
Micro- and nanoplastics current
status: legislation, gaps,
limitations and socio-economic
prospects for future

Daryl Rafael Osuna-Laveaga1†, Valeria Ojeda-Castillo2†,
Valentín Flores-Payán3, Alberto Gutiérrez-Becerra1† and
Edgar David Moreno-Medrano1*†

1Department of Basic and Applied Sciences, Tonalá University Center (CUT, Centro Universitario de
Tonalá -in Spanish-), Universidad de Guadalajara, Tonalá, Jalisco, Mexico, 2Universidad de Guadalajara,
Guadalajara, Mexico , 3Tonalá University Center (CUT, Centro Universitario de Tonalá -in Spanish-),
Universidad de Guadalajara, Tonalá, Mexico

The pollution caused by micro- (MP) and nanoplastics (NP) in the planet’s
ecosystems has gained significant interest in recent years due to their
environmental impact and effects on the health of living organisms. Given this,
it is necessary to conduct a comprehensive analysis of the actions required to
mitigate their impacts. This paper analyzes existing legislation across different
countries and regions, including Europe, North America, China, Russia, India,
Brazil, Mexico, and the global initiatives undertaken by the United Nations.
Furthermore, it highlights the need for additional measures to mitigate the
impact of MP/NP in future years, such as the development of technologies for
the separation or degradation of these particles in water intended for human
consumption and in wastewater treatment plant effluents, studying plastic
particulate material in the air considering meteorological parameters, MP/NP
detection protocols in human fluid samples, creating truly biodegradable
polymers for use as bioplastics, and establishing institutions responsible for the
management of plastic waste. The study also shows the current state of
abundance (characterization and quantification) of MP/NP in different
environmental matrices based on reports from recent years, and identifies key
research opportunities and actions required to evaluate the risks and toxicity
associated with MP/NP. Socio-economic aspects are considered, including the
impact of MP/NP on different regions, by associating economic and human
wellness parameters to plastic waste generation by using available data from
148 countries. As result of this analysis, both the most populated and developed
countries contribute toMP/NP generation, however, they have different capacities
to address this problem due to social circumstances. The solution to this problem
requires efforts from authorities, industry, the scientific community, and the active
participation of the population, then, resolving social, political, and economic
issues between countries and regions of the world is necessary.
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Introduction

Plastics were invented in 1860 from organic polymers derived
from fossil hydrocarbons. However, their demand and
manufacturing began to increase since 1940, replacing common
materials up to that time, such as wood, metals, ceramics, leather,
glass, paper, and vegetable fibers, among others (Khairul Anuar
et al., 2022). Today, plastics have become a feedstock in all
industries, from textiles and automotive to food, due to their
physical and chemical properties, such as low weight, heat
resistance, translucency or transparency, malleability, and
hardness (Maurya et al., 2020).

The global manufacture of plastics has been increasing year after
year. It has been estimated that in 1950, 1.7 million tons (MT) were
produced, while in 2018, its production reached 359 MT, with 17%
of the total attributed to Europe, 18% to North America, and 51% to
Asia (Worm et al., 2017; Plastics Europe, 2019). Currently, 40% of
the world’s plastics production corresponds to the packaging
industry, 20% to articles of common use, 20% to construction,
and the remaining 20% to the agricultural, electrical, and automotive
sectors (Oliveira et al., 2020). By 2017, it has been estimated that over
8000 MT of plastic had been manufactured cumulatively worldwide,
with 2500 MT currently in use. It has also been calculated that up to
2015, 6300 MT of plastic waste were generated, with 800 MT being
incinerated, 600 MT being recycled, and approximately 4900 MT
being disposed of and accumulated in landfills or natural
environments (Geyer et al., 2017). In 2019, 31 transnational
companies reported the amount of plastic generated as a result of
their commercial activities. Coca-Cola reported an annual world
production of 88,000 million (M) single-use plastic bottles,
equivalent to 3 MT per year, followed by Nestle with 1.7 MT and
Danone with 0.73 MT (Schächtele, 2020). Therefore, in addition to
the large amount of plastic waste generated by the population, it is
evident that the industry also contributes significantly.

Undoubtedly, plastics have improved the quality of life of the
population, bringing with them facilities and comforts in daily and
work activities, including devices and equipment that improve
human health and extend longevity. However, their high
production and inadequate disposal have made them the focus of
attention in recent years due to being a source of micro- and
nanoplastics (MP/NP) and having negative impacts on
ecosystems and health. In this mini-review, the dispersion of
MP/NP through different ecosystems, MP/NP quantification in
different matrices, current international legislation, synergism of
MP/NP with other emerging pollutants, gaps, study opportunities,
and future actions are analyzed. Additionally, social, and economic
aspects from 148 countries are evaluated to determine the
correlation between the economy or productivity, human
wellness, and the generation of plastic waste that leads to the
formation of MP/NP. All these perspectives aim to contribute to
solving the impact of MP/NP in future years.

Materials and methods

To develop this work, more than 160 different sources were
analyzed: Papers published recently and from a few years ago, some
specialized books and book chapters, databases of

non-governmental organizations such as the WHO, World Bank,
World Economic Forum, OECD and UN platforms, international
press reports, as well as government and official internet sites from
several countries. The articles consulted were found in different
databases using keywords such as microplastics, nanoplastics,
plastics, mismanaged plastics, legislation, pollution, airborne, soil,
water, health, toxicological effects, environment, formation,
applications. On the other hand, legislation on plastics and
microplastics was analyzed by accessing directly on government
official sites of the most economically important countries; so that all
this information allowed us to conclude on the studies and actions
required to solve the problem from social, economic, scientific and
health perspectives.

Origin and formation of micro- and
nanoplastics

Although resistance to heat and lightness makes plastics
materials with great advantages in the manufacture of useful
products, these properties make plastics a problem when they
become waste in the environment since their biodegradation is
technically impossible under normal conditions in nature
(Khairul Anuar et al., 2022). As a result of their widespread use,
plastics can remain as waste easily visible to the human eye
(macroplastics). However, in addition to the negative impact that
these macroplastics cause in ecosystems, there is another potential
issue derived from these materials: invisible plastic particles that are
also difficult to break down and are classified as emerging pollutants.
These plastic particles can be classified based on their size, chemical
nature, and the way in which they are produced or released into the
environment.

There is no official international agreement for their size
classification; however, considering at least one of their
dimensions, plastic particles can be classified as microplastics
(MP) with a size between 1 µm and 5 mm, and nanoplastics
(NP), with a size smaller than 100 or 1000 nm (Yang et al., 2021;
Schröter and Ventura, 2022). The chemical nature of plastic particles
and materials depends on the monomers from which they are
formed: monomers linked in a linear or branched fashion
(methyl, phenyl, fluorinated, or chlorinated groups) linked
through nonpolar C-C or C-O covalent bonds. Examples of these
are polyethylene (PE), polypropylene (PP), polystyrene (PS),
polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), and
polyethylene terephthalate (PET). Therefore, MP/NP represent a
challenge in characterization and detection because they have
different chemical structures, shapes, and physical properties.

