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Introduction: With the increasingly serious problem of antiviral drug resistance,

drug repurposing o�ers a time-e�cient and cost-e�ective way to find potential

therapeutic agents for disease. Computational models have the ability to quickly

predict potential reusable drug candidates to treat diseases.

Methods: In this study, two matrix decomposition-based methods, i.e., Matrix

Decomposition with Heterogeneous Graph Inference (MDHGI) and Bounded

Nuclear Norm Regularization (BNNR), were integrated to predict anti-viral drugs.

Moreover, global leave-one-out cross-validation (LOOCV), local LOOCV, and

5-fold cross-validation were implemented to evaluate the performance of the

proposed model based on datasets of DrugVirus that consist of 933 known

associations between 175 drugs and 95 viruses.

Results: The results showed that the area under the receiver operating

characteristics curve (AUC) of global LOOCV and local LOOCV are 0.9035

and 0.8786, respectively. The average AUC and the standard deviation of the

5-fold cross-validation for DrugVirus datasets are 0.8856 ± 0.0032. We further

implemented cross-validation based on MDAD and aBiofilm, respectively, to

evaluate the performance of the model. In particle, MDAD (aBiofilm) dataset

contains 2,470 (2,884) known associations between 1,373 (1,470) drugs and 173

(140) microbes. In addition, two types of case studies were carried out further

to verify the e�ectiveness of the model based on the DrugVirus and MDAD

datasets. The results of the case studies supported the e�ectiveness of MHBVDA in

identifying potential virus-drug associations as well as predicting potential drugs

for new microbes.

KEYWORDS

drug, virus, association prediction, matrix decomposition, Bounded Nuclear Norm

Regularization, ensemble learning

Introduction

The lives of humans and other higher animals are closely related to microbial

communities that include bacteria, archaea, viruses, fungi, and protozoa (Sommer and

Bäckhed, 2013). On the earth, the number of viruses is dozens of times higher than

that of bacteria (Lawrence et al., 2009). No surprise, viruses are widely distributed in the

environment and biological tissues, including water, soil, and human bodies (Wigington

et al., 2016). By infecting host cells and proliferating in host cells, viruses can cause a variety

of human diseases (Maarouf et al., 2018). For example, the spike protein of Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mediates SARS-CoV-2 entry into cells

and can infect bronchial epithelial cells, pneumocytes, and upper respiratory tract cells in

humans (Shang et al., 2020). Thus, SARS-CoV-2 can cause respiratory lesions and lung
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injuries (V’kovski et al., 2021). Besides, the Ebola virus (EBOV) can

enter the body through broken skin or viamucosal surfaces, which

further results in EBOV infections (Dowell et al., 1999). EBOV

infections are able to cause fever, mucosal hemorrhages, and even

death (Rivera and Messaoudi, 2016).

As we all know, the outbreak of SARS-CoV-2 in Wuhan,

China, in December 2019 posed an enormous public health

threat and a pandemic threat (Lu et al., 2020). Hoffmann et al.

(2020) found camostat mesylate could prevent SARS-CoV-2 from

entering the host cell by inhibiting the serine protease TMPRSS2.

Moreover, ZIKV can cause serious neurological complications,

such as Guillain-Barré syndrome and meningoencephalitis (Cao-

Lormeau et al., 2016). The study by Zhou et al. (2017) showed

that hippeastrine hydrobromide and amodiaquine dihydrochloride

dihydrate could inhibit ZIKV infection in human cortical neural

progenitor cells. Obviously, there is an urgent need to find

effective antiviral drugs. Identifying virus-drug associations not

only helps understand the mechanisms of interactions between

viruses and drugs but also contributes to the discovery of potential

antiviral drugs.

Drug discovery, one of the main goals of pharmaceutical

sciences, is an interdisciplinary field that includes basic sciences

such as biology, chemistry, physics, and statistics (Liu et al., 2016).

There are currently two main challenges to drug development.

On the one hand, the development of a drug usually takes a

long time from the start of development to obtain marketing

approval (Parvathaneni et al., 2019). On the other hand, more

and more cases show that drug resistance has begun to appear,

posing a serious threat to human health (Ramirez et al., 2016). For

example, Acyclovir (ACV) is an effective drug for the treatment

of herpes simplex virus (HSV) infection (Piret and Boivin,

2016). However, for serious infections in immunocompromised

patients, long-term use of ACV can cause the development of

drug resistance (Jiang et al., 2016). The emergence of ACV

resistance made the treatment of HSV infection more difficult

(Jiang et al., 2016). In order to solve these issues, drug

combination therapies have been used to treat multiple complex

diseases such as cancer and hypertension (Wang et al., 2017).

In addition, drug repurposing, also called drug repositioning,

is based on the idea of using existing drugs to treat emerging

and challenging diseases (Pushpakom et al., 2019). For drug

combination therapies and drug repositioning, it is crucial to

identify virus–drug associations.

Identifying virus-related drugs can not only help understand

the mechanisms of interactions between viruses and drugs but

also contribute to the discovery of potential antiviral drugs.

Since traditional laboratory methods are time-consuming and

costly, numerous computational models have been proposed to

predict potential associations between viruses and drugs (Xu

et al., 2023). It is extremely urgent to develop efficient calculation

algorithms to predict potential virus–drug associations. Recently,

some computational models have been proposed to effectively

identify the potential associations between drugs and viruses. For

example, Peng et al. (2020) proposed a virus–drug association

prediction model of VDA-RLSBN based on regularized least

squared (RLS) classifier and bipartite local model. For a given

virus, its related drugs can be predicted by RLS based on

original association information and the kernel matrix that can

be obtained from virus similarity. In the same way, based on

drug similarity, drug-related viruses can be identified by RLS.

At last, an integrated strategy was implemented to integrate the

two predicted scores. Besides, Zhou et al. (2020) developed a

computational model of virus–drug association prediction based

on the KATZ method (VDA-KATZ) to identify potential antiviral

drugs against SARS-CoV-2. KATZ is a network-based method

that calculates the similarity of nodes by considering step size

and the number of walks between nodes in heterogeneous

networks (Katz, 1953). Moreover, Long et al. (2020) proposed a

model of a graph convolutional network (GCN) for predicting

human Microbe-Drug Associations (GCNMDA). In the model,

based on drug and microbe similarity, random walk with

restart was implemented to effectively capture valuable features

for drugs and microbes, respectively. Then, GCN was used

to learn representations for drugs and microbes. At last, an

attention mechanism was designed in the conditional random

field layer for aggregating representations of neighborhoods.

In 2021, Long and Luo (2021) also presented a model of

Heterogeneous Network Embedding Representation for Microbe-

Drug Association prediction (HNERMDA). First, drug–drug

interactions, microbe–microbe interactions, and known microbe–

drug associations were integrated to build a heterogeneous

network. Second, metapath2vec was adopted to study low-

dimensional embedding representations for both drugs and

microbes. Finally, a bipartite network recommendation algorithm

was carried out to predict new microbe–drug associations. In

addition, in 2022, Ma and Liu (2022) developed a Weighted

Hypergraph Generalized Matrix Factorization model for Microbe-

Drug Association prediction. In this model, microbe and drug

hypergraph were constructed using K-nearest neighbors based

on a variety of biological data. Then, microbe-weighted and

drug-weighted hypergraphs were calculated by the method of

simplicity volume based on microbe and drug hypergraphs. At

last, potential microbe–drug associations can be inferred by the

generalized matrix factorization based on the microbe-weighted

and drug-weighted hypergraphs. In 2023, Huang et al. (2023)

proposed a novel prediction framework based on the Graph

Normalized Auto-Encoder to predict Microbe-Drug Associations

(GNAEMDA). First, multi-modal attributes of microbes and drugs

were constructed using multiple similarity data for microbes

and drugs. Subsequently, the microbe–drug association network

and multi-modal attributes of microbes and drugs were used

as the input of the graph normalized convolutional network

(GNCN). Second, the node embedding matrix of the microbe-

drug association was calculated by GNCN. Finally, the potential

microbe–drug associations were predicted based on the microbe–

drug association graphs by using the inner product decoder.

