mainly expressed in the early

development of B cells and gradually disappeared with the

activation of B cells. JCHAIN was distributed throughout the

development of B cells, and its expression gradually increased

with time. It is generally believed that the differentiation from B

cells to PCs undergoes a process of switching from IgM to IgG.

However, we found that IGHM expression rapidly decreased and

disappeared at the early stage of B cell development, and then

gradually increased in the late development of B cells. MHC II

molecules were highly expressed at the early stage of B cell

development and eventually disappeared during the development

of PCs. During the development of B cells, the expression of CCR10

changed from low to high, and the expression of CXCR4 decreased
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gradually. TNFRSF17, a marker of B lymphocyte maturation, was

mainly expressed in mature B cells and PCs, which played a vital

role in B cell maturation and autoimmune response (Figure 4G).
Evaluation of the infiltration
abundance and prognostic value
of the major cell subpopulations

A gene matrix was obtained from the scRNA-seq data to

characterize the 33 immune cells. In addition, the bulk RNA-seq data

from TCGA-COAD and READ cohorts were deconvoluted using

CIBERSORT to calculate the relative abundance of each sample. The

data showed that in the COAD cohort, the infiltration abundance of

CD8+Tex, cDC2, IgG+PC, Ma1, Ma4, Mo1and pDC clusters in tumor

tissues was higher than that in normal tissues. Conversely, higher

infiltration abundance levels of CD4+Tem, CD4+Tfh, CD4+Tn,

CD8+Tem-KLRD1, CD8+Trm, IgA+PCs, Ma3, mast cells, Mo0, Mo3,

and Naïve B were found in normal samples (p < 0.05) (Figure 5A). In the

READ cohort, the Ma3, Ma4, Mo0, neutrophil, NK-KLRC1, and Treg

clusters showed higher infiltration abundance in tumor tissues; however,

the expression levels of CD4+Tfh, CD8+Tex, CD8+Trm, germinal center

B cells, Ma1, Ma2, MAIT, memory B, Mo3, and pDC clusters were

higher in normal tissues than those in tumor tissues (p < 0.05)

(Figure 5B). Next, we investigated the relationship between the

infiltration abundance and overall survival (OS) with CRC. Our

findings indicated that in the COAD cohort, the Ma2-APOE cluster

was associated with a poor prognosis in colon cancer, whereas the cDC1,

CD8+Trm, and CD4+Tn clusters were associated with a good prognosis.

In the READ cohort, IgA+ plasma cell infiltrationmay predict a favorable

prognosis for rectal cancer (Figure 5C)
Identification of five TME subtypes
characterized by immune cells
deconvolution in CRC and their
prognostic significance

We used the CIBERSORT deconvolution algorithm to infer the

composition of 33 of the immune cell subtypes in the bulk RNA

sequence data from the TCGA-COAD and READ cohorts. A total of

623 CRC patients from TCGA cohorts were clustered into five different

TME subtypes (TME 1-5) by consensus clustering method and the

relationship between the different subtypes and clinical characteristics

(including: age, sex, TNM, stage and tissue location) was illustrated by

heatmap (Figures 6A, B). Further, the overall survival of CRC patients

from TCGA cohort was assessed by Kaplan-Meier survival analysis,

which confirmed significant differences in the prognosis of CRC

patients with the five TME subtypes. Notably, the TME-1 subtype

represented a significantly reduced proportion of T-cell infiltration and

the highest proportion of macrophages, which had the worst prognosis

(Figures 6C-E). Although the TME-4 subtype had the highest

proportion of T cell infiltration, it mainly showed CD8+Tex subtype,

lacking infiltration of cytotoxic T cells, and therefore had a poor

prognosis (Figures 6A, C, E, F).
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CellChat analysis of immune cell
communication in CRC

CellChat was used to comprehensively assess immune cell

interactions between colon or rectal cancer tissues and normal
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tissues in terms of the number and weight of cell communications

(Figure 7A, Supplementary Figures 4A, B). In terms of incoming

signals, the interaction number of macrophages increased

significantly, the interaction weight of DC signals was elevated

most substantially, and the interaction number and weight of
B

C

A

FIGURE 5

Relative infiltration abundance and prognostic significance of 33 immune cell subpopulations revealed by CIBERSORT deconvolution algorithm.
(A) Relative infiltration abundance of 33 immune cell subpopulations identified by ScRNA-seq data in 480 colon cancer tissues and 41 adjacent
tissues from the COAD cohort. (B) Relative infiltration abundance of 33 immune cell subpopulations identified by single-cell data in 167 colon
cancer tissues and 10 adjacent tissues from the READ cohort, *p < 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, and ns p > 0.05. (C) Kaplan-Meier
overall survival curves of 460 patients in the TCGA-COAD cohort and 172 patients in the TCGA-READ cohort divided into the high infiltration group
and low infiltration group, *p < 0.05.
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monocytes decreased most significantly in colon cancer tissues

when compared with normal tissues. Regarding outgoing signals,

the number and weight of communication between monocytes and

DCs were prominently increased, whereas the number and weight

of communication between monocytes and neutrophils were most
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significantly reduced (Supplementary Figure 4C). Compared with

those in normal tissues, the number of incoming signals of

macrophages and DCs increased, but the weight of macrophages

decreased and the number and weight of monocytes decreased most

significantly in rectal cancer tissues. For the outgoing signals,
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FIGURE 6