Considering the way they are produced, these particles can be
primary or secondary. Primary MP/NP are manufactured in small
sizes, generally intended for medical applications (such as sensors,
implant coatings, drug delivery), and personal care products (added
to soaps, cosmetics, toothpastes, scrubs). On the other hand,
secondary MP/NP are produced as a result of friction, abrasion,
degradation, fragmentation, and/or erosion of larger particles and/
or large pieces of plastic (Andrady, 2011; Auta et al., 2017). These
particles are generated from bags, wrappers, toys, containers, single-
use utensils, synthetic clothing fibers, tubes, paints, household and
industrial abrasive products, beauty and hygiene products, among
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others. However, they can also come from thermosetting materials,
from the abrasion and weathering of tires, road signs, and marine
coatings. It has been estimated that the concentration of secondary
MP/NP in the environment is higher than the concentration of
primary MP/NP (Boucher and Friot, 2017).

Secondary microplastics/nanoplastics (MP/NP) are generated
from the degradation of larger plastic objects (macroplastics).
Degradation can be classified as abiotic and biotic degradation
(biodegradation). Abiotic degradation occurs due to
environmental physical and chemical effects (temperature, UV
radiation, wind, waves), while biodegradation occurs due to the
effect of microorganisms or enzymes (Restrepo-Florez et al., 2014)
only under controlled temperature conditions (25°C–37°C), in the
presence of suitable media (saline aqueous solutions), enzymes, or
microorganisms capable of degrading these polymers. The
advantage of biodegradation lies in the mineralization and
transformation of plastics into simple organic compounds that
can be incorporated into the cycles of elements (carbon, nitrogen,
sulfur); however, its disadvantage lies in the long times required (up
to 6 months). In addition, microorganisms with this capacity are not
found in all ecosystems (Banker et al., 2016). Abiotic degradation
can be classified into thermal degradation (due to high temperatures
inducing structural changes), mechanical degradation (due to the
action of mechanical forces physically breaking the material, such as
wind and waves), and chemical degradation (Li et al., 2004; Chen
et al., 2018).

Chemical degradation can be classified as photodegradation,
thermo-oxidation, and photo-oxidation. Photodegradation is the
modification of plastics by solar radiation (such as discoloration,
brittle surfaces, decrease in mechanical resistance). Thermo-
oxidation consists of the degradation of plastics due to the
action of light, heat, or chemical attacks from the reaction
with oxidizing species, causing the loss of their properties.
Finally, photo-oxidation consists of the generation of
oxidizing radicals from UV light (Pospisil et al., 2006;
Gardette et al., 2013). MP/NP are generated from the chemical
degradation of plastic waste when it floats in the sea or in
continental water, in sediments or in soils, and is exposed to
solar radiation, facilitating the oxidative degradation of its
structural polymers. The largest amount of MP/NP is
generated from commonly used plastic articles and products
that are irresponsibly disposed of in the environment.

Another common source of MP/NP generation is from the
washing of clothes and synthetic fabrics (plastic fibers). It has been
reported that during a wash cycle, fibers, microfibers, MP, and NP
are detached. Yang et al. (2021) reported that 1 kg of synthetic
clothing releases 2.1–3.3 × 10̂14 NP particles. It has been estimated
that in 2020, the world production of synthetic textile fibers was
68 million metric tons (textile market report in the folder).
Considering the world population, it is estimated that about
11 kg per capita of these fibers are consumed to manufacture
clothing (Boucher and Friot, 2017), which may have generated
up to 2.86 × 10̂28 NP per capita per year. The most populated
countries generate more MP/NP as laundry waste. Taking 1 g of
cloth as a reference, it can release 1.4 mg of NP after a wash cycle
(Yang et al., 2021). Based on their respective populations, China,
India, the United States, and Mexico would generate around 22, 21,
5, and 2 million metric tons of NP per year."

Dispersion of micro- and nanoplastics
in the planet’s ecosystems

Microplastics/nanoplastics (MP/NP) are ubiquitous and spread
practically everywhere on the planet. However, the mechanisms of
dispersion for these materials are not well known. This section will
address the various ways in which dispersion occurs. The high
production of everyday plastic items, inadequate disposal practices,
and exposure to physical and chemical phenomena in natural
environments (such as solar radiation, abrasion from waves and
tides in the sea, high temperatures, and wind erosion), as well as in
industrial and household settings (abrasion by cleaning products,
washing clothes, and mechanical friction of plastic components),
contribute to the generation and dispersal of MP/NP in the air, on
the ground, into the soil, in the sea, in continental and subterranean
water, in snow, and on mountains (Wu et al., 2020; Barnes et al.,
2009).

The dispersion of the PM/NP depends to a great extent on the
characteristics of these particles due to their physicochemical nature,
such as their size, morphology and density. The density allows
particles of different plastic polymers to float or sink in different
types of water (Ziani et al., 2023), as well as their drag by airborne.
While it is impossible to measure the exact amount of MP/NP
present in different environments worldwide, some authors have
reported specific concentrations of these substances in certain
locations and environments from the sampling of air, water and
soil (Table 1). For example, MP particles measuring 607 µm were
found in Antarctica soil at a concentration of 13.6 particles/50 mL
(Perfetti-Bolaño et al., 2022). Fibrous MP has been detected on
Everest at a concentration of 30 fibers/L (Napper et al., 2020), and in
forests, wetlands, sanitary landfills, and industrial zones, the average
concentration is up to 106,000 particles per kg of analyzed soil
(Leitao et al., 2023). The presence of MP/NP in remote areas can be
attributed to the increase in tourism, expeditions, and the transport
of particles through the air and sea.

City dust contains particles generated by the abrasion of tires
and shoes with synthetic soles on pavement, as well as from plastic
utensils, infrastructure, and artificial grass (Essel et al., 2015; Lassen
et al., 2015). This dust can be transported through the air and rise at
high temperatures, like the transport of dust particles with a
size <2.5 µm from the Sahara Desert to the American continent
(Zauli Sajani et al., 2012; Yu et al., 2015). Airborne transport occurs
relatively quickly, within days to weeks, making the atmosphere the
fastest route for the spread of MP/NP (Allen et al., 2022; Allen et al.,
2022), particularly for NPs, which have a longer suspension time.
Several studies have been conducted to evaluate the presence of MP/
NP in the air in a passive and active way. An investigation in Paris
revealed concentrations of 0.3–1.5 fibers/m3 of air sampled on
rooftop buildings, while concentrations of 0.4–56.5 fibers/
m3 were found inside these structures (Dris et al., 2017).