In the same year, Huang et al. (2023) proposed a variational

GNAEMDAmodel (VGNAEMDA) for microbe–drug associations.

Different from GNAEMDA, a residual module was added to the

GNCN (RGNCN). The node embedding matrix of the graph for

microbe–drug association was calculated by using GNCN and

RGNCN. Subsequently, potential microbe–drug associations were

identified by using inner product decoder. Moreover, Tian et al.

(2023) proposed a novel method that employs Structure-enhanced

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1179414
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Qu et al. 10.3389/fmicb.2023.1179414

Contrastive learning and Self-paced negative sampling strategy to

identify potential Microbe-Drug Associations. In this model, based

on the connection mode of different nodes in the MDA networks,

two types of meta-path-inducted networks for microbes, and two

types of meta-path-induced networks for drugs were constructed,

respectively. Subsequently, the node embedding representations of

integrated microbe similarity networks, integrated drug similarity

networks, two types of meta-path-induced network for microbes,

and two types of meta-path-induced networks for drugs were

learned through GCNs, respectively. For microbes (drugs), based

on different microbe (drug) meta-path-induced networks, the final

embeddings of microbes (drugs) were calculated by semantic level

attention. Moreover, the structure-enhanced contrastive strategy

employed the final embedding of microbes (drugs) calculated from

different microbe meta-path-induced networks to enhance the

node embedding representations of microbes (drugs) learned from

the integrated microbe (drug) similarity network as the final node

representations of microbes (drugs). Furthermore, the values for

all the candidate negative microbe–drug association pairs were

calculated by the multilayer perceptron (MLP) classifier. At last,

the final embedded representations of microbes and drugs were

input to the MLP decoder, and then the microbe–drug association

probabilities could be obtained.

In this study, we developed an integrated model, named

MHBVDA, to identify potential virus–drug associations based

on Matrix Decomposition with Heterogeneous Graph Inference

(MDHGI) and Bounded Nuclear Norm Regularization (BNNR).

In MDHGI, based on the new adjacency matrix of virus-drug

associations acquired from matrix decomposition by using the

sparse learning method, a two-layer heterogeneous graph inference

was constructed to predict potential virus-drug associations. In

BNNR, based on the matrix built by integrating multi-source

data, a target equation that completed this matrix was constructed

by minimizing its nuclear norm. Then, the alternating direction

method of multipliers was carried out to minimize the nuclear

norm and gain predicted scores. At last, an ensemble learning

strategy was employed to integrate the two different prediction

models. To evaluate the performance of MHBVDA, global leave-

one-out cross-validation (LOOCV) and local LOOCV as well as

5-fold cross-validation were implemented based on the dataset

of DrugVirus (Long et al., 2020). Experimental results showed

that the area under the receiver operating characteristics curves

(AUC) of global LOOCV and local LOOCV are 0.9035 and

0.8786, respectively. The average AUC and the standard deviation

of the 5-fold cross-validation are 0.8856 ± 0.0032. In order to

evaluate the applicability of the model in other datasets, we

also implemented LOOCV and 5-fold cross-validation on the

other two datasets of MDAD (Sun et al., 2018) and aBiofilm

(Rajput et al., 2018). At last, compared with the recent six

models, MHBVDA obtained better performance based on the

datasets of MDAD and aBiofilm, respectively. Furthermore, two

types of case studies were implemented based on DrugVirus and

MDAD datasets to evaluate the performance of the MHBVDA.

In the case studies, the results showed that 19, 25, 24, and

22 out of the top 50 predicted drugs for ZIKV, SARS-CoV-2,

HIV-1, and Pseudomonas aeruginosa were confirmed, respectively.

MHBVDA could be a promising tool for predicting potential

virus-drug associations.

Materials and methods

Dataset

Virus–drug association
The dataset of known virus–drug association information

used in this model was collected from the DrugVirus database

(Long et al., 2020). The dataset includes 933 known virus–drug

associations between 175 drugs and 95 viruses. The adjacency

matrix A(nd × nv) was further constructed to store virus–drug

association information. In the matrix of A, nd represents the

number of drugs and nv denotes the number of viruses. If the drug

is di related to virus vj, the entity A(i, j) is 1, otherwise 0.

A(i, j) =

{

1, if drug di associated with virus vj
0, otherwise

(1)

Drug chemical structure similarity
A chemical structure search server of SIMCOMP (http://

www.genome.jp/tools/simcomp/) was used to calculate the drug

chemical structure similarity (Hattori et al., 2003; Kanehisa et al.,

2008, 2019). SIMCOMP treats drugs as graphs and computes a

similarity score between the two drugs based on their graphs. First,

we downloaded MOL files of drugs (compounds) from the KEGG

DRUG Database (https://www.genome.jp/kegg/drug/). Then, we

imported MOL files of drugs into SIMCOMP that can compute a

global similarity based on the common substructures of two drugs

(Hattori et al., 2003). The matrix SS1 was built to save chemical

structure similarity and entity SS1(i, j) represented the chemical

structure similarity between drug di and drug dj.

Drug side e�ect similarity
Data of drug side effects used in this study were obtained from

SIDER that is a drug side effect database (http://sideeffects.embl.

de/) (Kuhn et al., 2016). We used M (i) to represent the set of side

effects related to drug dj and M
(

j
)

to denote the set of side effects

related to drug dj. The entity SS2
(

i, j
)

was used to represent the side

effect similarity between drug di and drug dj. If two drugs share

more side effects, their side effects similarity is more similar. If they

have no common side effects, the value of side effects similarity is

0. Finally, Jaccard score was employed to calculate the similarity of

the drugs side effects (Gottlieb et al., 2011). The calculation formula

is as follows.

SS2(i, j) = Jaccard score =

∣

∣M(i) ∩M(j)
∣

∣

∣

∣M(i) ∪M(j)
∣

∣

(2)

Virus sequence similarity
In this study, we downloaded the complete genome sequences

of 95 viruses in FASTA format from the National Center for

Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.

gov/). Subsequently, we used the multiple sequence alignment

software MAFFT to align the complete genome sequence of the

viruses (Katoh et al., 2002). After aligning the viral complete

genome sequence using MAFFT, we employed BioEdit, a gratis
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sequence analysis tool, to obtain the virus sequence similarity

matrix (Tippmann, 2004). Based on the concept that the more

sequences two viruses share, the more similar they are. If two

viruses have no common sequences, their sequence similarity value

is 0. Here, the matrix MV was defined to store virus sequence

similarity and MV
(

vi, vj
)

represented the sequence similarity

between virus vi and virus vj. If a virus has no complete genome

sequence in NCBI, the sequence similarity value between the virus

and other viruses is set to 0.

Gaussian interaction profile kernel similarity for
drugs and viruses

Based on the idea that similar viruses (drugs) are associated

with similar drugs (viruses), a Gaussian interaction profile kernel

similarity for drugs and viruses was constructed in the model (Van

Laarhoven et al., 2011). For the virus–drug associationmatrixA, we

used IV
(

di
)

to represent the i-th row vector and IV
(

vj
)

to indicate

the j-th column vector. The Gaussian interaction profile kernel

similarity for viruses and drugs can be calculated as equations (3)

and (4), respectively.