Immune cell characteristics and prognostic significance of TME subtypes in CRC. (A) Heatmap showing unsupervised clustering of 5 TME subtypes
of immune patterns in the TCGA cohort, with the rows representing the 33 immune subpopulations identified by the ScRNA-seq data set, and the
columns representing 647 CRC patients from the TCGA-COAD and READ cohorts; hierarchical clustering according to TME subtype, histological
site, disease stage, tumor-node-metastasis (TNM) stage, and age. (B) Consensus matrix heatmap representing the consensus matrix with k=5 by
consensus clustering; the range of value from 0 to 1 implying the probability in the same cluster with the color scaling from white to dark blue.
(C) Kaplan-Meier overall survival curves of 5 TME subtypes in TCGA-COAD and READ cohorts. (D-F) Violin plot showing the representative immune
cell abundance of 5 TME subtypes, including macrophages (D), T cells (E), and CD8+ Tex cells (F), compared by Kruskal-Wallis test.
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macrophages and DCs both showed increases in interaction

quantity and weight, while monocytes and neutrophils both had

significantly decreased interaction number and weight

(Supplementary Figure 4D). Further, the difference in the

interaction between colon and rectal cancer tissues was analyzed,

the results of which suggested elevated incoming signals from NK

cells but diminished incoming signals from macrophages and

outgoing signals from monocytes in rectal cancer tissues as

compared to colon cancer tissues (Figure 7B). In conclusion, the

interaction between myeloid cells and other cells was significantly

changed in both the comparison between normal tissues and cancer

tissues and the comparison between colon cancer and rectal cancer.

Importantly, CellChat further uncovered the patterns of

incoming and outgoing signals. At the outgoing end of the

signaling pathway, immune cell subsets acted as secretory cells to

send signals principally through four patterns. Specifically, T and

NK cells drove CD99, CD45, and ADGRE5, as well as INF-II and

interleukin signaling pathways, mainly through Pattern 2. The

major B cell subsets cDC1 and pDC mediated CD22, GAS, and

ICOS signaling pathways primarily through Pattern 4. Myeloid cell

clusters drove MHC II, SPP1, BAFF, CXCL, CD86, and PD-L1

signaling pathways through Pattern 1. Additionally, Ma1, Mo0,

Mo3, and neutrophils jointly promoted ICAM, TNF, FN1, and

other pathways through Pattern 3 (Figure 7C). More importantly,

T, B, and myeloid cells were dominated by Pattern 4, Pattern 3, and

Pattern 2, respectively, when immune cell subsets served as the

targeted cells at the incoming end of the signaling pathway. Pattern

1 corresponded to the incoming signals from numerous immune

cells, which were mainly driven by ADGRE5 and SELPLG signaling

pathways (Figure 7D).

All communication probabilities in the information network

were summarized to compare the difference in overall information

flow between colon and rectal cancers. The results unraveled that

CCL5, THBS, SPP1, ICAM, and TNF signaling pathways were more

abundant in colon cancer (red), whereas SELPLG, LIGHT, CSF, and

BAFF signaling pathways were more abundant in rectal cancer

(green) (Figure 7E). The visualization results of heat maps revealed

an elevation in the overall information flow from CD8+ T cell, DC,

and macrophage clusters in both colon and rectal cancer tissues, the

most significant increase in the information flow frommacrophages

in colon cancer tissues, and a dominant increase in the information

flow from CD8+ T cells in rectal cancer tissues (Figure 7F).

As macrophages are key to cell communication in CRC and are

heterogeneous in communication across tissues, the probability of

ligand-receptor communication between macrophages and other

immune cells was further compared between colon and rectal

cancer tissues. The results depicted that macrophages were critical

for regulating cell-cell communication in CRC and that tissue

variation existed in communication patterns. SPP1-CD44 (L-R)

was highly active in the communication between macrophages and

other cells and more active in colon cancer tissues than in rectal

cancer tissues throughout intercellular information interaction as it

mediated the immunosuppression and progression of CRC. Because

the ligandMIF is a chemokine-like inflammatory mediator, its multi-

subunit receptor complexes CD74-CXCR4 and CD74-CD44 can

orchestrate inflammatory pathways. Our findings manifested that
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CD74-CXCR4 and CD74-CD44 were highly activated in the signal

flow from macrophages to B and T lymphocytes (Figure 7G). The

Ma1 subgroup exerted the strongest effect on these receptor-ligand

pairs (Supplementary Figure 4E). Therefore, this result supported our

previous inference that Ma1 was a kind of M2-like TAMs.
Multiplex immunohistochemistry
description the interaction between
SPP1+TAM and Treg in the TME of CRC

To validate the cell communication results based on Cellchat

analysis, mIHC technology was used to verify the cell population

interactions mediated by the high active L-R interaction. The

previous prediction of L-R interactions found that SPP1-CD44

interation revealed strong effects on the interaction between

macrophages and Treg subgroups (Supplementary Figure 4E), so

we analyzed the co-localization of SPP1+TAM and Treg in the TME

of CRC. Consistent with our prediction, the prevalence of

SPP1+TAMs co-localizing with Foxp3+Tregs and the proximity of

their spatial locations within the CD44 enriched regions, led us to

hypothesize that the crosstalk between SPP1+TAMs and

Foxp3+Tregs increases the immunosuppressive effect, which is

most l ikely mediated by SPP1-CD44 (Figures 8A-D,

Supplementary Figures 5A, B).
Discussion

The inter- and intratumoral heterogeneities of immune cell tumors

directly affect the prognosis of patients and their response to

immunotherapy. In this study, two CRC 10xGenomics scRNA-seq

datasets were integrated, including 33 patients and 6,2398 immune cells

re-clustered into 33 immune cell clusters, to characterize the immune

cell landscape of CRC and comprehensively analyze the phenotypic

and molecular differences and intercellular communication between

immune cells in CRC at single-cell resolution. In addition, the

heterogeneity of colon cancer, rectal cancer, and normal adjacent

tissues in the immune microenvironment and their differences in

cell-interaction patterns were compared. Furthermore, we combined

bulk RNA-seq data from TCGA cohorts to evaluate the prognostic

value of these pivotal immune cell subpopulations. In addition,

according to the characteristics of immune infiltration, patients

with CRC were divided into five TME subtypes with different

prognostic characteristics.