An important phenomenon related to the air transport of
microplastics/nanoplastics (MP/NP) is atmospheric deposition,
which involves the re-incorporation of these particles into the
soil, water, or ecosystems. Deonie Allen and others estimated
that up to 25 million metric tons (MT) of MP/NP with
diameters ranging from 8–180 µm are transported annually
through the marine atmosphere and deposited in the oceans
(Abbasi, 2021; Allen et al., 2022). In the French Pyrenees, NPs
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TABLE 1 Concentrations and type of MP/NP quantified in different environment locations and matrixes.

Matrix/environment Location/region Polymer Particle size of
MP/NP

Concentration Reference

Water Surface water and sediments Three Gorges Dam (China) PS, PP, PE 3–50 µm 1.6–12.6 mg/m3 (surface
water)
25–300 ng/kg (sediments)

Di and Wang (2018)

Raw and treated water WTP (Czech Republic) PET, PP, PE <1 µm 1473–3605 MP/L (raw
water)
338–628 MP/L (treated
water)

Pivokonsky et al.
(2018)

Surface water Wastern Lake Superior (USA) PE, PS,
PET, PP

<5 mm 37000 fibers/km2 Hendrickson et al.
(2018)

Underground and drinking
water

Water supply chain
(Germany)

PE, PET, PVC 50–150 µm 7 MP/m3 (underground
water)
0.7 MP/m3 (drinking water)

Mintenig et al.
(2019)

Surface water Yellow River (China) PE, PP, PS <200 μm 497–930 MP/m3 Han et al. (2020)

Surface water Goulburn River (Australia) PET 36 μm–4.6 mm 400 MP/m3 Nan et al. (2020)

Sediment East Dongting Lake (China) PET <0.5 mm 180–693 fibers/kg Yin et al. (2020)

Filter residue of greywater Farmstead (Germany) PET >100 µm 1.43 g/kg (Fibers of textile
washing)

Müller et al. (2020)

Clothes washing water St. Gallen (Switzerland) PET <100 nm 3.3 × 1011 MP/g textile
(2.1 mg/g textile)

Yang et al. (2021)

Surface water Jhelum River, Himalaya
(India)

PE, PVC, PP 75 μm–5 mm 600–2500 MP/m3 Farooq et al. (2023)

Wastewater treatment plants
(WWTP)

Denizli Central WWTP
(Turkey)

PE 100–500 μm 4.8 × 106 MP/m3 Koyuncuoğlu and
Erden (2023)

Soil Cropped soil Zone at Dian Lake (China) Not reported 00.5–1 mm (fibers) 7100–42,960 MP/kg Zhang and Liu
(2018)

Vacant land, woodland, and
vegetable plots

Suburbs of Wuhan City
(China)

PE, PP,
PS, PVC

10–100 μm (MP and
fibers)

2.2 × 104–6.9 × 105 MP/kg Zhou et al. (2019)

Snow and stream Several sites of Everest (Nepal
and China)

PET 18 µm–3800 mm (fibers) 3–119 fibers/L Napper et al. (2020)

Agricultural fields Valencia (Spain) PP, PVC 50 μm–>1 mm 930–1100 MP/kg van den Berg et al.
(2020)

Beach sand 33 beaches (Mexico) PE, PP, PS 0.5–5 mm 31.7–545.8 MP/m2 Alvarez-Zeferino et
al. (2020)

Shade covered soil and open-
field agricultural soil

Shouguang City (China) PP, PE <0.5 mm (MP and films) 310–5698 MP/kg Yu et al. (2021)

Floodplain Soils of the Lahn River
(Germany)

PP, LDPE,
PS, PET

2–5 mm 0.4–6 Weber et al. (2022)

Surface soils and intertidal
sediments

King George Island
(Antarctica)

PET <500 µm (MP) and
<2000 µm (fibers)

80–740 MP/L
20–80 fibers/L

Perfetti-Bolaño et al.
(2022)

Forests, wetlands,
agriculture, and industrial
zones

Urban and surrounding areas,
Coimbra city (Portugal)

PP, PVC, PE 9 μm–2.94 mm 5000–571000 MP/kg Leitão et al. (2023)

Air Outdoors and indoors (active
sampling)

Roof building, apartment and
office Paris (France)

PP 50–4850 μm 0.3–1.5 fibers/m3 (outdoor)
0.4–56.5 fibers/m3 (indoor)

Dris et al. (2017)

Atmospheric fallout samples
(passive sampling)

Urban dust (China) PE, PP, PS 200–700 μm (fibers) 175–313 fibers/m2 day Cai et al. (2017)

Urban outdoor dust Urban dust (Iran) NR 100–1000 μm 2.9–20.1 particles/g dust Dehghani et al.
(2017)

Outdoor in urban and rural
areas

Hamburg (Germany) PE 63–300 μm (MP and
fibers)

136–512 MP/m2 day
(deposition)

Klein and Fischer
(2019)

(Continued on following page)
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present in the atmosphere are deposited in quantities of up to 2 ×
10̂5 ng/m̂2 per day, while MPs are deposited in quantities of up to
1.1 × 10̂5 ng/m̂2 per day, demonstrating that the amount of NPs in
the air is higher thanMPs. MPs can remain airborne for up to 7 days
and reach altitudes of 5,000 km (Allen et al., 2022). MP/NP are also
part of the water cycle and are present in rainwater, with great
deposition fluxes (Zhao et al., 2023). Brahney et al. (2020) estimated
that 1,000 MT of MPs are deposited in the soil of protected areas in
the United States after analyzing stormwater and air samples over a
14-month period. It is projected that the amount of MP/NP
deposited from the atmosphere will reach 460 MT by the year
2030 (Hundertmark et al., 2023).

Due to their size and resistance to degradation, MP/NP from
laundry, household activities, and personal care products containing
intentionally added small particles escape from wastewater
treatment plants (WWTPs). This is why urban sewers, WWTPs,
and water treatment plants (WTPs) are considered one of the main
routes of distribution and deposition of MP/NP in oceans, rivers,
lakes, subterranean water, soils, and sediments (Browne et al., 2011).
A study conducted at 17 WTPs in the United States estimated that
effluents can contain and transport up to 13 billion MP/NP per day
(Mason et al., 2016). In fresh surface water and groundwater in
China and Germany, the presence of MPs ranging from 3–50 µm
has been observed, with concentrations of up to 12.6 particles/L
(WHO, 2019).

