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Objective:Managing dietary glycemic index (GI) deserves further attention in the

interplay between non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes

mellitus (T2DM). This study aimed to evaluate the relationship between dietary GI

and the odds of NAFLD in patients with T2DM.

Methods: A cross-sectional study was carried out between April 2021 and

February 2022, including 200 participants with T2DM aged 18-70 years, of

which 133 had NAFLD and 67 were in the non-NAFLD group. Cardiometabolic

parameters were analyzed using standard biochemical kits and dietary intake was

assessed using a validated food frequency questionnaire. Binary logistic

regression was applied to explore odds ratios (ORs) and 95% confidence

intervals (CIs) for NAFLD according to tertiles of dietary GI.

Results:Highest vs. lowest tertile (< 57 vs. > 60.89) of energy-adjusted GI was not

associated with the odds of having NAFLD (OR 1.25, 95% CI = 0.6-2.57; P-trend =

0.54) in the crude model. However, there was an OR of 3.24 (95% CI = 1.03-

10.15) accompanied by a significant trend (P-trend = 0.04) after full control for

potential confounders (age, gender, smoking status, duration of diabetes,

physical activity, waist circumference, HbA1c, triglycerides, total cholesterol,

dietary intake of total carbohydrates, simple carbohydrates, fat, and protein).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1228072/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1228072/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1228072/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1228072/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1228072/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1228072&domain=pdf&date_stamp=2023-08-22
mailto:a_hekmat2000@yahoo.com
https://doi.org/10.3389/fendo.2023.1228072
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1228072
https://www.frontiersin.org/journals/endocrinology


Salavatizadeh et al. 10.3389/fendo.2023.1228072

Frontiers in Endocrinology
Conclusion: High dietary GI is associated with increased odds of NAFLD in

subjects with T2DM. However, interventional and longitudinal cohort studies are

required to confirm these findings.
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1 Introduction

Diabetes is one of the main health issues worldwide with an

estimated prevalence of 9.3% (463 million), reaching 10.2% (578

million) by 2030. Within this population, almost 90% have type 2

diabetes mellitus (T2DM) (1). It is a metabolic disorder

characterized by hyperglycemia resulting from either insufficient

insulin secretion or ineffective insulin action (2). Deficit in insulin

secretion and high insulin resistance increase the lipase enzyme

activity gradually leading to impairment of free fatty acid (FFA)

metabolism and exceeding the amount of FFA beyond the liver’s

ability to oxidize (3, 4). Over-accumulation of these FFAs in the

form of hepatic triglycerides (TG) results in a phenomenon known

as nonalcoholic fatty liver disease (NAFLD) (4).

NAFLD occurs in 75% of T2DM patients (5). In contrast,

T2DM is present in nearly a quarter of patients with NAFLD,

and approximately half of the non-alcoholic steatohepatitis patients

(5). This coexistence occurs due to shared pathogenic abnormalities

caused by excess adipose tissue and insulin resistance (6).

Furthermore, the concomitant presence of T2DM and NAFLD

has been proposed to be associated with higher overall mortality

and mortality related to liver and cardiovascular diseases (3, 7).

Therefore, it seems crucial to detect the contributing factors of this

co-occurrence.

Nutrition is known as a major modifiable environmental factor

in the development and management of NAFLD (8), whose disease

when left untreated increases the risk of hepatic and extra-hepatic

cancers (e.g., lung, breast, gynecologic, and urinary system cancers)

(9–11). The glycemic index (GI) has been studied extensively as a

contributing factor for T2DM (12), as well as for alarming diseases

such as cancer (13). GI is defined as the ratio between the area under

the glucose response curve after consumption of 50 g carbohydrates

from a test food and the area under the curve after consumption of

50 g reference food (either white bread or glucose) (14, 15). Food

sources of carbohydrates that are digested, absorbed, and

metabolized quickly are referred to as high GI foods (16). On the

other hand, food sources of carbohydrates with slow digestion,

absorption, and metabolism are considered low GI foods (16).

Several studies suggest that a low GI diet may reduce insulin

resistance (17–19). In a meta-analysis of cohort studies, diets higher

in GI significantly increased the risk of T2DM in healthy individuals

regardless of dietary fiber (12). In addition, a meta-analysis of

randomized clinical trials (RCTs) suggested anti-inflammatory

properties of diets with low overall dietary GI (20). Interestingly,
02
a low GI Mediterranean diet decreased NAFLD scores in an RCT

(21). Conversely, diets with high total dietary GI could increase

indicators of systemic inflammation considered to be key factors of

the NAFLD risk in individuals with T2DM (22, 23).