GV
(

vi, vj
)

= exp
(

−βv

∥

∥IV (vi) − IV
(

vj
)
∥

∥

2
)

(3)

GD
(

di, dj
)

= exp
(

−βd

∥

∥IV
(

di
)

− IV
(

dj
)∥

∥

2
)

(4)

where
∥

∥IV (vi) − IV
(

vj
)
∥

∥

2
can be regarded as the square of the

Euclidean distance between feature vector and feature vector

IV
(

vj
)

, and
∥

∥IV
(

di
)

− IV
(

dj
)∥

∥

2
can be regarded as the square of

the Euclidean distance between feature vector and feature vector

IV
(

dj
)

; the parameters βv and βd were defined as follows:

βv=β ′
v/

(

1

nv

nv
∑

i=1

‖IV (vi)‖

2)

(5)

βd=β ′
d/





1

nd

nd
∑

i=1

∥

∥IV
(

di
)
∥

∥

2


 (6)

where ‖•‖2 is L2-norm and β ′
d
and β ′

m are set as 1.

Integrated similarity for viruses and drugs
In order to obtain the integrated drug similarity, we

integrated drug chemical structure similarity, drug side effect

similarity, and the Gaussian interaction profile kernel similarity

of the drug. If drugs di and dj have chemical structural

similarity or side effect similarity, the integrated drug similarity

is the average of drug chemical structural similarity and

drug side effect similarity. Otherwise, integrated drug similarity

is equal to the value of the Gaussian interaction profile

kernel similarity of the drug. The formula is as follows:

SD(di, dj) =

{

SS1(di ,dj)+SS2(di ,dj)

2 di and dj have chemical structure or side effect similarity

GD(di, dj) otherwise
(7)

For virus similarity, we integrated the virus sequence similarity

and the Gaussian interaction profile kernel similarity of virus

for obtaining the integrated virus similarity. The formula is

as follows:

SV(vi, vj) =

{

MV(vi, vj) vi and vj have sequence similarity

GV(vi, vj) otherwise
(8)

MHBVDA

In this study, we constructed an integrated model, named

MHBVD, for predicting potential virus–drug association

based on MDHGI (Chen et al., 2018b) and BNNR (Chen

et al., 2021). The flowchart of the MHBVDA is shown

in Figure 1.

Matrix decomposition with heterogeneous graph
inference

Some virus–drug associations used in the model may be

redundant or missing. Therefore, we decomposed the adjacency

matrix A of virus–drug associations into two portions. The first

portion is a product of the original matrix and a low-rank matrix

that includes non-redundant data. The second portion is a sparse

matrix in which elements are mostly zero. Here, we used the

nuclear norm for X to obtain a low-rank matrix and used sparse

norm for E to gain a sparse matrix. The decomposition equation is

as follows:

min
X,E

‖X‖∗ + α‖E‖2,1 s.t. A = AX + E

‖X‖∗=
∑

i σi
(

i.e., σi is the singular value of X
)

‖E‖2,1=
∑n

j=1

√

∑n
i=1

(

Eij
)2

(9)

In Equation (9), α is used to control the weights of X and E.

Equation (9) can be rewritten as shown below:

min
X,E,J

‖J‖∗ + α‖E‖2,1 s.t. A = AX + E,X = J (10)

In simple terms, Equation (10) could be regarded as a

constraint and convex optimization problem.We employed inexact

augmented Lagrange multipliers (IALM) (Meng et al., 2014) to

solve the problem as follows:

L = ‖J‖∗ + α‖E‖2,1 + tr
(

YT
1 (A− AX − E)

)

+ tr
(

YT
2 (X − J)

)

+
µ

2

(

‖A− AX − E‖2F + ‖X − J‖2F
)

(11)

In Equation (11), µ is the penalty parameter and µ ≥ 0. We

could obtain two solutions defined as X* and E* from Equation

(11), and detailed solution steps are shown in Algorithm: IALM

(see Table 1). Then, we built a new virus–drug association matrix

A∗ by using AX∗. Subsequently, the potential probability of drugs

associated with viruses could be predicted by incorporating the

new virus–drug association matrix A∗, integrated drug similarity

SD, and integrated virus similarity SV into a heterogeneous graph
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FIGURE 1

We constructed an integrated model, named MHBVDA, for predicting potential virus–drug association based on MDHGI (Chen et al., 2018b) and

BNNR (Chen et al., 2021).

TABLE 1 Computational procedures of the inexact augmented Lagrange

multipliers (IALM) algorithm.

Algorithm: IALM

Input: known virus–drug adjacency matrix A, parameters

α=0.1

Output: X∗ and E∗

Initialize: X = 0,E = 0,Y1 = 0,Y2 = 0,µ = 10−4 , maxµ =

1010 , ρ = 1.1

while ‖A− AX − E‖∞ ≥ 10−6 and ‖X − J‖∞ ≥ 10−6 do

(U, S,V) = svd((X + Y2/µ) and J = USµ−1 [S]VT

X = (I + ATA)−1(ATA− ATE+ J + (ATY1 − Y2)/µ)

E = argmin α
µ
‖E‖2,1 +

1
2
‖E− (A− AX + Y1/µ)‖

2
F

Y1 = Y1 + µ(A− AX − E),Y2 = Y2 + µ(X − J)

µ = min(maxµ , ρµ)

end while

and further using heterogeneous graph inference. We defined

the potential association probability between virus v and drug

as follows:

P
(

v, d
)

=

nv
∑

i=1

nd
∑

j=1

SV (vi, v) ∗ A
∗
(

vi, dj
)

∗ SD
(

dj, d
)

(12)

where vi denotes i-th virus in DrugVirus dataset and dj represents

j-th drug in DrugVirus dataset.

Moreover, integrated drug similarity (SD) and integrated virus

similarity (SV) are normalized to accelerate convergence of p as

follows (Wang et al., 2013):

SV
(

vi, vj
)

=
SV
(

vi, vj
)

√

∑nv
l=1 SV (vi, vl)

√

∑nv
l=1 SV

(

vj, vl
)

(13)

SD
(

di, dj
)

=
SD
(

di, dj
)

√

∑nd
l=1 SD

(

di, dl
)

√

∑nd
l=1 SD

(

dj, dl
)

(14)

Furthermore, we used an iterative method to calculate potential

association probability between drugs and viruses as Equation (15).

Pi+1 = aSV × Pi × SD+ (1− a)A∗ (15)

where Pi is equal to A∗ when i is equal to 0. The value of the decay

factor α was set to 0.4 (Wang et al., 2013). When the difference

between Pi and Pi+1 is < 10−6 calculated by L1 norm, the iteration

was terminated.

Bounded Nuclear Norm Regularization
Moreover, we also used the matrix completion method of

BNNR to predict potential virus–drug associations. We first

constructed a heterogeneous graph of virus–drug similarity by

integrating virus similarity, drug similarity, and known virus–drug

associations. Subsequently, a target matrix is defined to denote a

heterogeneous graph of virus–drug associations as follows:

M =

[

SD AT

A SV

]

(16)

The goal of defining M is to complete the unknown values in

A. Assuming target matrix is low rank, matrix completion problem

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1179414
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Qu et al. 10.3389/fmicb.2023.1179414

can be formulated as follows (Ramlatchan et al., 2018):

min rank(X)

s.t. P�(X) = P�(M)
(17)

where M ∈ R(nd+nv)×(nd+nv) is the matrix to be completed,

represents the number of virus, nd denotes the number of drug,

rank(·) represents the rank function, � is a set of index pairs

corresponding all known virus–drug associations in M, and P� is

a projection operator onto � .