Microplastics/nanoplastics (MP/NP) can be found in drinking
water because water treatment plants (WTPs) source water from
locations where effluents from wastewater treatment plants
(WWTPs) were previously discharged. Studies on MP in water
treatment plants in the Czech Republic have shown
concentrations of up to 638 particles/L with sizes detected above
1 µm (Pivokonsky et al., 2018). In drinking water from underground
sources in Germany, the amount of MP detected has been as low as
0.0007 particles/L with a minimum size of 20 µm (Mintenig et al.,
2019). MP/NP can also be found in the drinking water used by
industries that utilize plastic equipment and items in their processes.
Bottled water from major brands in the market has been reported to
contain an average of 325 MP/NP particles of polypropylene (PP)
and polyethylene terephthalate (PET) per liter of water sold
(Schächtele, 2020). Kosuth et al. (2018) reported the presence of
fibers and plastic particles in drinking water and various brands of

beer in different countries, with average concentrations of
5.45 particles/L and 4.05 particles/L, respectively. Additionally,
Cox et al. (2019) reported that bottled water contains a higher
concentration of MP than drinking water due to the detachment of
these particles from the container walls.

One destination ofWWTPs is the ocean, which can directly receive
their effluents or receive them through rivers that previously received
them. It has been estimated that more than 1000 rivers polluted with
MP/NP flow into the ocean (Meijer et al., 2021). However, it is not the
only source of plastic particles. As mentioned above, plastic waste in the
oceans also contributes to the generation of these substances. In 2014, it
was calculated that there are more than 7,000 tons of plastic waste and
over 1.83 billion MP particles dispersed in the oceans (Eriksen et al.,
2014), with a large island of these materials floating in the North Pacific
Ocean (Onink et al., 2019). Egger et al. (2020) sampled this large island
of plastic litter and estimated a presence of up to 3.81 million plastic
particles per square kilometer, with sizes ranging from 500 µm to 5 cm,
mainly composed of polyethylene (PE) and polypropylene (PP).
Correia et al. (2020) estimated that the concentration of particles in
the oceans can reach up to 102,000 particles/m̂3. This situation indicates
a constant increase in the generation of MP/NP due to the degradation
of floating macroplastics, which will persist over the years, even if their
use is completely prohibited (GESAMP, 2015). Additionally, MP/NP
can be dispersed by aerosols from oceanic rainfall and incorporated into
the water cycle in other regions (Lehmann et al., 2021)”.

According to the World Economic Forum, by 2025, for every
three million fish in the ocean, there will be 1 million tons (MT) of
plastics, and by 2050, there will be moremicroplastics (MP) than fish
(WEF, 2016). As expected, MP/nanoplastics (NP) have been found
in marine species, such as zooplankton, corals, mussels, fish,
seagrasses, and crustaceans, which may feed on larger species
(Desforges et al., 2015). These marine species become part of the
food chain and bioaccumulate these plastic particles in their tissues,
transferring them to the next trophic level and potentially entering
the human diet. This was confirmed by exposing algae
(zooplankton) to polystyrene NP, which were later consumed by
water fleas and subsequently fed to fish. All three species
bioaccumulated NP in their tissues (Mattsson et al., 2015).

MP/NP can deposit in the soil and have an impact on
agriculture. Microplastic causes the destruction of soil structure,
destroys microbiota, cause depletion of nutrients, and their

TABLE 1 (Continued) Concentrations and type of MP/NP quantified in different environment locations and matrixes.

Matrix/environment Location/region Polymer Particle size of
MP/NP

Concentration Reference

Indoor and outdoor dust 39 cities (China) PET, PE, PP Not reported 1.55–120 mg/g dust
(indoor)
0.212–9 mg/g dust
(outdoor)

Liu et al. (2019a)

Indoor dust Households (Germany) PET >100 µm 57 g/kg (textile fibers) Müller et al. (2020)

Atmospheric fallout (passive
sampling)

Urban dust (UK) PET 400–500–μm (fibers) 510–925 fibers/m2 day Wright et al. (2020)

Long-term monitoring
station

Pyrenees (France) PVC, PET,
PP, PE

<0.45 μm and
10 μm–5 mm

200 mg/m2 day (deposition)
44–109 mg/m2 day
(deposition)

Allen et al. (2022a)
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absorption by plants decreases plant growth (Bostan et al., 2023).
Plastic particles reach farmland through compost materials, plastic
films used in agricultural tasks, wind dispersal, but mainly through
water and sludge from wastewater treatment plants (WWTPs) and
water treatment plants (WTPs) used as fertilizer. Van den Berg et al.
(2020) quantified up to 3060 MP per kilogram of soil after being
fertilized with sludge fromWWTP, with applications of 20–22 tons/
Ha. It has been estimated that the amount of MP/NP from WWTP
effluents that could be present in farmland amounts to 7.76 million
tons (MT) (Peccia and Westerhoff, 2015). MP/NP initially reside on
the soil surface and then, due to the penetration of rainwater and
irrigation, they are transported to the subsoil and can even reach
groundwater (Panno et al., 2019; Wong et al., 2020). Additionally,
there is evidence that soil-dwelling organisms, such as earthworms
and microarthropods, can transport MP/NP to deeper soil layers or
disperse them (Maaß et al., 2017; Rilling et al., 2017). It is estimated
that soils contain more MP/NP than oceans, which is concerning as
they come into contact with crops that are part of the human diet
(Horton et al., 2017; Pathan et al., 2020). Once in the soil, NP with a
size of 40 nm can be taken up by plant roots and, to a lesser extent,
through leaves, being transported through the plant’s tissues.
Furthermore, MP/NP can also affect the enzymatic activity of
bacteria and fungi and alter their diversity (Bandmann et al.,
2012; Sarker et al., 2020; Azeem et al., 2021), in such way that it
has been suggested the “plasticsphere” or “microplasticsphere”
formation on the soil, which consists of the superficial
colonization of plastic waste and MP/NP by cyanobacteria
(Nostoc, Scytonema), diatoms (Navicula, Cyclotella) and bacteria
(Gammaproteobacteria, Alphaproteobacteria), which can degrade
these materials, however, they shift bacterial community and have
the potential to alter soil functioning and biogeochemical cycling (Ju
et al., 2019; Zhang et al., 2019; Zhou et al., 2021; Behera and Das,
2023).

Another significant but often overlooked source ofMP/NP is tire
wear resulting from abrasion or friction with the ground when a
vehicle is in motion. These particles generated on industrial, urban,
rural, or any other roads account for approximately 90% of the total
particles found in nearby areas and can reach sizes of up to 280 µm
(Kreider et al., 2010; Sommer et al., 2018). Once generated, they are
deposited in adjacent territories and can be transported by airborne
mechanisms to other locations (Wik and Dave, 2009). Considering
that there are approximately 1.446 billion cars in use worldwide as of
2023, the number of tires in circulation is significantly higher. The
dispersion pathways of MP/NP are diverse and complex. Once they
are swept away or transported by winds, rain, continental and
subterranean water, and oceans, they can be found in
inhospitable places for human populations. Ubiquitous plastic
pollution at macro, micro, and nanoscopic scales even allows us
to consider it as a geological marker of human impact on the planet
(Geyer et al., 2017).