TAMs are the most important myeloid cells in the

immunosuppressive microenvironment of tumors (38, 55). In the

present study, the diversity and complexity of myeloid cells were

investigated. Five macrophage phenotypes and four different

subtypes of DCs were identified. More importantly, we observed a

heterogeneous distribution of myeloid cells in CRC and normal

adjacent tissues. We found an important Ma1-SPP1 macrophage

that exhibited M2-like phenotypes, which potentially promoted

angiogenesis and increased infiltration abundance in tumor

tissues. Therefore, we speculate that Ma1-SPP1 may be an

important TAM. Interestingly, however, when we compared the
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FIGURE 7

CellChat analysis of the crosstalk between immune cells in colon cancer or rectal cancer. (A) Comparisons of overall changes in cell-cell
communication between rectal cancer and colon cancer, including the differential number of interactions (left) and differential interaction strength
(right) between immune cells of rectal cancer compared with colon cancer, with the blue line representing reduced communication in rectal cancer
compared to colon cancer, while the red line representing increased communication in rectal cancer compared to colon cancer. (B) Heatmaps
showing the interaction number (left) and interaction strength (right) between colon cancer and rectal cancer, with the top color bar representing
the sum of the column values displayed in incoming signals and the right color bar representing the sum of outgoing signals, red or blue indicating
increased or decreased signal of colon cancer compared with normal control. (C) Outgoing signal pattern of immune cells acting as secretory cells,
and the pattern corresponding to signaling pathways. (D) Incoming signal pattern of immune cells acting as target cells, and the pattern
corresponding to signaling pathways; the thickness of the flow indicating the contribution to each pattern. (E) Differences in the overall signaling
pathway between colon cancer and rectal cancer, with the ranking indicating the importance of the pathways; red indicating the signaling pathways
enriched in colon cancer, green representing the signaling pathways enriched in rectal cancer, and black representing no difference in signaling
pathway enrichment in colon cancer and rectal cancer. (F) Heatmaps of the overall signaling pathway of each immune cell subpopulation mediated
by individual signaling pathway in colon cancer (left) and rectal cancer (right). (G) Communication probabilities of important ligand-receptor pairs
from macrophages to individual immune cells in colon and rectal cancers, with the dot color reflecting the communication probability, blank
indicating the communication probability zero, and dot size representing the p value.
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inter-tissue heterogeneity based on our analysis of the single-cell

dataset, the proportion of Ma1-SPP1 macrophages in colon cancer

tissue was higher than that in normal tissue, whereas the increase in

rectal cancer was not statistically significant. In addition, we did not

observe significant differences in the abundance of infiltrating

macrophage subsets between colon and rectal cancers.

Importantly, we found that myeloid cells play an important role

in cell–cell communication. In different pathological tissues,
Frontiers in Immunology 17
myeloid cells show differences in the strength of their interaction

and signaling pathways with other cells. This difference may have a

more significant impact on the tumor microenvironment than on

the abundance of infiltration. Specifically, the interaction of

macrophages with DCs and other immune clusters increased in

CRC tissues, whereas monocyte communication decreased.

Compared to colon cancer, the communication signals of

macrophages and monocytes are decreased in the TME of
B

C D

A

FIGURE 8

Multiplex immunofluorescence showing the interaction between SPP1+TAM and Foxp3+Treg in the TME of CRC. (A, B) Multiplex immunofluorescence
images demonstrating the localization of different cell populations in CRC, using typical marker genes including Panck (white), CD44 (cyan), CD163 (yellow),
SPP1(red), Foxp3 (green), DAPI (blue), scale bar=50µm; (C) Representative images of SPP1-CD44 mediated co-localization of cell populations in CRC
patients, scale bar=20µm; (D) Representative images of interaction of SPP1+TAM and Foxp3+Treg cells in the CD44 enriched regions, scale bar=20µm.
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patients with rectal cancer. Among these, the SPP1 signaling

pathway, a characteristic gene of the Ma1 subgroup, is highly

active in colon cancer, whereas the SELPLG and LIGHT signaling

pathways are highly active in rectal cancer. Interestingly, we

observed a high probability of SPP1-CD44 mediated information

flow in the cell–cell communication between Ma1 macrophages and

Tregs. We hypothesized that SPP1-CD44 information flow

mediates intercellular crosstalk between TAMs and Tregs, which

enhances the immunosuppressive microenvironment of CRC.

Furthermore, through mIHC, we confirmed the spatial co-

localization of SPP1+TAMs and Tregs, and this cell–cell

interaction was more prominent in CD44 enriched areas.

Although we were able to identify SPP1 as a ligand of TAMs that

interacts with CD44 high-expressing cells, we could not confirm

whether CD44 was directly involved in intercellular crosstalk as a

receptor for Tregs or whether other CD44+cell populations acted as

a bridge to increase Treg infiltration due to the low cell specificity

of CD44.

cDC1s are the main APC cells responsible for antigen cross-

presentation, and the priming of CD8+T cells is crucial for antitumor

responses (26). Recruitment and expansion of cDC1 in the TME were

associated with increased CD8+T cell infiltration and a good prognosis

and exhibited a better clinical response to ICI. A study of Notch-

regulated dendritic cells inhibiting the development of inflammation-

associated CRC revealed a direct relationship betweenNotch2 signaling

and infiltrating cDC1s as well as an association between the inhibition

of cDC1 signaling and poor prognosis in human CRC. The study

indicated that decreased intratumoral cDC1s and circulating cDC1s in

patients with CRC are related to disease stage, whereas suppressed

cDC1 gene signature expression in human CRC is associated with a

poor prognosis (56). In addition, another study found that colorectal

tumors can be further sensitized to immune checkpoint therapy using a

combination of low-dose chemotherapy and oncolytic HSV-1 in a

mouse model of dMMR CRC, mainly through the mechanism of

making tumors sensitive to immunotherapy by promoting high levels

of cDC1 infiltration in tumors after treatment, and the therapeutic

effect depends on the presence of cDC1s (57). Our study observed a

significant reduction in the abundance of cDC1 infiltration in colon

cancer in the scRNA-seq cohort, and high infiltration of cDC1 was

found to be correlated with good outcomes in TCGA-COAD cohort.