Therefore, individuals with T2DM need to specifically be

considered in the evaluation of potential dietary prevention

strategies for NAFLD. Correspondingly, to the best of our

knowledge, the association between dietary GI and the

development of NAFLD in individuals with T2DM has not yet

been examined. Thus, the present study was conducted to assess

possible associations between dietary GI and odds of NAFLD in

individuals with T2DM.
2 Materials and methods

2.1 Study participants

This cross-sectional study was carried out between April 2021

and February 2022 on patients with T2DM aged between18-70

years from the diabetes clinic affiliated with the Institute of Diabetes

and Metabolism, Iran University of Medical Sciences, Tehran, Iran.

Patients with a history of any type of pathologically confirmed

cancer, chemotherapy or radiotherapy (due to cancer), drug use,

chronic inflammatory disease, heart failure, myocardial infarction,

and kidney disease were not included in the study. Moreover,

participants were excluded upon recently weight-loss diet, taking

weight-loss medications, pregnancy, lactation, more than 10%

weight reduction during the last 6 months, history of acute and

chronic liver diseases (hepatitis, autoimmune disease, biliary

disease, hereditary disorders of the liver including Wilson’s

disease) and hemochromatosis, and using toxins or drugs

affecting the liver such as NSAIDs, anti-inflammatory drugs, etc.

Participants with a clear drinking history (≥21 units/week in men

and ≥14 units/week in women) were also excluded from the study.

Patients who were on insulin therapy were not included. Therefore,

participants took only oral hypoglycemic agents for diabetes

control. Body mass index (BMI) ≥ 23 kg/m2 was an inclusion

criterion for all subjects. The participant selection flowchart is

indicated in Figure 1. In order to detect and quantify liver

steatosis, we used the controlled attenuation parameter (CAP)

determined by transient elastography (TE) using the FibroScan®,
equipped with M and XL probes. In the present study, the cut-off

value for diagnosing hepatic steatosis was the CAP value > 270 dB/
frontiersin.org
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m (24). Data on demographic characteristics were collected by

means of a standard questionnaire by trained interviewers.

The study protocol was approved by the Ethics Committee of

the Shahid Beheshti University of Medical Sciences (NO:

IR.SBMU.NNFTRI.REC.1399.061). Eligible volunteers were

selected by the use of the consecutive-sampling method and

provided informed written consent, prior to study commencement.
2.2 Sample size calculation

The sample size was based on a previous study (25) with SGOT

levels of 14 ± 7 and 11 ± 3 IU/L for patients suffering from T2DM

with and without NAFLD, respectively. At 95% CI and 80% power

of the study, a sample of at least 56 subjects in each group was

estimated using the following formula:

(Za + ZB)
2(S21 + S22)

(�x1 − �x2)
2 (1)
2.3 Anthropometric and physical
activity assessments

Subjects’ body mass (kg) was evaluated unshod and in light

clothing using a digital scale (Seca, Germany) to the nearest 100 g.
Frontiers in Endocrinology 03
Height was measured without shoes in a standing position using a

fixed tape measure to the nearest 0.5 cm. Finally, BMI was

calculated by dividing weight (kg) by the square of height (meters).

The International Physical Activity Questionnaire (IPAQ) short

form was applied to assess subjects’ physical activity during the last

7 days and was expressed as the metabolic equivalent task (MET)-

min/week (26). The validity and reliability of this questionnaire

have previously been evaluated in Iranian adult women. Blood

pressure was measured for all participants using an automatic

sphygmomanometer (OMRON, Germany) on the left arm in a

sitting position after a rest of at least 10 minutes. By selecting an

appropriate cuff size and preventing patients from speaking during

measurements, errors were avoided.
2.4 Laboratory measurements

Venous blood samples were collected after 10-12 hours of

overnight fasting. The enzymatic colorimetric method was

applied to determine fasting blood sugar (FBS) levels. Enzymatic

assays were performed to measure the serum levels of TG, total

cholesterol (TC), and high-density lipoprotein (HDL) by the use of

standard biochemical kits (Pars Azmun Co., Iran) with between-

and within-run coefficient of variations<6.2%. Low-density

lipoprotein (LDL) was calculated through the use of the modified

version of the Friedewald equation (27). Roche Diagnostics kits
FIGURE 1

Flow chart of participation.
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(Roche Cobas 6000 analyzer) were used to measure serum insulin