(P�(X))ij =

{

Xij, (i, j) ∈ �

0, (i, j) /∈ �
(18)

However, rank minimization problem is NP-hard and rank

function in Equation (21) is non-convex (Sun andDai, 2015). Based

on pervious study (Candes and Recht, 2013), Equation (21) can be

relaxed as shown below:

min
X

‖X‖∗

s.t. P�(X) = P�(M)
(19)

where ‖X‖∗ is nuclear norm of X.

Since data of virus and drug may exist noise, we reconstructed

the matrix completion model to tolerate noise as Equation (20)

(Candes and Plan, 2010).

min
X

‖X‖∗

s.t.
∥

∥P�(X)− P�(M)
∥

∥

F
≤∈

(20)

where ∈ denotes the noise level and ‖ · ‖F indicates

Frobenius norm.

As the noise level is unknown, selecting an appropriate

parameter is difficult (Chen et al., 2012). Here, we used soft

regularization term to solve the problem (Hu et al., 2012).

Moreover, a bounded constraint is added to Equation (19) for

predicted virus-drug associations with scores between 0 and 1,

with practical meaning. Thus, a bound nuclear norm regularization

method is presented to identify potential virus–drug associations in

Equation (21).

min
X

‖X‖∗+
α
2

∥

∥P�(X)− P�(M)
∥

∥

2

F

s.t. 0 ≤ Xij ≤ 1(0 ≤ i, j ≤ nv+ nd)
(21)

where α was used to balance nuclear norm and error term, 0 ≤

Xij ≤ 1 (0 ≤ i, j ≤ nv+ nd) represents all elements in x.

The alternating direction method of multipliers (ADMM) was

used to solve Equation (21). Then, we introduced an auxiliary

matrixW to optimize Equation (21) based on ADMM as follows:

min
X

‖X‖∗ +
α
2

∥

∥P�(W)− P�(M)
∥

∥

2

F

s.t. X = W

0 ≤ Wij ≤ 1 (0 ≤ i, j ≤ nv+ nd)

(22)

Based on Equation (22), we can obtain the augmented

Lagrangian function as follows:

L(W,X,Y ,α,β) = ‖X‖∗ +
α
2

∥

∥P�(W)− P�(M)
∥

∥

2

F

+ Tr(YT(X −W))+ β
2 ‖X −W‖2F

(23)

TABLE 2 Computational procedures of the Bounded Nuclear Norm

Regularization algorithm.

Algorithm: BNNR

Input: The virus similarity matrix SV ∈ R
nv×nv , the drug

similarity matrix SD ∈ R
nd×nd ,

the virus–drug association matrix A ∈ R
nd×nv , parameters

α, β, tol1 , tol2 .

Output: The predicted association matrix of virus–drug A∗ .

Initialize: X1 = P�(M), W1 = X1 , Y1 = X1 , γ=1, k =

1, M =







SD AT

A SV






;

while

d1k+1 =
‖Xk+1−Xk‖F

‖Xk‖F

> tol1 , d2k+1 =
|d1k+1−d1k|
max{|d1k|,1}

> tol2 do

W∗ = (I + α
β
P∗�P�)

−1( 1
β
Yk +

α
β
P∗�P�(M)+ Xk)

Wk+1 = Q[0,1](W
∗);

Xk+1 = D 1
β
(Wk+1 −

1
β
Yk);

Yk+1 = Yk + γβ(Xk+1 −Wk+1);

k = k+ 1;

end while






SD∗ AT∗

A∗ SV∗






= Wk ;

return A∗ .

where Y is the Lagrange multiplier and β > 0 represents penalty

parameter. Then, we employed an iterative method to minimize

function (23). At the k-th iteration, BNNR was used to compute

Wk+1, Xk+1, and Yk+1 in turn. The specific process of computation

can be found in the study written by Yang et al. (2019).

When the iteration is terminated, we can obtain matrix Wk

as follows.

Wk =

[

SD∗ A∗T

A∗ SV∗

]

(24)

where A∗ denotes predicted virus–drug association matrix.

In BNNR, the parameters of α, β , γ , tol1, tol2 are set as

1, 10, 1, 2 × 10−3, 10−5, respectively, according to the published

literature (Yang et al., 2019). Computational procedure of the

BNNR algorithm is shown in Table 2.

Ensemble learning
Because the generalization ability of a single predictor may

be weak, ensemble learning is usually employed to integrate weak

predictors to achieve stronger predictors (Polikar, 2006). Over the

last couple of decades, Ensemble learning has been successfully

applied in many fields including data stream classification, feature

selection, and association prediction in bioinformatics (Gomes

et al., 2017; Chen et al., 2018c; Lin et al., 2019). In this study, we

employed the ensemble learning method to integrate MDHGI and

BNNR for predicting potential virus–drug associations. To keep the

predicted scores within 0 to 1, we normalized the scores obtained
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by MDHGI and BNNR as follows:

P =
(tanh(0.1× ( P−µ1

σ1
))+ 1)

2
(25)

A* =
(tanh(0.1× (A

∗−µ2
σ2

))+ 1)

2
(26)

where µ1 and σ1 are mean and standard deviation obtained by

the MDHGI, µ2 and σ2 are mean and standard deviation obtained

by the BNNR. Then, we allocated different weights for MDHGI

and BNNR to obtain better prediction performance. Finally, S

was created to save the final score matrix of potential virus–drug

associations, which can be described as follows:

S = w1P + w2A
∗ (27)

where w1 represents weight for MDHGI and w2 denotes weight for

BNNR. The sum of w1 and w2 is equal to 1.

Results

Performance evaluation

Comparison with other baseline methods under
DrugVirus dataset

In this study, we used global LOOCV, local LOOCV, and 5-

fold cross-validation to evaluate the performance of MHBVDA

based on the DrugVirus dataset that contains 933 known virus–

drug associations between 175 drugs and 95 viruses. In the global

LOOCV, each known virus–drug association was regarded as a

test sample in turn; the remaining known virus–drug associations

were used as training samples, and all unknown virus–drug pairs

were regarded as candidate samples. However, in the local LOOCV,

the candidate samples only included these virus–drug pairs where

the virus had no known association with the investigated drug

in the test samples. Then, we would obtain the ranking of test

samples by comparing the score of each test sample with the

scores of all candidate samples. We considered the MHBVDA

successful in predicting test samples once the ranking of the

test sample surpassed the pre-determined threshold. Furthermore,

we drew the receiver operating characteristics (ROC) curve by

plotting the true positive rate (TPR, sensitivity) against the false

positive rate (FPR, 1-specificity) at different thresholds. Sensitivity

indicates the percentage of test samples ranked over the given

threshold, while specificity denotes the percentage of negative

virus–drug associations whose ranking was lower than the given

threshold. AUC equal to 1 indicates that the model has perfect

prediction performance, while AUC equal to 0.5 means that

the model’s prediction is random. For DrugVirus, the result

showed that MHBVDA obtained an AUC of 0.9035 in global

LOOCV. Then, we compared the performance of MHBVDA

with the other six classical models: RLSMDA (Chen and Yan,

2014), HGIMDA (Chen et al., 2016), IMCMDA (Chen et al.,

2018a), MDHGI (Chen et al., 2018b), BNNRSMMA (Chen et al.,

2021), and LAGCNMDA (Yu et al., 2021). The evaluation result

showed that the AUCs of HGIMDA (0.7048), IMCMDA (0.6901),

RLSMDA (0.7660), BNNRSMMA (0.9032), MDHGI (0.8518), and

LAGCN (0.7989) are less than MHBVDA (see Figure 2). In the

local LOOCV, MHBVDA derived better performance with an

AUC of 0.8786 than HGIMDA (0.7537), IMCMDA (0.7425),

RLSMDA (0.7249), BNNRSMMA (0.8776), MDHGI (0.8509), and

LAGCNMDA (0.7749) (see Figure 2).