Therefore, our findings support cDC1 as a potential biomarker for

predicting OS in patients with CRC.

The enrichment of PCs in tumors significantly correlates with the

aggregation of tertiary lymphoid structures (TLSs) (58). PCs

produced in situ in tumor TLSs can generate antibodies against

specific tumor-related antigens, which exert anti-tumor or tumor-

promoting effects in different TMEs (59, 60). The enrichment of PCs

in some tumors also serves as a prognostic indicator for PD-L1

inhibitor therapy (31, 61). After reclustering the single-cell data of

CRC, we identified PCs with IgA+ PC and IgG+ PC phenotypes,

presenting a significantly heterogeneous distribution in the tumor

and normal tissues. Specifically, IgA+ PCs are decreased in colorectal
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tumor tissues, whereas IgG+ PCs are enriched in tumor cells. IgA +

PCs are usually believed to be abundantly produced by the intestinal

mucosa and can migrate to target tissues (62). Therefore, IgA+ PCs

have been detected in the microenvironments of multiple tumors.

However, the role of IgA+ PCs in tumor development and

progression has not been unanimously determined (63, 64). In

CRC, IgA+ PCs inhibit the activation of cytotoxic CD8+ T cells,

leading to a poor prognosis (54). In contrast, another study reported

that IgA+ PCs are significantly associated with the long-term survival

of patients with rectal cancer (65). By analyzing the clinical data of

colon adenocarcinoma (COAD) and rectum adenocarcinoma

(READ) from the Cancer Genome Atlas (TCGA) database, we

found that the infiltration of IgA+ PCs was associated with a

prolonged OS of patients with rectal cancer. Hence, the enrichment

of IgA+ PCs may contribute to the prognosis of rectal cancer;

however, no correlation was observed between the enrichment of

IgA + PCs and the prognosis of colon cancer. Accumulating evidence

suggests that IgG antibodies produced by IgG+PCs can enhance the T

cell response (66). In addition, IgG antigens can directly induce

antibody-dependent cellular cytotoxicity (ADCC) via Fc receptor

activation (67). Nevertheless, in complement-rich tumors, IgG

antibodies activate the complement cascade, thus producing

anaphylatoxins and promoting inflammation and angiogenesis

(32). We found that IgG+ PCs were enriched in colon cancer

tissues; however, whether IgG+ PC enrichment was indicative of a

better prognosis was not determined. However, the role of IgG+ PCs

in the TME requires further experimental verification.

CD103 is recognized as a marker of Trm cells, and it is generally

believed that Trm cells express high levels of PD-1, TIGIT, and CD39

(68). The co-expression of CD103 and CD39 has been confirmed to

be a marker for the identification of tumor-reactive CD8+TIL in

human solid cancers (20, 69). Notably, Duhen et al. confirmed that

the percentage of CD103+CD39+CD8+ TILs was high in MSI-high

colon cancer with high mutational burden, which showed the highest

response rates to immunotherapy. In contrast, the percentage of

CD103+CD39+CD8+ TILs was low in patients with microsatellite-

stable colon cancer and colorectal liver metastasis, who tended to

respond poorly to immunotherapy (69). Some studies have suggested

that triple-positive TIL exhibit a strong activation/exhaustion

phenotype and have a superior prognostic impact compared to TIL

expressing other combinations of these markers (20). Interestingly,

we found that the abundance of PD1+CD39+CD103+TILs was

extremely low in CRC, whereas a few triple-positive cells were

mainly distributed in the Th17 and CD8+Tem-KLRD1

subpopulations. Double-positive cells accounted for a high

proportion, and CD8+Trm was the predominant subpopulation of

CD39+CD103+T cells. The expression of PD-1 was not upregulated

in CD8+Trm; however, the expression of HAVCR2 was significantly

upregulated. Highly infiltrated CD8+Trms were associated with

prolonged OS in CRC but not with the prognosis of rectal cancer.

Therefore, we believe that CD39+CD101+CD8+Trm could better

predict the tumor reactivity of CD8+TIL in colon cancer.
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In conclusion, this study comprehensively analyzed the

immune cell atlas of human CRC at the single-

cell level. Specifically, the heterogeneity distribution and

phenotype of immune cells were deeply analyzed in colon cancer

and rectal cancer, followed by the characterization of the pathway

enrichment, cell communication, and transcription factors of each

immune cell subset. Further, the prognostic role of major TILs and

TME subtypes in CRC was evaluated by integrating bulk RNA

transcriptome data. These findings provide novel insight into the

immunotherapy of CRC.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found within the article/Supplementary Material.
Ethics statement

The studies involving human participants were reviewed and

approved by the ethics committee of General Hospital of Northern

Theater Command. The patients/participants provided their

written informed consent to participate in this study.
Author contributions

QZ conceived and designed the study. YL performed single cell

bioinformatics analysis, and YL, QZ processed statistical analysis.

CZ, XW helped provide clinical sample collection and

histopathological experiments. MH and YL helped review the

paper and provided key data explanations. ZQ wrote the

manuscript according to the opinions of all the authors. All

authors have read and approved the manuscript.
Frontiers in Immunology 19
Funding

This work was supported by the Liaoning Livelihood Science

and Technology Project (2021JH2/10300106).
Acknowledgments

We thank all the patients who donated tissue in this study, as

well as the Shuren International College of Shenyang Medical

College and the department of General Surgery General Hospital

of Northern Theater Command for providing the research platform

for this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1184167/

full#supplementary-material
References
1. Siegel R, Miller K, Fuchs H, Jemal A. Cancer statistics, 2022. CA Cancer J Clin
(2022) 72:7–33. doi: 10.3322/caac.21708

2. Miller K, Nogueira L, Devasia T, Mariotto A, Yabroff K, Jemal A, et al. Cancer
treatment and survivorship statistics, 2022. CA Cancer J Clin (2022) 72:409–36. doi:
10.3322/caac.21731