levels by means of the ECLIA method. HOMA-IR (Homeostatic

Model Assessment for Insulin Resistance) was calculated by the

following equation: ½fasting insulin (mU=mL)� fasting glucose (

mmol=L)�=22:5  (28). QUICKI (Quantitative Insulin Sensitivity

Check Index) was computed as 1=½log (fasting insulin in mU=mL) +

 log (fasting glucose in mg=dL )� (29). TyG (Triglyceride and

glucose) index was determined as Ln ½TG (mg=dL) � FGS (mg=dL

)=2�   (30).
2.5 Dietary intake assessment

Dietary intakes of participants over the past year were

examined using a validated 147-item semi-quantitative food

frequency questionnaire (FFQ) (31). An expert registered

dietitian was totally unaware of the participants’ condition (in

terms of having NAFLD) and applied the FFQ via face-to-face

interviews. Each participant reported the average intake of

different food items during the preceding year on a daily,

weekly, or monthly basis which was converted to grams per day

using household measures (32). Subsequently, daily nutrients and

energy intakes were determined using Nutritionist 4 software

(First Databank Inc., Hearst Corp., San Bruno, CA, USA)

modified for Iranian foods.
2.6 Calculation of the dietary
glycemic index

The GI of every consumed food item was calculated by using the

following formula: (GI × available carbohydrate per one gram of

food × gram per day of food)/total available carbohydrate, where

total available carbohydrates were determined as daily consumed

carbohydrates minus total fiber consumed daily (33). The daily GI

values of each carbohydrate-containing food and beverage were

determined based on the International Glycemic Index Table 2008

(34). The Iranian GI table was used for calculating the GI for some

Iranian food which did not found in the international table (35).

Moreover, for food items whose GI was not available on these

tables, physically and chemically similar foods were used. Glucose

was applied as a reference food to determine the GI variable in this

study. For composite mixed meals, the GI values were estimated

based on the GIs of individual food components (35). The overall

dietary GI was calculated by summing the GIs for all foods

consumed in the diet. Dietary glycemic index was adjusted for

total energy intake by the residual method (36).
2.7 Statistical analysis

The results are presented as mean ± standard deviation (SD) for

continuous data and percent for qualitative data. The normality of

the data distribution was checked using the Kolmogorov–Smirnov

test and the histogram chart. The independent Student’s t-test and

Mann–Whitney test were used to compare general characteristics
Frontiers in Endocrinology 04
with normal and abnormal distributions between the study groups,

respectively. The X2 test was applied for qualitative variables.

Participants were categorized into tertiles of dietary GI.

Comparisons for general characterist ics , biochemical

parameters, and dietary intakes across tertiles of dietary GI were

performed by applying the Kruskal-Wallis test and analysis of

covariance (ANOVA) for continuous variables and the X2 test for

categorical variables. Binary logistic regression in different models

was used to explore the association between dietary GI and

NAFLD in patients with T2DM. In all analyses, the first tertile

of dietary GI was regarded as the reference category. A broad

range of confounders was controlled to examine whether the

association was independent of them. We used a stepwise

(forward) selection procedure for modeling, and variables

entered as confounders to the logistic models based on the

following confounding criteria: 1) differed between the NAFLD

and non-NAFLD groups, 2) associated with the exposure of

interest (dietary GI) and 3) not an intermediate the pathway.

Moreover, all covariates were assessed for multicollinearity. The

exponential of betas was interpreted as Odds Ratios. The tertiles of

the dietary GI were included as an ordinal variable in the model to

examine the overall trend of ORs. All statistical analyses were

performed using SPSS (SPSS Inc., version 25). P-values less than

0.05 were considered significant.
3 Results

In this study, 200 subjects were enrolled and divided into two

groups: NAFLD and non-NAFLD groups, on the basis of CAP

score. Those with a CAP score > 270 dB/m were regarded as the

NAFLD group whereas participants in the non-NAFLD group had

a CAP score ≤ 270 dB/m. Comparisons for characteristics between

NAFLD and non-NAFLD groups are presented in Table 1.

Participants had a mean age of 52.21 ± 9.27 years. Women

accounted for 58.64% of the individuals with NAFLD, while

44.77% of the non-NAFLD group were women. Compared to the

non-NAFLD group, patients with NAFLD significantly had higher

values of BMI (p<0.001), WC (p<0.001), TC (p=0.002), TG

(p=0.005), LDL (p=0.005), SGPT (p=0.02), SGOT (p=0.04),

HbA1c (p=0.01), and TyG index (p=0.02), as well as HOMA-IR

(P<0.001) while QUICKI was significantly lower in NAFLD group

(P<0.001). However, there was no statistically significant difference

considering smoking status, duration of diabetes, blood pressure,

physical activity, FBS, HDL, and dietary GI.