Damage to living beings

MP/NP are in contact with living beings through different
routes: Oral consumption (food), inhalation, and dermal
exposure (Revel et al., 2018; Chang et al., 2020). MP has been
found in animals and substances (food) that are part of the human

diet, such as fish, shrimp, shellfish, honey, sugar, salt, beer, bottled
water, and tap water (Liebezeit and Liebezeit, 2013; Auta et al., 2017;
Iñiguez et al., 2017; Bessa et al., 2018; Karami et al., 2018; Kosuth
et al., 2018). Some studies have estimated the amount of MP
consumed by humans. Kieran Cox et al. (2019) reported an
intake of 113,743 and 94,283 MP per year in adult males and
females, respectively, from food consumption.

NP are potentially more dangerous than MP since they can
access cells of many organs due to their size (Monti et al., 2015) by
crossing the cell membrane, which has pores of approximately
2–40 nm (Zhou et al., 2009; Bonardi et al., 2011). Once they
enter the respiratory system, NP can reach the lungs and
subsequently the alveoli. There, they can be transported in the
bloodstream and finally deposited in cells of different organs,
such as the brain, liver, gallbladder, pancreas, heart, and even the
reproductive system and placental barrier (Barboza et al., 2018; Pitt
et al., 2018; Hesler et al., 2019; Sökmen et al., 2020).

To this day, there are no studies that clearly or significantly
demonstrate the effect of MP/NP on human health due to the
difficulty that this implies: all humans are exposed to MP/NP, and it
is required to have well-defined groups (control groups), isolating
individuals, to know their medical history, long times required, an
appropriate sample size, standardized protocols, control of the size
and type of MP/NP, and, finally, ethics. However, studies have been
reported in animals such as nematodes, crustaceans, fish, and mice
(in vivo studies) and in cell cultures of various animals (in vitro
studies), including human cells in relatively short periods of weeks
and months (Schröter and Ventura, 2022).

In vivo studies allow the investigation of the effect of MP/NP on
an organism by exposing its organs and tissues (at different stages or
in its entire life cycle). In marine organisms, MP/NP have been
found in feces, gills, skin, muscle, hemolymph, and the circulatory
system, causing endocrine disruption, tissue inflammation,
behavioral changes, reduced growth, reproductive success, and
breeding success (Allen et al., 2022). After an exposure of
10 ppm of PS NP for 120 h, fish embryos have been reported to
accumulate these particles in all their organs (mainly in the pancreas
and intestinal tract) and are purged when the exposure ends.
Interestingly, no evidence of significant mortality, deformity, or
bioenergetic changes has been found, but an increase in heart rate
and larvae behavior (Pitt et al., 2018). Other studies in fish have
shown neurotoxicity, inflammation, or damage in the gut and
neurobehavioral alterations, besides NP accumulation in organs
(Chen et al., 2017a; Brun et al., 2018; Lei et al., 2018; Sarasamma
et al., 2020). In addition to fish, model organisms such as water fleas
and nematodes have also been used to assess NP toxicity. Water fleas
have shown changes in growth, reproduction, and molting when
chronically exposed to 0.1 mg/L of 20–200 nm PS NP (Pikuda et al.,
2022). In addition, alterations in the immune system, gene
expression, metabolism, and decreased body size have been
observed (Liu et al., 2019; Liu et al., 2021). Nematodes have
shown reduced pup size, damage in gonad development,
inhibition of reproduction, and alteration of locomotion when
exposed to 25–100 nm PS NP (Zhao et al., 2017; Kim et al.,
2019; Qu et al., 2019).

In vitro studies consist of controlled exposure of NP in cell
cultures of various human tissues, such as bronchi, microvascular
endothelium, cortical epithelium, monocytes, among others
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(Schröter and Ventura, 2022). MP/NP at concentrations of 10 mg/L
can induce oxidative stress in human brain and epithelial cells when
exposed for 24–48 h (Schirinzi et al., 2017). Other works have
reported damage to the mitochondrial membrane, increased
apoptosis, activation of autophagy, and inflammatory responses
(Wu et al., 2019; Ding et al., 2021; Nie et al., 2021). Some studies
of this type contradict each other; thus, it is necessary to clarify
whether the type and size of NP can induce effects in different
human tissues (Hesler et al., 2019).

The potential damage MP/NP cause is due to the particles
themselves and substances with adverse effects that they carry on
their surface, such as metals, persistent organic pollutants,
antibiotics, pathogens, polychlorinated biphenyls such as
pesticides and herbicides, causing synergistic effect (Gewert et al.,
2015; Wang et al., 2019; Prust et al., 2020; Ziani et al., 2023). Several
authors have reported the combined effects of PM and certain
contaminants in the soil, i.e., the accumulation of Deltamethrin
and Glyphosate on its surface (preventing or slowing down its
degradation and reducing the sorption capacities of the soil), the
negative effect on the weight of earthworms due to the glyphosate,
the transport of insecticide to deeper soil (Ramos et al., 2015; Yang
et al., 2018; Ródríguez-Seijo et al., 2019; Yang et al., 2019). The
physicochemical characteristics of PM/NP are important to
understand how they can transport harmful substances to living
beings and cause a synergistic effect. Among these properties are the
polarity, solubility, density, stability, and sorption capacity of the
substances.

It has been estimated that 1 g of NP can carry 1–10,000 ng of
these toxic substances (Koelmans et al., 2013). Taking into account
the impact due to the presence of MP/NP, they can be stored in the
intestines of animals and obstruct and change the microbiota,
causing imbalances, inflammation, ulcers, and even increasing the
risk of cancer (Kirstein et al., 2016; Correia et al., 2020). Some studies
report the successful transport of functionalized drugs with
biodegradable nanoparticles of different types towards specific
organs or tissues (Kotrange et al., 2021; Mitchell et al., 2021),
developing the concept of nanomedicine. However, this is a
precedent to study the risk in the transport of undesired toxic
substances carried by MP/NP, such as bisphenol A, which can be
carried by PS NP from the aqueous medium to the brain of fish,
affecting dopamine levels, a neurotransmitter that regulates motor
activity (Chen et al., 2017b).