3. Costales-Carrera A, Fernandez-Barral A, Bustamante-Madrid P, Dominguez O,
Guerra-Pastrian L, Cantero R, et al. Comparative study of organoids from patient-
derived normal and tumor colon and rectal tissue. Cancers (2020) 12:2302-22. doi:
10.3390/cancers12082302

4. Stintzing S, Tejpar S, Gibbs P, Thiebach L, Lenz HJ. Understanding the role of
primary tumour localisation in colorectal cancer treatment and outcomes. Eur J Cancer
(2017) 84:69–80. doi: 10.1016/j.ejca.2017.07.016

5. Imperial R, Ahmed Z, Toor OM, Erdogan C, Khaliq A, Case P, et al. Comparative
proteogenomic analysis of right-sided colon cancer, left-sided colon cancer and rectal
cancer reveals distinct mutational profiles. Mol Cancer (2018) 17:177. doi: 10.1186/
s12943-018-0923-9

6. Wang CB, Shahjehan F, Merchea A, Li Z, Bekaii-Saab TS, Grothey A, et al. Impact
of tumor location and variables associated with overall survival in patients with
colorectal cancer: A mayo clinic colon and rectal cancer registry study. Front Oncol
(2019) 9:76. doi: 10.3389/fonc.2019.00076
7. Jiang H, Yu D, Yang P, Guo R, Kong M, Gao Y, et al. Revealing the transcriptional
heterogeneity of organ-specific metastasis in human gastric cancer using single-cell
RNA Sequencing. Clin Transl Med (2022) 12:e730. doi: 10.1002/ctm2.730

8. Qian J, Olbrecht S, Boeckx B, Vos H, Laoui D, Etlioglu E, et al. A pan-cancer
blueprint of the heterogeneous tumor microenvironment revealed by single-cell
profiling. Cell Res (2020) 30:745–62. doi: 10.1038/s41422-020-0355-0

9. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy:
understanding the characteristics of tumor-infiltrating immune cells and their
therapeutic implications. Cell Mol Immunol (2020) 17:807–21. doi: 10.1038/s41423-
020-0488-6

10. Gasser S, Lim L, F.J.E.-r.c. C. The role of the tumour microenvironment in
immunotherapy. Endocr Relat Cancer (2017) 24:T283–95. doi: 10.1530/ERC-17-
0146

11. Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M,
Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor
Microenvironment Promoting Cancer Immune Control. Cell (2018) 172:1022–
1037.e14. doi: 10.1016/j.cell.2018.01.004

12. Zheng Y, Chen Z, Han Y, Han L, Zou X, Zhou B, et al. Immune suppressive
landscape in the human esophageal squamous cell carcinoma microenvironment. Nat
Commun (2020) 11:6268. doi: 10.1038/s41467-020-20019-0
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1184167/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1184167/full#supplementary-material
https://doi.org/10.3322/caac.21708
https://doi.org/10.3322/caac.21731
https://doi.org/10.3390/cancers12082302
https://doi.org/10.1016/j.ejca.2017.07.016
https://doi.org/10.1186/s12943-018-0923-9
https://doi.org/10.1186/s12943-018-0923-9
https://doi.org/10.3389/fonc.2019.00076
https://doi.org/10.1002/ctm2.730
https://doi.org/10.1038/s41422-020-0355-0
https://doi.org/10.1038/s41423-020-0488-6
https://doi.org/10.1038/s41423-020-0488-6
https://doi.org/10.1530/ERC-17-0146
https://doi.org/10.1530/ERC-17-0146
https://doi.org/10.1016/j.cell.2018.01.004
https://doi.org/10.1038/s41467-020-20019-0
https://doi.org/10.3389/fimmu.2023.1184167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1184167
13. Brown JM, Recht L, Strober S. The promise of targeting macrophages in cancer
therapy. Clin Cancer Res (2017) 23:3241–50. doi: 10.1158/1078-0432.CCR-16-3122

14. Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, et al. A pan-cancer single-cell
transcriptional atlas of tumor infiltrating myeloid cells. Cell (2021) 184:792–809.e23.
doi: 10.1016/j.cell.2021.01.010

15. Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, et al. Pan-cancer single-cell
landscape of tumor-infiltrating T cells. Science (2021) 374:abe6474. doi: 10.1126/
science.abe6474

16. Hu J, Han C, Zhong J, Liu H, Liu R, LuoW, et al. Dynamic network biomarker of
pre-exhausted CD8(+) T cells contributed to T cell exhaustion in colorectal cancer.
Front Immunol (2021) 12:691142. doi: 10.3389/fimmu.2021.691142

17. Philip M, Schietinger A. CD8(+) T cell differentiation and dysfunction in cancer.
Nat Rev Immunol (2022) 22:209–23. doi: 10.1038/s41577-021-00574-3

18. Zhou J, Wang W, Liang Z, Ni B, He W, Wang D. Clinical significance of CD38
and CD101 expression in PD-1(+)CD8(+) T cells in patients with epithelial ovarian
cancer. Oncol Lett (2020) 20:724–32. doi: 10.3892/ol.2020.11580

19. Luo Y, Zong Y, Hua H, Gong M, Peng Q, Li C, et al. Immune-infiltrating
signature-based classification reveals CD103(+)CD39(+) T cells associate with
colorectal cancer prognosis and response to immunotherapy. Front Immunol (2022)
13:1011590. doi: 10.3389/fimmu.2022.1011590

20. Laumont CM, Wouters MCA, Smazynski J, Gierc NS, Chavez EA, Chong LC,
et al. Single-cell profiles and prognostic impact of tumor-infiltrating lymphocytes
coexpressing CD39, CD103, and PD-1 in ovarian cancer. Clin Cancer Res (2021)
27:4089–100. doi: 10.1158/1078-0432.CCR-20-4394