General characteristics of the participants are represented in

Table 2 based on dietary GI tertiles. Age (p=0.002), duration of

diabetes (p=0.005), body mass (p=0.03), HDL among men

(p=0.001), SGOT (p=0.03), insulin (p<0.001), HOMA-IR

(p<0.001), and QUICKI (p<0.001) were significantly different

between dietary GI tertiles. However, there was no significant

difference in the distribution of sex, smoking status, BMI, blood

pressure, physical activity, TyG index, FBS, and HbA1c.

Table 3 depicts the food intake distribution stratified by dietary

GI tertiles. The energy intake was not significantly different among

tertiles. Nevertheless, significant differences in the intake of
frontiersin.org
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carbohydrates (p=0.03), fruits (p=0.001), sweetened beverages

(p=0.03), dairy products (p=0.002), vegetables (p<0.001), bread,

and legumes (p<0.001) were observed in the dietary GI tertiles. A

statistically significant difference was seen for fat (p=0.005), MUFA

(p<0.001), and potassium (p<0.001) intake between tertiles.

Table 4 represents the association between GI and the odds of

having NAFLD along with T2DM. According to the crude model,

GI tertiles and NAFLD did not correlate significantly. However,

after adjustment for potential confounders including age, gender,

smoking status, duration of diabetes, physical activity, WC, Hb1Ac,

TG, TC, dietary intake of carbohydrates, fat, protein, and simple

carbohydrates, there was a significant positive association between

GI and the odds of NAFLD (P for trend = 0.04).
Frontiers in Endocrinology 05
4 Discussion

Taken together, this study shows that a higher GI can be

associated with NAFLD in patients with T2DM. More specifically,

patients in the highest tertile of the dietary GI had 3.24 times

increased likelihood of having NAFLD (95% CI: 10.15 - 1.03)

compared to those in the first tertile, whose result was observed

over full adjustment. On the other hand, we did not observe

associations between GI and NAFLD in the other adjusted

models, as well as in the crude model. Given that the adjusted

model 1 focused on demographic variables (age, sex, smoking

status, duration of diabetes, physical activity, in addition to WC

as an indicator of obesity) and the adjusted model 2 focused on the
TABLE 1 General characteristics of enrolled subjects
‡
.

Variable All participants NAFLD group
(n = 133)

non-NAFLD group
(n = 67) P-value†

Age (year) 52.21 ± 9.27 52.19 ± 9.06 52.24 ± 9.75 0.84

Sex (Female, %) 54 58.64 44.77 0.07

Smoking (%) 17.5 18.04 16.41 0.84

Duration of diabetes (year) 8.89 ± 5.82 8 ± 5.26 10 ± 6.77 0.27

Body mass (kg) 78.49 ± 14.4 81.4 ± 15.08 72.7 ± 10.91 <0.001

BMI (kg/m2) 28.76 ± 4.27 30.07 ± 4.06 26.17 ± 3.42 <0.001

WC (cm)
Men: 101.86 ± 10.89
Women: 99.35 ± 10.63

105.84 ± 11.35
101.95 ± 10.3

95.94 ± 6.81
92.6 ± 8.36

<0.001
<0.001

SBP (mmHg) 123.67 ± 15.04 123 ± 14.55 125 ± 16.03 0.85

DBP (mmHg) 77.03 ± 10.02 78 ± 10.42 75 ± 9.02 0.11

Physical activity (MET-min/week) 879.55 ± 1488.17 950.83 ± 1757.85 738.06 ± 683.27 0.37