Although the effect of MP/NP on human health has not been
significantly concluded, MP has been found in several organs and
fluids, i.e., in breast milk in 26 out of 34 women who gave birth in
Rome. These MP had a size of 2–12 µm and were quantified up to
5 plastic particles per patient, with an abundance of PS (38%),
PVC (21%), and PP (17%) (Ragusa et al., 2022). MP up to 10 µm
has also been found in human placentas in amounts of
12 particles. The authors assert that these MP entered the
bodies of pregnant women through oral or respiratory
ingestion (Ragusa et al., 2021). Yan et al. (2022) found MP in
the feces of patients with inflammatory bowel disease (IBD) and
healthy people, with concentrations of 41.8 MP/g dm and 28 MP/
g dm, suggesting that MP exposition could be associated to IBD,
or that IBD exacerbates the retention of MP; these MP
corresponded to 15 different types of polymers, mainly PET
and polyamide in the form of fibers and sheets.

In another study by carried out by Huang et al. (2022), MP with
sizes smaller than 500 μm were found in the sputum of 22 patients
suffering from different respiratory diseases, indicating that
inhalation is a potential way for plastics to enter the human
body. In a recent study, Pironti et al. (2022) found four MP in
urine of six volunteers (4–15 μm size) with irregular shapes; these
fragments were PVC, PP, PE and PVA (Polyethylene vinyl acetate).
This preliminary study suggests that MPs could pass through the
gastrointestinal tract and are eliminated through biological
processes. Leslie et al. (2022) quantified MP/NP up to 1.6 μg/mL
in blood from 22 volunteers, with 125–150 µm in size of PET, PE
and PS.

International legislation

Legislation regarding MP/NP is undeniably important for
reducing and mitigating the impact caused by these materials on
ecosystems. Europe and North America have established the
regulatory foundations concerning MP. In 2014-2015, the
Netherlands banned the addition of plastic particles to products,
while the UK followed suit in 2017-2018 (Zhu, 2023). In the
United States and Canada, the microparticle or microsphere-free
water law was enacted in 2015 and 2017, respectively, which
prohibits the manufacture, packaging, and distribution of
cosmetics, toiletries, and non-prescription medicines containing
particles smaller than or equal to 5 mm. In the United States,
this ban came into effect in July 2019 (FDA, 2022), and in
Canada in July 2018 (Government of Canada, 2018).

In 2019, the European Union proposed restricting the addition
ofMP to certain products, and finally, in 2022, they published a draft
regulation to prohibit the intentional addition of microparticles of
synthetic polymers to cleaners, cosmetics, personal care products,
and single-use products (Zhu, 2022). This ban is planned to be
implemented within a period of 6–12 years (ECHA, 2023). In China,
in 2019, the National Development and Reform Commission
stipulated that toiletries and cosmetics containing plastic particles
(less than or equal to 5 mm) would be prohibited before the end of
2020, and their sale would be prohibited by the end of 2022 (Zhu,
2022). In Russia, in 2021, the government declared its plans to
prepare amendments to legislation to ban the use of single-use items
by 2024, aiming to gradually and completely reorganize industrial
production with biodegradable products (Korotchenko, 2021). In
India, in July 2022, the production, importation, storage,
distribution, or sale of some single-use plastic products, ranging
from glasses to ice cream sticks, was prohibited, encompassing a
total of 19 items in the initial stage (The Associated Press, 2022). In
Brazil, there is currently no national law prohibiting the use of
single-use items, but since 2020, some cities and states in the country
have implemented bans on plastic bags, straws, and other items
(Agência Senado, 2021). In Mexico, in 2021, the Senate modified a
law with the aim of eliminating the use of plastics by 2025, and
concurrently, several state governments have enacted bans on plastic
bags and disposable straws (Official Gazette CDMX, 2019; Congress
Channel CDMX, 2021).

At the global level in 2022, the United Nations Environment
Assembly (UNEA) issued the resolution “the end of plastic
pollution,” which seeks to generate specific content for a new
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treaty through an intergovernmental negotiating committee by 2024
(Li, 2022). In 2019, 187 nations signed an accord called the Basel
Convention on the Control of Transboundary Movements of
Hazardous Wastes and their Disposal, which restricts
participating nations from trading plastic scraps internationally,
unless they lack sufficient recycling or disposal capacity. Over the
last decade, global plastic trade has indeed declined significantly.
However, millions of tons of plastic are still being shipped and
mismanaged (WEF, 2023).

Regarding drinking water, bottled water, processed foods, and
beverages, the legislation in many countries obligates producers to
comply with organoleptic, physical, chemical, and microbiological
parameters. It also requires nutritional information on the label.
However, these standards do not consider the presence of plastic or
foreign particles inside the product as a minimum requirement
during processing. The EPA maintains a Contaminant Candidate
List (CCL) that includes contaminants that are not currently
regulated but are known to be present in public water systems.
This list is updated every 5 years, and potential contaminants are
regulated once their effects on human health are demonstrated or
they are of public interest. Among these candidate contaminants are
pathogens, industrial solvents, pesticides, metallic and non-metallic
substances, drugs, toxins, among others (EPA, 2023). As of the
beginning of 2023, this CCL does not include MP or NP.

Tires and vehicles are significant sources of MP/NP. European
legislation considers the raw materials and waste management
during tire manufacture, proper disposal at the end of their
useful life, and appropriate tire usage (Trudsø et al., 2022).
However, this does not guarantee the cessation of MP/NP
generation.

As previously explained, current international legislation focuses
on avoiding the manufacture of plastic products containing MP/NP
or being sources of MP/NP generation. However, the treatment of
wastewater containing these materials, their purification before
discharging effluents into rivers, lakes, or oceans, air depuration,
and food labeling informing the content of these particles have not
yet been considered. Furthermore, MP/NP generated from textiles
and vehicle tires are far from being addressed within the legislation.
Finally, evaluating the risks and toxicity MP/NP pose to human
health is essential to establish permissible limits for these particles.

Perspectives: gaps, study opportunities
and actions that should be taken

Plastics are involved in all human activities, and due to the
amount of commonly used items per person and the increase in the
world’s population, the impacts of MP/NP are expected to become
more evident in the future.While some countries have issued laws or
regulations to ban plastic materials (with planned completion within
a few years), most of the focus has been on single-use personal care
and cleaning products, neglecting clothing, containers, tires, and
other items.

The idea of an absolute ban on all plastics in the short term
would be inconceivable, as it would lead to a global collapse in
clothing, food, and transportation sectors, with immediate effects on
health, economy, and the preservation of life as we know it. Plastics
have replaced heavy materials that are difficult to manufacture and

handle, resulting in lighter equipment and vehicles and increased
energy efficiency in the industry. Synthetic fabrics and the
manufacturing of clothing have fulfilled the global clothing
demand, while the use of medical equipment and single-use
plastic instruments has been crucial in surgeries, pandemics, and
disease eradication. Therefore, it is unreasonable to consider
banning all plastics. Instead, the focus should be on gradually
prohibiting only non-essential plastic items, while promoting the
development of new single-use materials that are environmentally
friendly and do not pose disposal problems (such as Tetrapak).