21. Lubbers JM, Wazynska MA, van Rooij N, Kol A, Workel HH, Plat A, et al.
Expression of CD39 identifies activated intratumoral CD8+ T cells in mismatch repair
deficient endometrial cancer. Cancers (2022) 14:1924-36. doi: 10.3390/cancers14081924

22. Dou A, Fang J. Heterogeneous myeloid cells in tumors. Cancers (2021) 13:3772-
46. doi: 10.3390/cancers13153772

23. Ostuni R, Kratochvill F, Murray PJ, Natoli G. Macrophages and cancer: from
mechanisms to therapeutic implications. Trends Immunol (2015) 36:229–39. doi:
10.1016/j.it.2015.02.004

24. Pyonteck S, Akkari L, Schuhmacher A, Bowman R, Sevenich L, Quail D, et al.
CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat
Med (2013) 19:1264–72. doi: 10.1038/nm.3337

25. Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent
advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res (2022) 41:68.
doi: 10.1186/s13046-022-02272-x

26. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic
cells in cancer immunology and immunotherapy. Nat Rev Immunol (2020) 20:7–24.
doi: 10.1038/s41577-019-0210-z

27. Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA, Barry KC, et al.
Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity.
Cell (2019) 177:556–571.e16. doi: 10.1016/j.cell.2019.02.005

28. PengW, Zhou X, YanW, Li Y, Du C, Wang X, et al. Dissecting the heterogeneity
of the microenvironment in primary and recurrent nasopharyngeal carcinomas using
single-cell RNA sequencing. Oncoimmunology (2022) 11:2026583. doi: 10.1080/
2162402X.2022.2026583

29. Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, et al. Single-cell RNA sequencing
reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor
clinical outcomes in patients with gastric cancer. Theranostics (2022) 12:620–38. doi:
10.7150/thno.60540

30. Mitchell D, Chintala S, Dey M. Plasmacytoid dendritic cell in immunity and
cancer. J Neuroimmunol (2018) 322:63–73. doi: 10.1016/j.jneuroim.2018.06.012

31. Meylan M, Petitprez F, Becht E, Bougoüin A, Pupier G, Calvez A, et al. Tertiary
lymphoid structures generate and propagate anti-tumor antibody-producing plasma
cells in renal cell cancer. Immunity (2022) 55:527–541.e5. doi: 10.1016/
j.immuni.2022.02.001

32. Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautes-Fridman C. B
cells and tertiary lymphoid structures as determinants of tumour immune contexture
and clinical outcome. Nat Rev Clin Oncol (2022) 19:441–57. doi: 10.1038/s41571-022-
00619-z

33. Wang B, Liu J, Han Y, Deng Y, Li J, Jiang Y. The presence of tertiary lymphoid
structures provides new insight into the clinicopathological features and prognosis of
patients with breast cancer. Front Immunol (2022) 13:868155. doi: 10.3389/
fimmu.2022.868155

34. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al.
Tertiary lymphoid structures improve immunotherapy and survival in melanoma.
Nature (2020) 577:561–5. doi: 10.1038/s41586-019-1914-8

35. Feng H, Yang F, Qiao L, Zhou K, Wang J, Zhang J, et al. Prognostic significance
of gene signature of tertiary lymphoid structures in patients with lung adenocarcinoma.
Front Oncol (2021) 11:693234. doi: 10.3389/fonc.2021.693234

36. Zhou L, Xu B, Liu Y, Wang Z. Tertiary lymphoid structure signatures are
associated with survival and immunotherapy response in muscle-invasive bladder
cancer. Oncoimmunology (2021) 10:1915574. doi: 10.1080/2162402X.2021.1915574
Frontiers in Immunology 20
37. Lee HO, Hong Y, Etlioglu HE, Cho YB, Pomella V, Van den Bosch B, et al.
Lineage-dependent gene expression programs influence the immune landscape of
colorectal cancer. Nat Genet (2020) 52:594–603. doi: 10.1038/s41588-020-0636-z

38. Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O'Brien SA, et al. Single-
cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell
(2020) 181:442–459.e29. doi: 10.1016/j.cell.2020.03.048

39. Wilkerson M, Hayes DJB. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics (2010) 26:1572–3. doi:
10.1093/bioinformatics/btq170

40. Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, et al.
Developmental relationships of four exhausted CD8(+) T cell subsets reveals
underlying transcriptional and epigenetic landscape control mechanisms. Immunity
(2020) 52:825–841.e8. doi: 10.1016/j.immuni.2020.04.014

41. Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ,
et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated
compartment within human melanoma. Cell (2019) 176:775–789.e18. doi: 10.1016/
j.cell.2018.11.043

42. van den Bulk J, van der Ploeg M, Ijsselsteijn M, Ruano D, van der Breggen R,
Duhen R, et al. CD103 and CD39 coexpression identifies neoantigen-specific cytotoxic
T cells in colorectal cancers with lowmutation burden. J Immunother Cancer (2023) 11:
e005887. doi: 10.1136/jitc-2022-005887

43. Eiva M, Omran D, Chacon J, Powell DJ. Systematic analysis of CD39, CD103,
CD137, and PD-1 as biomarkers for naturally occurring tumor antigen-specific TILs.
Eur J Immunol (2022) 52:96–108. doi: 10.1002/eji.202149329

44. Gao SH, Liu SZ, Wang GZ, Zhou GB. CXCL13 in cancer and other diseases:
biological functions, clinical significance, and therapeutic opportunities. Life (2021)
11:1282-308. doi: 10.3390/life11121282

45. Hussain M, Adah D, Tariq M, Lu Y, Zhang J, Liu J. CXCL13/CXCR5 signaling
axis in cancer. Life Sci (2019) 227:175–86. doi: 10.1016/j.lfs.2019.04.053

46. Zafar A, Ng H, Kim G, Chan E, Mahabeleshwar G. BHLHE40 promotes
macrophage pro-inflammatory gene expression and functions. FASEB J (2021) 35:.
doi: 10.1096/fj.202100944R