FBS (mg/dL) 149.95 ± 59.61 150.53 ± 59.22 148.79 ± 60.81 0.36

TC (mg/dL) 146.6 ± 47.95 153.68 ± 51.75 132.52 ± 35.69 0.002

TG (mg/dL) 167.16 ± 160.17 179.98 ± 173.01 141.69 ± 128.45 0.005

HDL (mg/dL)
Men: 45.66 ± 12.11
Women: 52.58 ± 12.61

46.02 ± 12.75
51.87 ± 11.85

45.16 ± 11.32
54.43 ± 14.45

0.84
0.56

LDL (mg/dL) 73.74 ± 26.89 77.54 ± 27.77 66.37 ± 23.6 0.005

SGPT (IU/L) 18.86 ± 9.76 20.05 ± 10.62 16.49 ± 7.28 0.02

SGOT (IU/L) 20.52 ± 8.94 21.38 ± 9.05 18.82 ± 8.53 0.04

HbA1c (%) 7.72 ± 1.79 7.92 ± 1.85 7.33 ± 1.64 0.01

Insulin (mU/mL) 7.75 ± 5.86 8.77 ± 6.56 5.73 ± 3.36 <0.001

HOMA-IR 2.78 ± 2.42 3.23 ± 2.79 1.89 ± 0.94 <0.001

QUICKI 0.34 ± 0.03 0.33 ± 0.03 0.35 ± 0.02 <0.001

TyG index 3.98 ± 0.31 4.02 ± 0.31 3.91 ± 0.3 0.02

Energy-adjusted GI 58.59 ± 5.21 58.51 ± 5.43 58.73 ± 4.77 0.78
fro
‡Variables are mean ± SD, unless indicated.
†Independent Student’s t-test and Mann–Whitney test were used to compare continuous variables with normal and abnormal distributions, respectively. Chi-square test was used to compare
qualitative variables.
BMI, Body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; MET, metabolic equivalents; FBS, fasting blood glucose; TC, total cholesterol; TG,
triglyceride; HDL, high-density lipoprotein-cholesterol; LDL, low-density lipoprotein-cholesterol; SGPT, serum glutamate pyruvate transaminase; SGOT, serum glutamic-oxaloacetic
transaminase; HbA1c, hemoglobin A1c; HOMA - IR, Homeostatic Model Assessment of Insulin Resistance; QUICKI, quantitative insulin-sensitivity check index; TyG index, Triglyceride-
glucose index; GI, glycemic index.
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addition of traditional metabolic biomarkers (HbA1c, TG, and TC)

to the model 1, the inclusion of dietary data from adjustment model

3 (% energy intake of dietary intake of total carbohydrates, simple

carbohydrates, fat, and protein, alongside confounders from model

2) seemingly reached statistical significance because it provided a

more reliable result after controlling for crucial confounders

in nutrition.

Regarding the mechanisms between T2DM and NAFLD, there

is a close pathophysiological link between these ailments for which

hepatic insulin resistance is likely the central tenet by raising hepatic

TG synthesis triggered by fatty acids released from insulin-resistant

adipocytes and De Novo Lipogenesis, whose latter process consists

of elevated glycerol esterification of glycerol upon increased

gluconeogenesis and decreased glycogenesis (37, 38). Acutely, in
Frontiers in Endocrinology 06
postprandial hyperglycemia, there is an overload of acetyl-CoA

release by excess intake of carbohydrates and lipids; acetyl-CoA

then enters the citric acid cycle, where the acetyl group is oxidized to

carbon dioxide and water, and the released energy produces ATP

and free radicals at the same time, which chronic overload may

affect the integrity of hepatocytes due to the sharp damage induced

by oxidative stress (16, 39).

Our results are of clinical relevance given the relationship

between GI and postprandial glycemia, in which higher

postprandial glycemia is associated with histological severity in

patients with NAFLD (40). Additionally, higher postprandial

glycemia is a harbinger of cardiometabolic diseases (e.g., diabetes

and heart disease), while low-GI diets portray protection

comparable to that seen for whole grain and high fiber intake, as
TABLE 2 General characteristics of subjects across tertiles of energy-adjusted dietary glycemic index
‡
.

Variable Tertile 1
(< 57)

Tertile 2
(57 to 60.89)

Tertile 3
(> 60.89) P-value†

Number of participants 66 67 67

Age (year) 55.45 ± 8.49 50.36 ± 8.29 50.85 ± 10.19 0.002

Sex (Female, %) 41 36 31 0.18

Smoking (%) 10 13 12 0.8

Duration of diabetes (year) 10.75 ± 7.14 7.63 ± 3.98 8.33 ± 5.54 0.005

Body mass (kg) 75.73 ± 13.16 77.72 ± 13.75 81.99 ± 15.64 0.03

BMI (kg/m2) 28.21 ± 3.6 28.66 ± 4.69 29.41 ± 4.41 0.35

WC (cm)
Men: 100.12 ± 7.65
Women: 101.12 ± 12.18

101.21 ± 12.05
97.25 ± 9.39

103.63 ± 11.76
99.46 ± 9.65

0.43
0.28

SBP (mmHg) 123.68 ± 17.25 122.01 ± 14.9 125.3 ± 12.71 0.45

DBP (mmHg) 76.45 ± 10.55 77.72 ± 9.54 76.9 ± 10.07 0.53

Physical activity (MET-min/week) 523.07 ± 189.01 775.57 ± 865.15 1334.7 ± 2354.89 0.12