Finding a solution to this problem is not easy and requires
significant economic resources, time, and efforts from authorities,
industry, the scientific community, and public participation.
Resolving social, political, and economic issues between countries
and regions is also necessary. Manufacturing processes and lifestyles
must change, from clothing production and consumption to tire and
container manufacturing. The scientific community’s contributions
can be summarized in three main stages: 1) Studying the impact of
MP/NP and their synergistic effects with other emerging pollutants
on human health, 2) developing treatments or technologies for
purifying water, air, and soils contaminated with MP/NP, and 3)
developing biodegradable alternatives to plastics that are feasible for
the general population. Previous studies and scientific publications
related to MP/NP have mostly focused on polystyrene (PS) and the
evaluation of MP/NP in marine and freshwater environments,
leaving opportunities for further investigation of other MP/NP in
the atmosphere and their health impacts. It has been demonstrated
that metallic nanoparticles can cross cell membranes, reach the
brain, and cause neurotoxicity, increasing the risk of disorders such
as Alzheimer’s or Parkinson’s (Prüst et al., 2020). It is important to
assess the risk factors of all types of plastics, analyze and estimate
consumption patterns, and develop protocols for detecting these
materials in blood, fluids, and feces to evaluate their correlation with
disease prevalence or health disorders such as inflammation, ulcers,
and thrombosis. More studies are needed to evaluate the interaction
between PM/NP and harmful substances for living beings, causing
synergistic damage, according to the physicochemical properties
of both.

As Wang et al. (2019) demonstrate in their report, there is a lack
of studies of MP/NP in soil and airborne; considering airborne and
human health risk, several studies could be carried out in large and
populated cities; these studies could analyze PM/NP in the air in a
passive and active way, even between different nations, which allows
elucidating the sources of generation and regional dispersion, and
therefore, taking appropriate restrictive or legislative measures in
sources that may represent a risk to health jointly between
neighboring countries. Another important study opportunity
related to the impact on human health is the quantification and
characterization of MP/NP at the personal level with personal
equipment exposure (carried by people), and the evaluation of
MP/NP in the mucosa, so that from the actual concentrations in
the air and in the nasal mucosa, the amount of NP that potentially
crosses the nasal barriers is estimated. Rahman et al. (2021) collected
and characterized MP in air samples by using silver membrane and
Teflon filters, finding MP in the respirable size fraction (<2.5 µm);
due to several inconsistencies, they suggest the development of new
methodologies to collect MP/NP. Regarding indoor MP/NP, home
air filtering equipment could be considered to avoid or reduce the
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intake of PM/NP, since the concentration of these particles is higher
indoors than outdoors (Dris et al., 2017; Zhao et al., 2023). In
addition, other exposure routes to MP/NP, such as inhalation and
dermal absorption should be investigated. Currently, there are no
standardized or recommended protocols by the World Health
Organization to ensure that drinking or tap water, beverages,
processed food and vegetables are free from MP/NP. Several
technologies have been published at the laboratory level focus on
water treatment, such as ultrafiltration, electrocoagulation and
advanced oxidation processes (Thomas et al., 2013; Uheida et al.,
2020; Elkhatib et al., 2021; Li et al., 2021; Cuba-Teran et al., 2023),
however, these technologies need optimization and implementation
in wastewater treatment plants, water treatment plants, and
industries.

The sludge from the WWTP used to fertilize agricultural fields
must undergo an adequate treatment to separate PM/NP it contains,
and avoid its dispersion in soils, sediments, groundwater, rivers and
oceans, and most importantly, avoid its dispersion in the human
food chain. Unfortunately, air and soil have not been sufficiently
studied in different meteorological conditions, so there are
opportunities for modeling the trajectories and regional transport
of MP/NP in the atmosphere, considering meteorological factors, as
well as studying the transport of toxic substances on MP/NP
surfaces. Islam et al. (2023) analyzed the MP airborne and
deposition within the upper lung airways by using a
computational fluid dynamic model, in which they conclude the
flow rates, shape, and size of MP influence the deposition pattern,
and the higher the flow rate the lower deposition efficiency, however,
different shapes and sizes of MP and NP are needed to evaluate.
Taking into account industry and its MP/NP emissions to
atmosphere, decontamination of MP/NP polluted air could be
done by using electrostatic collectors, which are used to separate
particulate matter from burned fuels, as Zhao et al. (2023) suggest.
Bioplastics or biodegradable plastics offer an alternative to
petroleum-derived plastics. However, as discussed in the “origin
and formation of micro- and nanoplastics” section, these
biomaterials require specific conditions for biodegradation, have
low degradation rates, and long degradation times (months).
Additionally, natural polymers used in bioplastics constitute only
a part of the final product, with the remainder made up of
petroleum-derived polymers, making them unfeasible as a
standalone solution. In the coming years, it is expected that the
industry and the scientific community will develop polymers using
truly biodegradable materials in collaboration with authorities to
promote campaigns on composting and establish accessible
composting centers for citizens. The bio-based plastics of the
next-generation must be designed/redesigned considering the
tendencies of their polymers to form microplastics, de tal forma
que se produzcan la menor cantidad de estas partículas, as Boersma
et al. (2023) calculated with the microplastic index, based on the
mechanical and properties of the materials.

Despite the existence of bans on certain plastic products, the
population continues to use them, and sanctioning the entire
community is impossible. Therefore, it is essential for authorities
to conduct awareness campaigns regarding the use and impacts of
plastics, MP/NP in ecosystems, and the potential effects on human
and animal health to encourage commitment and participation from
the public. Fighting misinformation, such as the belief that banning

plastic bags and straws will solve environmental problems, presents
an opportunity for action. Another opportunity is the establishment
of institutions or organizations (governmental or private) dedicated
to implementing processes for the disposal (recycling) and reuse of
plastic waste, processes that are achievable for society, in such way
plastic waste avoids landfills, which results in the contamination of
soil, groundwater, and surface water (Singh et al., 2023). Finally, the
development of a circular economy, where manufactured items do
not generate waste and are recycled or reused, is crucial.

Socio-economic aspects to consider to
solve the problem

The impact of MP/NP on a country depends on several
important factors: The amount of plastics, the facility a person
has to generate plastic waste, and its proper disposal. These aspects
are interpreted as the amount of plastics produced and used as a
result of industrial activities, the number of inhabitants, the quality
of life of inhabitants, and the technologies/strategies for waste
disposal (Ehrlich and Holdren, 1971). To solve the problem of
MP/NP, the proper disposal of plastic waste must be addressed.
Therefore, it is useful to consider the social and economic situation
of each country. The United States generates about 800 kg of garbage
per capita per year, of which 130 kg is plastic waste, followed by
Denmark, Switzerland, New Zealand, and Hong Kong (Schächtele,
2020; The National Academies of Sciences, Engineering, and
medicine, 2022).