47. Wang B, Yang X, Sun X, Liu J, Fu Y, Liu B, et al. ATF3 in atherosclerosis: a
controversial transcription factor. J Mol Med (Berl) (2022) 100:1557–68. doi: 10.1007/
s00109-022-02263-7

48. Shou X, Wang Y, Jiang Q, Chen J, Liu QJP. viamiR-126 promotes M1 to M2
macrophage phenotype switching VEGFA and KLF4. PeerJ (2023) 11:. doi: 10.7717/
peerj.15180

49. Banerjee S, Cui H, Xie N, Tan Z, Yang S, Icyuz M, et al. miR-125a-5p regulates
differential activation of macrophages and inflammation. J Biol Chem (2013)
288:35428–36. doi: 10.1074/jbc.M112.426866

50. Wang X, Zhou Y, Dong K, Zhang H, Gong J, Wang S. Exosomal lncRNA
HMMR-AS1 mediates macrophage polarization through miR-147a/ARID3A axis
under hypoxia and affects the progression of hepatocellular carcinoma. Environ
Toxicol (2022) 37:1357–72. doi: 10.1002/tox.23489

51. Guo J, Liu Y. INHBA promotes the proliferation, migration and invasion of
colon cancer cells through the upregulation of VCAN. J Int Med Res (2021) 49(6):1–13.
doi: 10.1177/03000605211014998

52. Karrich J, Jachimowski L, Nagasawa M, Kamp A, Balzarolo M, Wolkers M, et al.
IL-21-stimulated human plasmacytoid dendritic cells secrete granzyme B, which
impairs their capacity to induce T-cell proliferation. Blood (2013) 121:3103–11. doi:
10.1182/blood-2012-08-452995

53. Fabricius D, Nußbaum B, Busch D, Panitz V, Mandel B, Vollmer A, et al.
Antiviral vaccines license T cell responses by suppressing granzyme B levels in human
plasmacytoid dendritic cells. J Immunol (2013) 191:1144–53. doi: 10.4049/
jimmunol.1203479

54. WangW, Zhong Y, Zhuang Z, Xie J, Lu Y, Huang C, et al. Multiregion single-cell
sequencing reveals the transcriptional landscape of the immune microenvironment of
colorectal cancer. Clin Transl Med (2021) 11:. doi: 10.1002/ctm2.253

55. Ngambenjawong C, Gustafson H, Pun S. Progress in tumor-associated
macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev (2017) 114:206–21.
doi: 10.1016/j.addr.2017.04.010

56. Wang L, Yu S, Chan E, Chen K, Liu C, Che D, et al. Notch-regulated dendritic
cells restrain inflammation-associated colorectal carcinogenesis. Cancer Immunol Res
(2021) 9:348–61. doi: 10.1158/2326-6066.CIR-20-0428

57. El-Sayes N, Vito A, Salem O, Workenhe S, Wan Y, Mossman K. A combination
of chemotherapy and oncolytic virotherapy sensitizes colorectal adenocarcinoma to
immune checkpoint inhibitors in a cDC1-dependent manner. Int J Mol Sci (2022)
23:1754-68. doi: 10.3390/ijms23031754

58. Kroeger D, Milne K, Nelson B. Tumor-infiltrating plasma cells are associated with
tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian
cancer. Clin Cancer Res (2016) 22:3005–15. doi: 10.1158/1078-0432.CCR-15-2762

59. Jia L,Wang T, Zhao Y, Zhang S, Ba T, Kuai X, et al. Single-cell profiling of infiltrating
B cells and tertiary lymphoid structures in the TME of gastric adenocarcinomas.
Oncoimmunology (2021) 10:1969767. doi: 10.1080/2162402X.2021.1969767
frontiersin.org

https://doi.org/10.1158/1078-0432.CCR-16-3122
https://doi.org/10.1016/j.cell.2021.01.010
https://doi.org/10.1126/science.abe6474
https://doi.org/10.1126/science.abe6474
https://doi.org/10.3389/fimmu.2021.691142
https://doi.org/10.1038/s41577-021-00574-3
https://doi.org/10.3892/ol.2020.11580
https://doi.org/10.3389/fimmu.2022.1011590
https://doi.org/10.1158/1078-0432.CCR-20-4394
https://doi.org/10.3390/cancers14081924
https://doi.org/10.3390/cancers13153772
https://doi.org/10.1016/j.it.2015.02.004
https://doi.org/10.1038/nm.3337
https://doi.org/10.1186/s13046-022-02272-x
https://doi.org/10.1038/s41577-019-0210-z
https://doi.org/10.1016/j.cell.2019.02.005
https://doi.org/10.1080/2162402X.2022.2026583
https://doi.org/10.1080/2162402X.2022.2026583
https://doi.org/10.7150/thno.60540
https://doi.org/10.1016/j.jneuroim.2018.06.012
https://doi.org/10.1016/j.immuni.2022.02.001
https://doi.org/10.1016/j.immuni.2022.02.001
https://doi.org/10.1038/s41571-022-00619-z
https://doi.org/10.1038/s41571-022-00619-z
https://doi.org/10.3389/fimmu.2022.868155
https://doi.org/10.3389/fimmu.2022.868155
https://doi.org/10.1038/s41586-019-1914-8
https://doi.org/10.3389/fonc.2021.693234
https://doi.org/10.1080/2162402X.2021.1915574
https://doi.org/10.1038/s41588-020-0636-z
https://doi.org/10.1016/j.cell.2020.03.048
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1016/j.immuni.2020.04.014
https://doi.org/10.1016/j.cell.2018.11.043
https://doi.org/10.1016/j.cell.2018.11.043
https://doi.org/10.1136/jitc-2022-005887
https://doi.org/10.1002/eji.202149329
https://doi.org/10.3390/life11121282
https://doi.org/10.1016/j.lfs.2019.04.053
https://doi.org/10.1096/fj.202100944R
https://doi.org/10.1007/s00109-022-02263-7
https://doi.org/10.1007/s00109-022-02263-7
https://doi.org/10.7717/peerj.15180
https://doi.org/10.7717/peerj.15180
https://doi.org/10.1074/jbc.M112.426866
https://doi.org/10.1002/tox.23489
https://doi.org/10.1177/03000605211014998
https://doi.org/10.1182/blood-2012-08-452995
https://doi.org/10.4049/jimmunol.1203479
https://doi.org/10.4049/jimmunol.1203479
https://doi.org/10.1002/ctm2.253
https://doi.org/10.1016/j.addr.2017.04.010
https://doi.org/10.1158/2326-6066.CIR-20-0428
https://doi.org/10.3390/ijms23031754
https://doi.org/10.1158/1078-0432.CCR-15-2762
https://doi.org/10.1080/2162402X.2021.1969767
https://doi.org/10.3389/fimmu.2023.1184167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1184167
60. Zhong Z, Nan K, Weng M, Yue Y, Zhou W, Wang Z, et al. Pro- and anti- effects
of immunoglobulin A- producing B cell in tumors and its triggers. Front Immunol
(2021) 12:765044. doi: 10.3389/fimmu.2021.765044