FBS (mg/dL) 155.77 ± 61.31 138.51 ± 43.46 155.66 ± 70.17 0.47

TC (mg/dL) 147.62 ± 41.40 148.28 ± 39.90 143.90 ± 60.35 0.33

TG (mg/dL) 161.52 ± 129.83 152.3 ± 103.96 187.57 ± 221.96 0.42

HDL (mg/dL)
Men: 47.16 ± 13.84
Women: 54.63 ± 12.4

50.63 ± 11.53
51.36 ± 15.07

40.18 ± 8.95
51.29 ± 9.39

0.001
0.42

LDL (mg/dL) 77.78 ± 28.56 74.11 ± 26.42 69.27 ± 25.3 0.19

SGPT (IU/L) 18.52 ± 10.7 18.57 ± 9.5 18.57 ± 9.15 0.58

SGOT (IU/L) 18.97 ± 9.31 19.75 ± 6.51 22.82 ± 10.24 0.03

HbA1c (%) 7.77 ± 1.64 7.47 ± 1.54 7.93 ± 2.14 0.32

Insulin (mU/mL) 5.73 ± 3.39 7.51 ± 4.39 9.98 ± 7.99 <0.001

HOMA-IR 2.08 ± 1.33 2.49 ± 1.67 3.77 ± 3.39 <0.001

QUICKI 0.35 ± 0.03 0.34 ± 0.02 0.33 ± 0.03 <0.001

TyG index 4 ± 0.3 3.93 ± 0.29 4.02 ± 0.34 0.32
fro
‡Variables are mean ± SD, unless indicated. Energy-adjusted dietary glycemic index was calculated using the residual method.
†One-way analysis of variance and Kruskal-Wallis tests were used to compare continuous variables with normal and abnormal distributions, respectively. Chi-square test was used to compare
qualitative variables.
BMI, Body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; MET, metabolic equivalents; FBS, fasting blood sugar; TC, total cholesterol; TG,
triglyceride; HDL, high-density lipoprotein-cholesterol; LDL, low-density lipoprotein-cholesterol; SGPT, serum glutamate pyruvate transaminase; SGOT, serum glutamic-oxaloacetic
transaminase; HbA1c, hemoglobin A1c; HOMA - IR, Homeostatic Model Assessment of Insulin Resistance; QUICKI, quantitative insulin-sensitivity check index; TyG index, Triglyceride-
glucose index.
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shown by a systematic review of 37 prospective cohort studies (41).

Although our study does not infer causation, a meta-analysis of

RCTs with interventions >4 weeks detected a decrease of 0.4 HbA1c

with low-GI diets compared with higher-GI diets in patients with

T1DM or T2DM (n = 457 from 7 studies) (42). Moreover, the

review by Parker et al. and Kim supports that low GI can reduce

hepatic fat mass and SGOT levels in patients with NAFLD (43).

Apart from the overall results of meta-analyses, well-controlled

RCTs must be examined alone to provide expanded specificity. That

said, in the GLYNDIET study, a 6-month RCT consisting of 122

patients with overweight and obesity, those who followed a low-GI

diet containing moderate amounts of carbohydrates had more

efficacy at reducing body weight and controlling glucose and

insulin metabolism compared to a high-GI diet containing

moderate amounts of carbohydrates and to a low-fat and high-GI

diet, in which the 3 diets were isocaloric with energy restriction (44).

In contrast, in a 3-moth RCT with a crossover fashion

encompassing 19 women with overweight or obesity accompanied

by moderate hyperinsulinemia, reducing GI by managing versions

of common carbohydrate-rich foods (e.g., breakfast cereals, breads,

pasta, and potatoes, and rice) did not enhance body weight, energy

intake, and satiety when compared to the condition of high GI (45).

Although low-, moderate-, and high-GI foods have a GI of ≤55

or less, between 56 and 69, and ≥70, respectively (46), in our study,

the GI in tertiles 1, 2, and 3 ranged<57, 57 to 60.89, and >60.89,

respectively, and thus have some differences compared to the

traditional GI classification. At best, this was a reasonable way to

categorize the population according to GI, whose tertiles are

expected to be closer to the traditional GI classification, but not
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necessarily the same. The GI theory is convenient for educational

purposes, but it should be deciphered and used widely due to its

limitations. Correspondingly, the GI has a questionable practical

application in the field of clinical nutrition, as carbohydrate sources

are commonly combined with different foods, in which little

amounts of fat, protein, and fiber can lower the GI of the food

markedly. Moreover, the GI concept is paradoxical, while foods

with high amounts of monosaccharides have a high GI, and high

fiber foods and polysaccharides have a lower GI, fructose is a low GI

monosaccharide and some starch sources can have a high GI.