The level of industrialization or the economy of countries
can be measured by the gross domestic product (GDP), which is
an indicator that implies the degree of economic profitability or
productivity of a country or area. Meanwhile, the level of
development of countries, emphasizing their people and their
human wellbeing, can be measured by the human development
index (HDI), proposed by the United Nations. The HDI consists
of three dimensions: life expectancy, education, and a decent
standard of living (UNDP, 2023). This index takes values from
0 to 1, and when it is close to 1, it indicates that the inhabitants
and their country are more developed. Table 2 shows the
15 most important economies/countries in 2021 based on
GDP, as well as population, HDI, and the generation of
mismanaged plastic waste (MPW). MPW is defined as plastic
waste that evades its adequate confinement in landfills,
incineration, or recycling and ends up exposed in soils and
oceans.

Considering the available information from 148 countries
(IMF, 2021; World Bank, 2021; World Population Review, 2023;
UNDP, 2023) (see Supplementary Table S1), it is possible to
reach important conclusions related to economic growth, the
generation of plastic waste, and population. By using an
association test for these non-normal data, significant
correlations were obtained for several scenarios (Table 3). A
positive correlation was found between GDP and MPW,
interpreted as a developed country generating more waste,
while MPW and HDI were negatively correlated, suggesting
that higher human wellbeing of inhabitants is associated with
lower generation of MPW. It must be noted that these two
associations were weak, with coefficients of
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0.4099 and −0.4548, respectively. Finally, the most significant
correlation was found between the population of countries and
MPW in the environment (coefficient 0.78), suggesting that the
number of people in a country could have a greater impact on
MPW generation than economic and industrial activities. The
countries that generate the most plastic waste are also the most
populated, such as China, India, and Brazil, with 12.2, 12.9, and
3.2 MT of MPW, respectively (World Population Review, 2023).

Worldwide plastic production reached 390.7 MT in 2021, with
China as the main producer, accounting for 32% of the total,
followed by North America and the European Union with 18%
and 15% respectively (Plastics Europe, 2019). It is necessary to
clarify that leading countries in plastic manufacture do not
necessarily generate MPW or contribute to MP/NP generation in
their territories, but rather in the countries to which they export the
raw material or finished products.

Among the strategies to dispose of plastic waste are recycling,
incineration, and landfills (the latter contaminating other matrices).
Globally, it has been estimated that only 9% of plastic waste is
recycled, 19% is incinerated, 49% is confined in landfills, and 22% is
misdisposed. North American and European Union countries use
landfills to dispose of up to 82% of their plastic waste. On the other
hand, the most populated countries and some others in Asia, Africa,
and Latin America misdispose up to 64% (OECD, 2019), indicating

that they lack adequate waste disposal strategies. A secondary
strategy to dispose of plastic waste is its commercialization,
which facilitates the management of large amounts of plastic
waste through exportation. However, when unusable plastic waste
is imported, both the Industry and the importing country face
disposal complications. Europe is a leader in the importation/
exportation of plastic waste, with an importation of 2.8 MT in
2022 (WEF, 2023).

In developing countries, where basic needs for food, safety,
housing, and even clothing have not been met, policies and
strategies for solving environmental problems take a secondary
place. This hypothesis is confirmed by the negative association
between MPW and HDI in Table 3. As a reflection of these
scenarios, in Latin America, Africa, and many Asian countries,
there are no adequate waste management programs or plans,
including for plastics. With the foregoing, it is fair that developed
countries and transnational companies that have historically
polluted and impacted ecosystems and human health should take
the lead in strategies against MP/NP, followed by the rest of the
world.

Conclusion

International legislation plays a crucial role in reducing and
mitigating the impact of microplastics and nanoplastics (MP/NP) on
ecosystems. Despite its progress, there are significant gaps in current
legislation. Wastewater treatment, purification of effluents, air
depuration, and food labeling regarding MP/NP content have not
been adequately addressed. Furthermore, the legislation lacks
specific regulations for MP/NP generated from textiles and

TABLE 2 Population, human development index and mismanaged plastic waste of the 15 countries with the highest gross domestic product.

Country GDP (billion USD) Population HDI MPW generation (million ton)

United States 23 315 331 894 000 0.921 267.4

China 17 759 1 412 360 000 0.768 12 272.2

Japan 5 005 125 682 000 0.925 35.6

Germany 4 262 83 196 000 0.942 50.6

India 3 150 1 407 564 000 0.633 12 994.1

UK 3 123 67 327 000 0.929 29.9

France 2 957 67 750 000 0.903 27.7

Italy 2 115 59 110 000 0.895 38.8

Canada 2 001 38 246 000 0.936 23.5

Russia 1 836 143 449 000 0.822 363.3

Brazil 1 648 214 326 000 0.754 3 296.7

Australia 1 646 25 688 000 0.951 5.2

Spain 1 428 47 416 000 0.905 20.3

Mexico 1 272 126 705 000 0.758 430.6

Indonesia 1 187 273 753 000 0.705 824.2

GDP, Gross domestic product; HDI, Human development index; MPW, Mismanaged plastic waste. Available data from 2021 (IMF, 2021; World Bank, 2021; UNDP, 2023; World population

review, 2023).

TABLE 3 Spearman coefficients of MPW correlated to GDP, population and HDI.

MPW vs. GDP Population HDI

Coefficient 0.4099 0.7891 −0.4548

p-value 0.0000 0.0000 0.0000
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vehicle tires. To effectively address the issue of MP/NP, three main
areas of focus are required: Understanding the impact of MP/NP on
human health, developing purification technologies for
contaminated water, air, and soil, and promoting the
development of biodegradable alternatives to plastic. The issue of
MP/NP requires a multidisciplinary approach involving
collaboration between authorities, industry, the scientific
community, and the general public. The scientific community
should conduct further research on the health effects of different
types of plastics, including ingestion, inhalation, and dermal
absorption. Standardized protocols for detecting MP/NP in
biological samples (animals and humans) should be established,
and the risk factors associated with MP/NP exposure should be
assessed. Current regulations related to drinking water quality
should consider MP/NP as contaminants, as well as efforts
should be made to develop and implement technologies for the
detection and removal of MP/NP from drinking water sources.
Additionally, more research is needed to understand the presence
and transport of MP/NP in the atmosphere, as well as the potential
risks associated with inhaling these particles. Socio-economic factors
play a significant role in plastic waste generation. The most
populated countries contribute to plastic waste generation in
their own territories, on the other hand, developed and
industrialized countries are leaders in plastic manufacturing. All
of them contribute to MP/NP generation, nevertheless, developing
countries face challenges in implementing waste management
strategies due to limited resources and competing priorities.
International cooperation and support from developed countries
and transnational organizations are necessary to assist developing
nations in improving waste management practices.
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