For 5-fold cross-validation, we randomly divided all known

virus–drug association pairs into five subsets, of which four

subsets contained 187 known virus–drug associations, respectively,

whereas one contained 185 known virus–drug associations. Then,

each subset was used as a test sample in turn, and the other

four subsets were used as training samples. Similarly, all unknown

virus–drug pairs were considered candidate samples. Subsequently,

we obtained all test samples scores and the score ranking of each

test sample by comparing scores between each test sample and

all candidate samples. The prediction process of 5-fold cross-

validation was repeated 100 times to avoid bias caused by random

sample divisions. The results showed that the AUCs and standard

deviations of HGIMDA (0.6995 ± 0.0024), IMCMDA (0.6776 ±

0.0034), RLSMDA (0.7238 ± 0.0246), BNNRSMMA (0.8830 ±

0.0034), MDHGI (0.8293 ± 0.0033), and LAGCNMDA (0.7999 ±

0.0016) are less than MHBVDA (0.8856± 0.0032) (see Table 3).

The results showed that the AUCs of cross-validation for

MHBVDA are higher than other compared algorithms based on the

DrugVirus dataset. The outcome occurs because MHBVDA is an

ensemble learning model based on BNNR and MDHGI. Therefore,

the AUCs of cross-validation for MHBVDA are higher than those

of HGIMDA, BNNRSMMA, and MDHGI. In addition, because

the generalization ability of individual predictors is poor, ensemble

learning is usually used to integrate several predictors to obtain a

stronger predictor. Not surprisingly, the AUCs of cross-validation

for MHBVDA are higher than those of IMCMDA, RLSMDA,

and LAGCNMDA. In particle, though deep neural networks are

powerful, it is well known that a huge amount of training data

is usually required for training. Therefore, limited amounts of

samples in the DrugVirus dataset may lead to inferior performance

of deep learning-based models of LAGCNMDA.

Comparison with other baseline methods under
di�erent datasets

As we all know, microbe communities, including viruses,

bacteria, fungi, archaea, and protozoa, have a close relationship

to human health (Sommer and Bäckhed, 2013). To further

evaluate the predictive performance of MHBVDA, we carried

out LOOCV and 5-fold cross-validation based on two other

datasets of MDAD and aBiofilm, respectively. The MDAD dataset

was constructed by collecting 2,470 microbe–drug associations

between 173 microbes and 1,373 drugs from the MDAD database

(https://github.com/Sun-Yazhou/MDAD) (Sun et al., 2018). For

MDAD, in the global LOOCV, MHBVDA obtained an AUC of

0.9191, which is better than the AUCs of HGIMDA (0.8173),

IMCMDA (0.7891), RLSMDA (0.6430), BNNRSMMA (0.8236),

MDHGI (0.8446), and LAGCNMDA (0.9018) (see Figure 3). In

the local LOOCV, MHBVDA derived better performance with

AUC of 0.9127 than HGIMDA (0.8301), IMCMDA (0.8035),

RLSMDA (0.6371), BNNRSMMA (0.7860), MDHGI (0.8537),

and LAGCNMDA (0.8902) (see Figure 3). In the 5-fold cross-

validation, AUCs and standard deviations of HGIMDA (0.8152 ±
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FIGURE 2

Performance comparison between MHBVDA and previous five association prediction models (MDHGIMDA, LAGCNMDA, BNNRSMMA, HGIMDA,

IMCMDA, and RLSMDA) in AUC values of global LOOCV (left) and local LOOCV (right) based on the DrugVirus dataset.

TABLE 3 Performance comparison between MHBVDA and previous five association prediction models (MDHGIMDA, LAGCNMDA, BNNRSMMA,

HGIMDA, IMCMDA, and RLSMDA) in AUC values and standard deviations of 5-fold cross-validation based on datasets of DrugVirus, MDAD, and aBiofilm.

Datasets Performance Methods

MHBVDA HGIMDA IMCMDA RLSMDA BNNRSMMA MDHGI LAGCNMDA

DrugVirus AUC 0.8856 0.6995 0.6776 0.7238 0.8830 0.8293 0.7999

SD 0.0032 0.0024 0.0034 0.0246 0.0034 0.0033 0.0016

MDAD AUC 0.8857 0.8152 0.7849 0.6571 0.7766 0.8153 0.8982

SD 0.0018 0.0012 0.0025 0.0158 0.0018 0.0019 7.5868e-04

aBiofilm AUC 0.8871 0.8412 0.7509 0.6338 0.7340 0.8176 0.9141

SD 0.0021 0.0014 0.0073 0.0140 0.0073 0.0026 6.8556e-04

The bold values represent the performance of the proposed method MHBVDA for the identification of potential virus–drug associations on three different datasets.

0.0012), IMCMDA (0.7849± 0.0025), RLSMDA (0.6571± 0.0158),

BNNRSMMA (0.7766 ± 0.0018), and MDHGI (0.8153 ± 0.0019)

are less than MHBVDA (0.8857 ± 0.0018) (see Table 3). Although

the AUCs and standard deviations of LAGCNMDA (0.8982 ±

7.5868e-04) are higher than those of MHBVDA, the global LOOCV

and local LOOCV results of MHBVDA are higher than those

of LAGCNMDA.

The dataset of aBiofilm includes 2,884 drug–microbe

associations that consist of 1,720 drugs and 140 microbes obtained

from the aBiofilm database (https://bioinfo.imtech.res.in/manojk/

abiofilm/) (Rajput et al., 2018). For the dataset of aBiofilm, in

the global LOOCV, MHBVDA derived better performance with

an AUC of 0.9246 than AUCs of HGIMDA (0.8482), IMCMDA

(0.7584), RLSMDA (0.6825), BNNRSMMA (0.7819), MDHGI

(0.8491), and LAGCNMDA (0.9178) (see Figure 4). In the

local LOOCV, MHBVDA obtained an AUC of 0.9103, which is

better than AUCs of HGIMDA (0.8837), IMCMDA (0.7718),

RLSMDA (0.6972), BNNRSMMA (0.7268), MDHGI (0.8707),

and LAGCNMDA (0.9022) (see Figure 4). In the 5-fold cross-

validation, AUCs and standard deviations of HGIMDA (0.8412 ±

0.0014), IMCMDA (0.7509± 0.0073), RLSMDA (0.6338± 0.0140),

BNNRSMMA (0.7340 ± 0.0073), and MDHGI (0.8176 ± 0.0026)

are less than AUCs and standard deviations of MHBVDA (0.8871

± 0.0021) (see Table 3). Similarly, although the AUCs and standard

deviations of LAGCNMDA (0.9141 ± 6.8556e-04) are higher than

those of MHBVDA, the global LOOCV and local LOOCV results

of MHBVDA are higher than those of LAGCNMDA.

The results showed that AUCs of LOOCV for MHBVDA are

higher than those of other compared algorithms based on MDAD

and aBiofilm datasets. However, AUCs of 5-fold cross-validation

for MHBVDA are less than LAGCNMDA based on MDAD and

aBiofilm datasets. The outcome occurs because LAGCNMDA is a

deep learning-based model for which a huge amount of training

data is usually required. The size of the MDAD and aBiofilm

datasets is larger than the DrugVirus dataset, which may cause

LAGCNMDA to have a higher AUC than MHBVD in 5-fold cross-

validation.

Statistical significance report on AUC values
We further evaluated the significance of performance

differences between MHBVDA and BNNRSMMA by using
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FIGURE 3

Performance comparison between MHBVDA and previous five association prediction models (MDHGIMDA, LAGCNMDA, BNNRSMMA, HGIMDA,

IMCMDA, and RLSMDA) in AUC values of global LOOCV (left) and local LOOCV (right) based on the MDAD dataset.