Potato consumption can be a universal example that a high GI

food is not necessarily unhealthy and leads to fat gain; conversely, it

can be an ally. Although potatoes are classified as a high-GI food,

they are sources of potassium and have fewer calories—due to the

lower carbohydrate content—compared to traditional food

substitutes such as rice, bread, and pasta. Interestingly, while the

GI of white potatoes alone is 69-98 (47) and the GI of pasta alone is

43-61 (47, 48), white boiled potatoes have 125 kcal and 20.4

carbohydrates per 100 g [FDC ID: 1102882 (49)], while cooked

pasta has 30.7 g of carbohydrates and 157 kcal per 100 g [FDC ID:

1101529 (50)].

In an RCT consisting of healthy participants, daily intake of

non-fried potatoes did not affect glycemic markers and was

associated with better diet quality compared to refined grains by

increasing potassium and fiber intake (51). Taking into account the

nutritional facts of potatoes, however, it must be noted that

increasing potassium intake tends to be more clinically relevant

than increasing fiber intake. For example, according to the USDA,

there are 372 mg of potassium and 1.4 g of total fiber per 100 g of
TABLE 3 Dietary intakes of subjects across tertiles of energy-adjusted dietary glycemic index
‡
.

Variable Tertile 1
(< 57)

Tertile 2
(57 to 60.89)

Tertile 3
(> 60.89) P-value†

Number of participants 66 67 67

Energy (kcal/day) 2462.96 ± 1058.18 2547.46 ± 1012 2487.26 ± 679.53 0.87

Carbohydrates (% energy intake) 55.15 ± 11.28 58.59 ± 8.05 59.11 ± 8.19 0.03

Protein (% energy intake) 18.74 ± 30.35 14.47 ± 2.54 18.31 ± 32.58 0.62

Fat (% energy intake) 35.16 ± 12.3 30.48 ± 7.29 29.88 ± 10.31 0.005

PUFA (% energy intake) 7.26 ± 3.21 6.64 ± 2.31 6.34 ± 2.09 0.11

MUFA (% energy intake) 11.71 ± 3.34 10.35 ± 2.88 9.7 ± 2.42 <0.001

Fiber (g/1000 kcal) 15.72 ± 4.97 17.18 ± 4.52 17.39 ± 7.02 0.17

Potassium (mg/1000 kcal) 2028.03 ± 498/31 1827.68 ± 303.19 1619.42 ± 259.5 <0.001

Sodium (mg/1000 kcal) 2461.67 ± 1847/39 2187.61 ± 1142.53 6156.89 ± 34119.31 0.32

Fruits (g/1000 kcal) 295.31 ± 149.09 209.37 ± 107.02 145.01 ± 66.36 <0.001

Vegetables (g/1000 kcal) 218.77 ± 122.19 163.78 ± 70.02 136.89 ± 67.38 <0.001

Bread and legumes (g/1000 kcal) 46.3 ± 37.36 81.13 ± 52.84 82.16 ± 58.46 <0.001

Sweetened beverages (% energy intake) 2.15 ± 5.11 2.25 ± 3.7 4.13 ± 10.84 0.03

Dairy products (g/1000 kcal) 175.14 ± 115.29 147.4 ± 87.01 110.43 ± 58.74 0.002
fro
‡Variables are mean ± SD. Energy-adjusted dietary glycemic index was calculated using the residual method.
†One-way analysis of variance and Kruskal-Wallis tests were used to compare continuous variables with normal and abnormal distributions, respectively.
MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.
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white boiled potato [FDC ID: 1102882 (52)], and optimal intakes of

potassium are at ~3000 mg/d (53) and of fiber at ~25-38 g/d (53).

It is noteworthy that the interest in developing pharmacological

agents capable of converting meals into low GI meals, i.e., alpha-

glucosidase inhibitors (acarbose and voglibose), reinforces the

importance of low GI as a means of reducing the risk of T2DM

and accompanying diseases by improving glycemic control and

post-load insulin levels (54, 55). Regarding the medication use of

our population, participants took only oral hypoglycemic agents for

diabetes control, and hence those who were on insulin therapy were

not included. While our results aim at patients with T2DM on oral

hypoglycemic agents, it is imperative to mention that high GI foods

can be fundamental to mitigating hypoglycemic episodes in patients

with T1DM receiving intensive insulin therapy. Therefore, the use

of high GI cannot be considered harmful as a whole; instead, it may

be useful in some circumstances.

Notwithstanding the attractive concept of GI, a plethora of

dietary strategies (e.g., DASH diet, Mediterranean diet, and

intermittent fasting) can assist in metabolic effects regardless of

GI (56–60). Albeit a low free sugar diet is an efficient method of

reducing hepatic steatosis and fibrosis while improving glycemic

indices in patients with NAFLD (61), long-term adherence ought to

be considered and thus dietary models with moderate amounts of

sugars are apparently more feasible. Interestingly, a recent RCT

shows that intermittent fasting can reduce hepatic steatosis

alongside fat mass in patients with NAFLD (62), and intermittent

fasting has emerged as a flexible dietary model in which moderate

amount of sugars are easily considered within a personalized
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approach. In general, however, energy restriction can be the

cornerstone of dietary efficacy irrespective of the pattern (63, 64).