61. Noel G, Fontsa ML, Garaud S, De Silva P, deWind A, Van den Eynden GG, et al.
Functional Th1-oriented T follicular helper cells that infiltrate human breast cancer
promote effective adaptive immunity. Immunological Rev (2021) 131(19):1–19. doi:
10.1172/JCI139905

62. Isho B, Florescu A, Wang AA, Gommerman JL. Fantastic IgA plasma cells and
where to find them. Immunol Rev (2021) 303:119–37. doi: 10.1111/imr.12980

63. Biswas S, Mandal G, Payne K, Anadon C, Gatenbee C, Chaurio R, et al. IgA
transcytosis and antigen recognition govern ovarian cancer immunity. Nature (2021)
591:464–70. doi: 10.1038/s41586-020-03144-0

64. Habermehl G, Nakashima M, Cotta C. IgA plasma cell neoplasms are
characterized by poorer long-term survival and increased genomic complexity
compared to IgG neoplasms. Ann Diagn Pathol (2020) 44:151449. doi: 10.1016/
j.anndiagpath.2019.151449
Frontiers in Immunology 21
65. Zinovkin DA, Kose SY, Nadyrov EA, Achinovich SL, Los DM, Gavrilenko TE,
et al. Potential role of tumor-infiltrating T-, B-lymphocytes, tumor-associated
macrophages and IgA-secreting plasma cells in long-term survival in the rectal
adenocarcinoma patients. Life Sci (2021) 286:120052. doi: 10.1016/j.lfs.2021.120052

66. Carmi Y, Spitzer MH, Linde IL, Burt BM, Prestwood TR, Perlman N, et al.
Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell
immunity. Nature (2015) 521:99–104. doi: 10.1038/nature14424

67. de Taeye SW, Bentlage AEH, Mebius MM, Meesters JI, Lissenberg-Thunnissen
S, Falck D, et al. FcgammaR binding and ADCC activity of human IgG allotypes. Front
Immunol (2020) 11:740. doi: 10.3389/fimmu.2020.00740

68. Lin R, Zhang H, Yuan Y, He Q, Zhou J, Li S, et al. Fatty acid oxidation controls
CD8 tissue-resident memory T-cell survival in gastric adenocarcinoma. Cancer
Immunol Res (2020) 8:479–92. doi: 10.1158/2326-6066.CIR-19-0702

69. Duhen T, Duhen R, Montler R, Moses J, Moudgil T, de MIranda NF, et al. Co-
expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid
tumors. Nat Commun (2018) 9:2724. doi: 10.1038/s41467-018-05072-0
frontiersin.org

https://doi.org/10.3389/fimmu.2021.765044
https://doi.org/10.1172/JCI139905
https://doi.org/10.1111/imr.12980
https://doi.org/10.1038/s41586-020-03144-0
https://doi.org/10.1016/j.anndiagpath.2019.151449
https://doi.org/10.1016/j.anndiagpath.2019.151449
https://doi.org/10.1016/j.lfs.2021.120052
https://doi.org/10.1038/nature14424
https://doi.org/10.3389/fimmu.2020.00740
https://doi.org/10.1158/2326-6066.CIR-19-0702
https://doi.org/10.1038/s41467-018-05072-0
https://doi.org/10.3389/fimmu.2023.1184167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Integration of single-cell RNA sequencing and bulk RNA transcriptome sequencing reveals a heterogeneous immune landscape and pivotal cell subpopulations associated with colorectal cancer prognosis
	Introduction
	Materials and methods
	Single-cell data processing and quality control

	Unsupervised dimensionality reduction
	Pseudotime trajectory analysis
	SCENIC analysis
	Cell–cell communication analysis using CellChat
	Gene set variation analysis pathway enrichment analysis
	Scoring of macrophage M1 and M2
	Distribution and proportion of CD39+CD101+PD1+T cells in CRC
	Cell subtype deconvolution based on bulk RNA-sequencing data and tumor microenvironment classification
	Clinical sample collection
	The multiplex immunohistochemistry

	Statistical analysis
	Results
	Single-cell profiling of immunogenomic landscape in the microenvironment of CRC
	Characterization of the heterogeneity of T and NK cell subtypes in CRC
	Landscape of the heterogeneity and diversity of myeloid cell in the TME of CRC
	Identification of landscape of B lymphocytes and developmental trajectory states of B lineage of CRC
	Evaluation of the infiltration abundance and prognostic value of the major cell subpopulations
	Identification of five TME subtypes characterized by immune cells deconvolution in CRC and their prognostic significance
	CellChat analysis of immune cell communication in CRC
	Multiplex immunohistochemistry description the interaction between SPP1+TAM and Treg in the TME of CRC

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