FIGURE 4

Performance comparison between MHBVDA and previous five association prediction models (MDHGIMDA, LAGCNMDA, BNNRSMMA, HGIMDA,

IMCMDA, and RLSMDA) in AUC values of global LOOCV (left) and local LOOCV (right) based on the aBiofilm dataset.

paired t-tests. For the DrugVirus dataset, the results showed

that the p-values between MHBVDA and BNNR were 0.9591

and 0.9008 based on global and local LOOCV, respectively. That

is because DrugVirus is a small sample dataset with only 933

known virus–drug associations, so there is no significant difference

between MHBVDA and BNNRSMMA on the DrugVirus dataset.

However, for the MDAD dataset, the p-values between MHBVDA

and BNNR were 2.7357e-14 and 2.0389e-04 based on global and

local LOOCV, respectively. For the aBiofilm dataset, the p-values

between MHBVDA and BNNR were 6.2742e-45 and 4.5957e-10

based on global and local LOOCV, respectively. The results showed

that MHBVDA is significantly different from BNNRSMMA based

on the datasets of MDAD and aBiofilm.

Discussing parameters of model

It is worth mentioning that MHBVDA is an integration model

based on MDHGI and BNNR by using ensemble learning. The

weight of MDHGI and BNNR w2 would affect the performance

of MHBVDA. To obtain better performance while ensuring that

the sum of w1 and w2 is equal to 1, we tested nine groups

of weights of and w2 with a range from 0.1 to 0.9 (step size

0.1), based on the global LOOCV of the DrugVirus, MDAD, and

aBiofilm datasets, respectively. Subsequently, we selected the best

performance weights from the tested nine groups for any of the

three datasets and applied them to 5-fold cross-validation and local

LOOCV. The result showed that the weights of MDHGI and BNNR
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TABLE 4 The top 50 predicted drugs against ZIKV.

Drug name Evidence Drug name Evidence

Didanosine Unconfirmed Enfuvirtide Unconfirmed

Artesunate Unconfirmed Irbesartan Unconfirmed

Labyrinthopeptin A1 PMID: 31666384 Homoharringtonine PMID: 33231855

Amiodarone Unconfirmed Clomipramine Unconfirmed

Inosine pranobex Unconfirmed Camostat Unconfirmed

Chlorpromazine PMID: 32210929 4-HPR (Fenretinide) PMID: 29051080

Doxycycline PMID: 30576587 Efavirenz PMID: 32326119

Itraconazole Unconfirmed Diphyllin PMID: 31501074

Azacitidine PMID: 29698664 Bortezomib PMID: 28531943

Anisomycin PMID: 3208140 Atovaquone PMID: 33371476

Isolanid (lanatoside C) Unconfirmed Apoptozole PMID: 31967789

Ivermectin PMID: 32942671 Clevudine Unconfirmed

Erlotinib Unconfirmed Emtricitabine Unconfirmed

Emodin PMID: 30641880 Entecavir Unconfirmed

Amprenavir Unconfirmed Formoterol Unconfirmed

Glycyrrhizin PMID: 33388394 Amantadine Unconfirmed

Gefitinib Unconfirmed Brequinar PMID: 27919709

Idoxuridine Unconfirmed Adefovir Dipivoxil Unconfirmed

Camptothecin Unconfirmed Filociclovir Unconfirmed

ABT-263 Unconfirmed Dasatinib Unconfirmed

Brincidofovir Unconfirmed Fluoxetine Unconfirmed

Foscarnet Unconfirmed Fosamprenavir Unconfirmed

5-Bromovinyldeoxyuridine Unconfirmed Benztropine Unconfirmed

Eflornithine PMID: 27535047 Favipiravir PMID: 29425176

Aprotinin Unconfirmed Asunaprevir PMID: 32488021

The first column records the top 25 drugs and the third column records the top 26–50 drugs.

are set at 0.3 and 0.7 (0.9 and 0.1, 0.9 and 0.1) for DrugVirus

(MDAD, aBiofilm).

Case studies

Two types of case studies were further implemented to validate

the prediction ability of the MHBVDA. In the first type of

case study, ZIKV, SARS-CoV-2, and HIV-1 from the DrugVirus

dataset were chosen as investigated viruses, respectively. We

ranked the investigated virus–drug pairs that have an unknown

association in descending order according to the scores predicted

by MHBVDA. Then, the number of the top 50 investigated

virus–drug associations would be confirmed by the literature.

In the second type of case study, Pseudomonas aeruginosa from

the MDAD dataset was chosen as the investigated microbe. We

removed all known associated drugs for Pseudomonas aeruginosa.

Then, we ranked the investigated microbe–drug pairs that have

an unknown association in descending order according to the

scores predicted by MHBVDA. Finally, the number of the top

50 investigated microbe–drug associations would be confirmed by

the literature and MDAD dataset. It is worth mentioning that the

prediction results presented in the case study were validated by

databases and published literature. For some predicted associations

that have not yet been validated through existing literature and

databases, it is our hope that biologists will conduct biological

experiments to further confirm them in the future.

ZIKV was first isolated from non-human primates in 1947

(Musso and Gubler, 2016). According to the study (Musso and

Gubler, 2016), ZIKV belongs to the Flaviviridae family and is

usually spread by mosquitoes. In addition, ZIKV infection could

cause sporadic febrile illness (Musso and Gubler, 2016). So far,

cases of ZIKV infection have been reported in Southeast Asia,

South America, North America, and other regions, posing a huge

threat to global public health (Wikan and Smith, 2016). In this

case, through the implementation of MHBVDA, ZIKV-related

drugs would be identified. Then, we ranked ZIKV-related drugs in

descending order according to the scores predicted by MHBVDA.

At last, the top 50 ZIKV–drug associations would be confirmed by

searching the literature on PubMed. The results showed that 19
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TABLE 5 The top 50 predicted drugs against SARS-CoV-2.

Drug name Evidence Drug name Evidence

Didanosine Unconfirmed Darunavir PMID: 32889701

Aciclovir Unconfirmed Bortezomib PMID: 32443911

Labyrinthopeptin A1 Unconfirmed Bevirimat Unconfirmed

Glycyrrhizin PMID: 33041173 Cidofovir Unconfirmed

Amiodarone PMID: 32737841 Isolanid (lanatoside C) Unconfirmed

Doxycycline PMID: 35602049 Fluoxetine PMID: 33723270

Berberine PMID: 32656311 4-HPR (Fenretinide) PMID: 32471278

Inosine pranobex PMID: 33339426 Emtricitabine PMID: 30903610

Azacitidine PMID: 33103107 Fosamprenavir PMID: 17547501

Alisporivir PMID: 32376613 Enfuvirtide Unconfirmed

Amprenavir PMID: 32607508 Benztropine Unconfirmed

Erlotinib Unconfirmed Diphyllin PMID: 33668694

Ivermectin PMID: 32513289 Bepridil PMID: 32511370

Eflornithine Unconfirmed Brequinar PMID: 36041646

Anisomycin Unconfirmed Chloroquine PMID: 32251731

EIPA (amiloride) Unconfirmed Dasatinib PMID: 32661494

Idoxuridine Unconfirmed Entecavir Unconfirmed

Hexachlorophene Unconfirmed Brecanavir Unconfirmed

ABT-263 Unconfirmed Favipiravir PMID: 32511380

Emodin PMID: 32194980 Apoptozole Unconfirmed

Foscarnet Unconfirmed Artesunate PMID: 33153922

Clevudine Unconfirmed Efavirenz Unconfirmed

Irbesartan Unconfirmed Adefovir Dipivoxil PMID: 34440200

Amantadine PMID: 33804989 5-Bromovinyldeoxyuridine Unconfirmed

The first column records the top 25 drugs and the third column records the top 26–50 drugs.

out of the top 50 drugs for ZIKV were confirmed (see Table 4).