Given that the individuals in our study were in the overweight

classification, they would appear to have metabolic benefits in case

of an energy‐restricted intervention.

Beyond manipulation of carbohydrate intake, different dietary

models, and energy restriction, functional foods can be considered

in an attempt to control T2DM and NAFLD. For instance, omega-3

fatty acids are essential nutrients that can be part of the treatment of

both diseases (65). Furthermore, vinegar, cinnamon, curcumin,

garlic, and ginger are some examples of common functional foods

that can improve the metabolism of glucose and TG (66–73). The

latter items are sources of antioxidants, which may attenuate the

formation of advanced glycation end products and therefore

provide benefits in metabolic and tissue markers (74, 75).

Although promising, there is no consensus regarding the use of

natural products as a first-line treatment to cure/alleviate NAFLD,

whose physicians should only consider them an alternative

therapeutic approach (76). At last, the practice of physical

exercise is another non-pharmacological approach that deserves

substantial attention because of its undisputable effects on

improving glucose update and reducing visceral fat (77).

Our study has limitations that cannot be neglected. First and

foremost, we did not have access to the types of hypoglycemic

agents and hence we did not control the statistical confounders for

medications. Indeed, the control for hypoglycemic agents is crucial,

as some agents provide benefits to NAFLD progression, but at

different magnitudes (78). Second, the cross-sectional design does
TABLE 4 Crude and multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for NAFLD in patients with T2DM across tertiles
of energy-adjusted dietary glycemic index.

Energy-adjusted dietary glycemic index‡ P-trend†

T1 (n = 66) < 57 T2 (n = 67) 57–60.89 T3 (n = 67) > 60.89

OR OR(95 % CI) OR (95 % CI)

Crude Overall 1(Ref)1.16 (0.57-2.39) 1.25 (0.6-2.57) 0.54

Men 1(Ref) (0.44-3.69) 1.86 (0.64-5.25) 0.24

Women 1(Ref) 1.24 (0.45-3.41) 1.01 (0.36-2.82) 0.95

Model 1 Overall 1(Ref) 1.61 (0.69 - 3.78) 1.48 (0.62-3.52) 0.37

Men 1(Ref) 1.11 (0.32-3.83) 1.47 (0.43-4.97) 0.53

Women 1(Ref) 2.82 (0.75-10.51) 1.41 (0.38-5.24) 0.59

Model 1 Overall 1(Ref) 1.83 (0.75 - 4.47) 1.81 (0.72-4.53) 0.2

Men 1(Ref) 1.02 (0.26-3.92) 1.7 (0.46-6.29) 0.41

Women 1(Ref) 2.7 (0.6-12.07) 1.41 (0.31-6.47) 0.62

Model 3 Overall 1(Ref) 2.36 (0.9 - 6.19 3.24 (1.03-10.15) 0.04

Men 1(Ref) 2.17 (0.44-10.65) 4.68 (0.76-28.58) 0.09

Women 1(Ref) 3.32 (0.58-19.07) 2.34 (0.26-20.47) 0.41
fro
Model 1: Adjusted for age, gender, smoking status, duration of diabetes, physical activity, and WC.
Model 2: Adjusted for HbA1c, TG, and TC in addition to the confounders of the first model.
Model 3: Adjusted for dietary intake of carbohydrates (% energy intake), fat (% energy intake), protein (% energy intake), and simple carbohydrates (% energy intake) in addition to the
confounders of the second model.
‡Energy-adjusted dietary glycemic index was calculated using the residual method.
†Binary logistic regression models were employed to obtain odds ratios (ORs) and 95% CIs.
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not assess causality due to the lack of temporality. Third, the sample

size can be questioned when compared with epidemiological

studies. Fourth, although we used a validated FFQ, remembering

the frequencies of food consumption during the last year is a

limitation of FFQs. Lastly, people with T2DM had some dietary

restrictions which made ranges between GI tertiles very narrow

resulting in difficulty in finding differences. Since the present study

was conducted in patients with BMI ≥ 23 kg/m2, further studies

encompassing patients within the traditional healthy BMI range of

18.5 to 24.9 kg/m2 are required.
5 Conclusion

A low GI diet can decrease the odds of having NAFLD in

patients with T2DM. Further interventional and prospective studies

are warranted to confirm these findings and investigate causal links.
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