For example, the predicted result showed that associations between

ZIKV and Labyrinthopeptin A1 (Laby A1) ranked third. Laby A1

is a prototype peptide of carbacyclic lantibiotics and has antiviral

activity for HIV (Férir et al., 2013). Oeyen et al. (2021) found

that Laby A1 can inhibit infection with ZIKV by employing time-

of-drug addition experiments. The association between ZIKV and

chlorpromazine was predicted and ranked sixth. Chlorpromazine

was synthesized in 1951 and used as a potentiator of general

anesthesia in 1952 (Ban, 2007). Persaud et al. (2018) demonstrated

that chlorpromazine can inhibit ZIKV in host cells by using a cell

viability assay.

We chose SARS-CoV-2 as the second case. As we all know, the

outbreak of SARS-CoV-2 at the end of 2019 posed a huge threat

to global public health (Zhu et al., 2020). After the spike protein

of SARS-CoV-2 enters cells, SARS-CoV-2 can lead to respiratory

lesions and lung damage (V’kovski et al., 2021). In this study,

we used MHBVDA to predict potential drugs for SARS-CoV-2.

Afterward, we sorted potential drugs associated with SARS-CoV-

2 according to predicted scores and verified the top 50 potential

drugs for SARS-CoV-2 by finding the literature on PubMed.

As a result, 25 out of the top 50 drugs for SARS-CoV-2 were

confirmed (see Table 5). Among them, chloroquine was predicted

as the fortieth drug against SARS-CoV-2. Chloroquine is an anti-

malaria drug that has been used for many years (Touret and De

Lamballerie, 2020). Hu et al. (2020) reported that chloroquine

may have the potential to treat COVID-19 by studying the

absorption of cellular nanoparticles in nanomedicine. Favipiravir

was ranked as the forty-fourth potential anti-SARS-CoV-2 drug.

Favipiravir is a broad-spectrum inhibitor of viral RNA-dependent

RNA polymerase and has been approved as an anti-influenza drug

in Japan (Doi et al., 2020). Shannon et al. (2020) found that

Favipiravir could be inserted into the RNA of SARS-CoV-2 and

could slow RNA synthesis.

HIV-1 was chosen as the third case. HIV-1, a member of the

genus Lentivirus in the family Retroviridae, is the pathogen of AIDS

(Barré-Sinoussi, 1996). HIV-1 could integrate the proviral genome

into chronically infected cells and evolve rapidly during viral

replication (Ferguson et al., 2002). Therefore, HIV-1 could lead to

sustained infection (Ferguson et al., 2002). Similarly, we employed

MHBVDA to predict new drugs for HIV-1. Subsequently, we

ranked the top 50 drugs according to predicted scores. The result
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TABLE 6 The top 50 predicted anti-HIV-1 drugs.

Drug name Evidence Drug name Evidence

Amiodarone Unconfirmed Efavirenz PMID: 31339676

BCX4430 (Galidesivir) Unconfirmed Azacitidine PMID: 26833151

Chlorpromazine Unconfirmed Calanolide A PMID: 18717330

Berberine PMID: 32897426 Gefitinib Unconfirmed

Doxycycline Unconfirmed Dasatinib PMID: 31476293

Didanosine PMID: 17600392 Eflornithine Unconfirmed

4-HPR (Fenretinide) PMID: 16375981 Glycyrrhizin PMID: 16053446

EIPA (ethylisopropyl amiloride) Unconfirmed Brecanavir PMID: 17620375

Inosine pranobex Unconfirmed Itraconazole Unconfirmed

Labyrinthopeptin A1 PMID: 23724015 Diphyllin Unconfirmed

Anisomycin Unconfirmed Camptothecin PMID: 27825797

Amprenavir PMID: 28956865 Indinavir PMID: 32057044

Alisporivir PMID: 23524389 Bepridil Unconfirmed

ABT-263 Unconfirmed Fluoxetine Unconfirmed

Enfuvirtide PMID: 30811933 5-Bromovinyldeoxyuridine Unconfirmed

Kasugamycin Unconfirmed Flavopiridol PMID: 10906320

Bevirimat PMID: 19024627 Amantadine Unconfirmed

Isolanid (lanatoside C) Unconfirmed Entecavir PMID: 17582071

Ivermectin PMID: 22417684 Chloroquine PMID: 11166661

Foscarnet PMID: 9593458 Homoharringtonine Unconfirmed

Emodin PMID: 21922907 Benztropine Unconfirmed

Irbesartan Unconfirmed Famciclovir Unconfirmed

Bortezomib PMID: 30645648 Brincidofovir Unconfirmed

Hexachlorophene Unconfirmed Clomipramine Unconfirmed

Apoptozole Unconfirmed Ganciclovir PMID: 28657962

The first column records the top 25 drugs and the third column records the top 26–50 drugs.

indicated that 24 out of the top 50 anti-HIV-1 drugs were reported

by searching the literature on PubMed (see Table 6). For example,

the association between HIV-1 and Berberine was predicted and

ranked fourth. Berberine, an isoquinoline alkaloid, has strong

pharmacological activity (Och et al., 2020). Shao et al. (2020) found

berberine can inhibit HIV-1 entry by blocking HIV-1 cell–cell

fusion by employing the Luciferase Assay System, colorimetric XTT

assay, and a control experiment. Moreover, the association between

HIV-1 and Chloroquine was ranked forty-fourth. The study results

of Naarding et al. (2007) suggested that chloroquine may reduce

HIV-1 transmission or replication in the body through a variety

of mechanisms, including modulation of the gp120 structure.

Similarly, the experiment of Savarino et al. (2001) showed that

chloroquine could inhibit the replication of HIV-1 by affecting the

post-transcriptional production of gp120.

Pseudomonas aeruginosa is a gram-negative rod-shaped

bacterium that causes many diseases in humans (Skariyachan

et al., 2018). Particularly, Pseudomonas aeruginosa colonizes

cystic fibrosis patients’ lungs and is responsible for decreased

respiratory function (Camus et al., 2021). In the model, we used

MHBVDA to predict potential drugs for Pseudomonas aeruginosa

by removing all known associated drugs for Pseudomonas

aeruginosa from the MDAD dataset. Afterwards, we sorted

potential drugs associated with Pseudomonas aeruginosa according

to predicted score and verified the top 50 potential drugs for

Pseudomonas aeruginosa by finding the literature on PubMed

and the MDAD dataset. As a result, 22 out of the top 50 drugs

for Pseudomonas aeruginosa were confirmed (see Table 7). For

example, the association between Pseudomonas aeruginosa and

penicillic acid was predicted and ranked first. Penicillic acid is a

polyketide mycotoxin produced by several species of Aspergillus

and Penicillium (Sorenson and Simpson, 1986). Liaqat et al. (2010)

found that in Pseudomonas aeruginosa, the biofilm formation

ability of Pseudomonas aeruginosa was enhanced with an increase

in Penicillic acid concentration. Furthermore, the association

between Pseudomonas aeruginosa and Betulin was ranked fourth.

Rajkumari et al. (2018) found that at sublethal concentrations,

Betulin attenuated the production of Pseudomonas aeruginosa
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TABLE 7 The top 50 predicted associated drugs for Pseudomonas aeruginosa.

Drug name Evidence Drug name Evidence

Penicillic acid PMID: 20111864 Virginiamycin M1 Unconfirmed

Patulin PMID: 34990945 Pa-MAP Unconfirmed

Avibactam MDAD Dalfopristin Unconfirmed

Betulin PMID: 29526565 Pleurocidin MDAD

Phenanthrene PMID: 32871516 Aloe Vera Gel PMID: 26266047

Undecanoic acid Unconfirmed Vidarabine Unconfirmed

Myristic acid MDAD Metronidazole Unconfirmed

Epigallocatechin Gallate PMID: 27784787 C6-HSL PMID: 34411944

4-chloroquinoline Unconfirmed Genistein Unconfirmed

7-chloroquinolin-4-ol Unconfirmed Sorivudine Unconfirmed

Butane-1,4-diamine Unconfirmed LL-37 PMID: 21772832

Ethane-1,2-diamine Unconfirmed Hinokitiol Unconfirmed

N1-(7-chloroquinolin-4-yl)dodecane-1,12-

diamine

MDAD Virstatin Unconfirmed

N1-(7-chloroquinolin-4-yl)ethane-1,2-diamine Unconfirmed N-Acetylcysteine PMID: 33477393

N1-(7-chloroquinolin-4-yl)octane-1,8-diamine MDAD Sodium Chloride Unconfirmed

N1-[7-(trifluoromethyl)quinolin-4-yl]dodecane-

1,12-diamine

MDAD Terpinene-4-ol Unconfirmed

N1-[7-(trifluoromethyl)quinolin-4-yl]ethane-1,2-

diamine

Unconfirmed Curcumin PMID: 32765020

N1-[7-(trifluoromethyl)quinolin-4-yl]octane-1,8-

diamine

Unconfirmed C4-HSL PMID: 30779754

N-Nonanoyl-cyclopentylamide Unconfirmed Clarithromycin PMID: 30267753

octane-1,8-diamine Unconfirmed Scrambled LL-37 Unconfirmed

Phenol,2,4-bis(1,1-dimethylethyl) Unconfirmed Palivizumab Unconfirmed

Quinolin-8-ol Unconfirmed DispersinB-KSL-W wound gel PMID: 24445333

Vancomycin PMID: 26980934 Albendazole PMID: 20726341

Sorbitol Unconfirmed 2(5H)-furanone Unconfirmed

Raspberry KAS 434 MDAD Clofazimine Unconfirmed

The first column records the top 25 drugs and the third column records the top 26–50 drugs.

virulence factors and biofilm formation by affecting the quorum

sensing regulatory system of Pseudomonas aeruginosa.

In addition, to further evaluate the reliability of the prediction

performance for MHBVDA, according to previous experience

(Tang et al., 2021), we have identified the most frequent potential

drugs for BK virus by implementing MHBVDA and compared

algorithms based on the DrugVirus dataset. As shown in Table 8,

Cidofovir, Brincidofovir, and Mycophenolic acid were predicted

by five compared algorithms. Artesunate, Rapamycin (Sirolimus),

Erlotinib, Topotecan, and Chloroquine were predicted by four

compared algorithms. Particularly, the top 20 drugs predicted by

MHBVDA for the BK virus have been predicted at least once

by the six compared algorithms. The results showed that top-

ranked predictive drugs are more important than low-ranked

predictive drugs, and compared algorithms are more likely to

predict valuable drugs.

Discussion

The unexpected outbreak and unrealistic progression of

COVID-19 have generated an utmost need to realize promising

therapeutic strategies to fight the pandemic. Drug repurposing,

an efficient drug discovery technique from approved drugs,

is an emerging tactic to face the immediate global challenge

(Prasad and Kumar, 2021). It provides a timely and cost-effective

method for finding potential therapeutic agents for diseases.

Identifying drug–virus associations can not only provide great

insight into the understanding of interaction mechanisms between

drugs and viruses but also assist in narrowing the screening

scope of compound candidates for drug discovery (Long et al.,

2021). Considering that traditional experiment methods are time-

consuming, laborious, and expensive, computational methods

enable the rapid identification of potentially repurposable drug
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TABLE 8 The most frequent potential drugs for the BK virus predicted by

using the six methods based on the DrugVirus dataset.

MHBVDA Drugs Statistics

1 Cidofovir 5

2 Brincidofovir 5

3 Artesunate 4

4 Leflunomide 3

5 Sunitinib 3

6 Rapamycin (Sirolimus) 4

7 Gefitinib 3

8 Mycophenolic acid 5

9 Erlotinib 4

10 Dasatinib 3

11 Imatinib 3

12 Hexachlorophene 3

13 Bithionol 3

14 Topotecan 4

15 Nitazoxanide 2

16 Letermovir 2

17 Ganciclovir 2

18 Saracatinib 1

19 Chloroquine 4

20 Mitoxantrone 1

The first column is the top 20 drug serial numbers predicted by MHBVDA. The second

column is the predicted drug name corresponding to the serial number. The third column

is the times of the top 20 drugs that MHBVDA predicted were among the top 20 drugs that

the six comparison algorithms predicted.

candidates against diseases (Deepthi et al., 2021). In this study,

by integrating the dataset of known virus–drug associations, virus

sequence similarity, drug chemical structure similarity, drug side

effect similarity, and Gaussian interaction profile kernel similarity

for drugs and viruses, we developed an ensemble learning model

of MHBVDA to predict virus–drug associations based on MDHGI

and BNNR. Moreover, we employed LOOCV and 5-fold cross-

validation to compare the performance of MHBVDA with the

performance of HGIMDA, MCMDA, RLSMDA, BNNRSMMA,

MDHGI, and LAGCNMDA based on datasets of DrugVirus,

MDAD, and aBiofilm, respectively. The results indicated that

MHBVDA obtained better performance than the compared models

based on cross-validation. Also, the results of two types of

case studies of ZIKV, SARS-CoV-2, HIV-1, and Pseudomonas

aeruginosa once again proved that MHBVDA has excellent

prediction performance.

MHBVDA’s outstanding prediction performance is mainly due

to the following factors: First, SLM was used to decompose the

original virus–drug association matrix into two portions. The

first portion is a clean part that is a linear combination of the

low-rank matrix and the original virus–drug association matrix.

The second portion is noise data, which is a spare matrix.

Therefore, we can obtain clean virus–drug association data, which

contributes to improving the model’s prediction accuracy. Second,

the regularization term was incorporated in BNNR, which could

reduce the negative effect of the noise data used in the model

and effectively solve the overfitting problem. Third, the success

of MHBVDA also comes from the integration of several reliable

biological data (known virus–drug associations, virus sequence

similarity, drug chemical structure similarity, drug side effects

similarity, and Gaussian interaction profile kernel similarity for

drug and virus). Moreover, many computational models cannot

be applied to drugs with no confirmed virus associations or

viruses with no confirmed drug associations in the dataset.

MHBVDA can be applied to drugs (viruses) for which there are

no confirmed virus (drug) associations. Hence, we can implement

the model to identify potential drugs for emerging viruses such

as SARS-CoV-2.

However, disadvantages also exist with the model. First, the

number of known virus–drug associations used in this study is

finite, and more experimentally confirmed virus–drug associations

will need to be collected in the future. Second, the use of SLM

for generating a new virus–drug association matrix may provide

unneeded and futile association information. Third, the parameters

used in MDHGI and BNNR may not be optimal or even deviations

may occur.

Next, we can do some work on the following two aspects.

First, some other biological entities such as genes, proteins,

disease, and miRNA could be applied to establish a more

comprehensive knowledge graph related to drugs and viruses. The

embedding of viruses and drugs can be learned by integrating

knowledge graphs, aiming to improve the prediction accuracy

of the VDA prediction model. Second, since the prediction of

association between biological entities is one of the basic tasks in

computational biology, MHBVDA can be applied to other related

prediction problems, such as drug–drug interaction prediction,

microbe–disease association prediction, drug–miRNA association

prediction, and miRNA–disease association prediction.
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