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Background: With the aging of the global population, Spinal injuries are often 
prone to occur and affect human health. The development of technology has put 
robots on the stage to assist in the treatment of spinal injuries.

Methods: A comprehensive literature search were carried out in multiple 
databases, including PubMed, Medline (Ovid), Web of Science, Cochrane, Embase, 
Scopus, CKNI, Wang fang, VIP database, Sino Med, Clinical Trails until 20th, June, 
2023 to collect effect of robot-assisted gait training for patients with spinal cord 
injury patients. Primary outcome includes any changes of gait distance and gait 
speed. Secondary outcomes include any changes in functions (Such as TUG, 
Leg strength, 10 MWT) and any advent events. Data were extracted from two 
independent individuals and Cochrane Risk of Bias tool version 2.0 was assessed 
for the included studies. Systematic review and meta-analysis were performed by 
RevMan 5.3 software.

Results: 11 studies were included in meta-analysis. The result showed that 
gait distance [WMD  =  16.05, 95% CI (−15.73, 47.83), I2 =  69%], gait speed (RAGT 
vs. regular treatment) [WMD  =  0.01, 95% CI (−0.04, 0.05), I2  =  43%], gait speed 
(RAGT vs. no intervention) [WMD  =  0.07, 95% CI (0.01, 0.12), I2 =  0%], leg strength 
[WMD  =  0.59, 95% CI (−1.22, 2.40), I2  =  29%], TUG [WMD  =  9.25, 95% CI (2.76, 
15.73), I2 =  74%], 10 MWT [WMD  =  0.01, 95% CI (−0.15, 0.16), I2 =  0%], and 6 MWT 
[WMD  =  1.79, 95% CI (−21.32, 24.90), I2 =  0%].

Conclusion: Robot-assisted gait training seems to be  helpful for patients with 
spinal cord to improve TUG. It may not affect gait distance, gait speed, leg 
strength, 10 MWT, and 6 MWT.
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1. Introduction

1.1. Background

Spinal cord injury is a serious neurological injury, the annual 
global incidence is estimated to be between 250,000 and 500,000 cases 
(Mekki et  al., 2018), usually caused by car accidents, falls, sports 
accidents, or other external factors. This type of injury can lead to 
lower limb paralysis or loss of function, which has a significant impact 
on the quality of life and independence of patients. Previously, spinal 
cord injury meant being confined to a wheelchair and accompanied 
by lifelong medical complications. Doctors have very limited 
treatment options (McDonald and Sadowsky, 2002). Nevertheless, as 
technology continues to advance, individuals with incomplete para−/
tetraplegia can regain the ability (neuroplasticity) to relearn crucial 
daily activities and reintegrate into the workforce (Dietz and Fouad, 
2014). Neuroplasticity refers to the ability of the nervous system to 
reorganize and adapt in response to changes in demands and 
environments. This phenomenon occurs during skill acquisition, 
following nervous system damage, and as a result of sensory 
deprivation (Bavelier and Neville, 2002; Hötting and Röder, 2013). 
Neuroplasticity can be promoted through exercise training with the 
help of the need and/or through electrical stimulation techniques 
(Alashram et al., 2021). This kind of training helps the existence of 
physiological Proprioception input of the spinal cord, and the addition 
of rehabilitation technology (Dietz and Fouad, 2014).

The utilization of neuro-rehabilitation robots in rehabilitation has 
demonstrated promising clinical outcomes (Hu et al., 2015; Qian et al., 
2017; Rong et al., 2017; Demofonti et al., 2021; Selph et al., 2021). Robot-
assisted gait training has been shown to enhance neuroplasticity, 
whereby injured nerves gradually regain their functionality through 
repetitive training and stimulation (Kuwahara et al., 2022). Secondly, 
this type of training can enhance the patient’s muscle strength and 
stability, improve the efficiency and safety of walking (Mıdık et al., 2020). 
Furthermore, robot-assisted gait training can offer patients confidence 
and motivation during the initial stages of recovery, thereby reducing 
feelings of anxiety and depression (Yang et al., 2022). Robot assisted gait 
training refers to the use of advanced robot technology, combined with 
the principles of physical therapy, to provide gait training and 
rehabilitation treatment for patients with spinal cord injury through 
robot equipment (Calabrò et  al., 2021). This training method can 
provide accurate control and support for patients, helping them recover 
walking function (Picelli et al., 2021). For example, wearable Exoskeleton 
or robot walker can provide additional support and stability to assist 
patients in walking (Swinnen et al., 2010) These devices are usually 
equipped with sensors and motors that can be adjusted according to the 
needs and abilities of patients. Through repeated training and gradually 
increasing challenges, patients can gradually improve muscle strength, 
balance, and walking coordination (Stampacchia et al., 2022).

However, the effect of robot-assisted gait training for patients with 
spinal cord injury is still unclear. Therefore, we conduct a systematic 
review and meta-analysis to assess the effect and safety of robot-
assisted gait training for patients with spinal cord injury patients.

2. Methods

2.1. Database selection and search strategy

Literature searches were conducted in the database of PubMed, 
Medline (Ovid), Web of Science, Cochrane, Embase, Scopus, CKNI, 
Wang fang, VIP database, Sino Med, Clinical Trails until 20th, June, 
2023. The search strategy of Medline (Ovid) is shown as following 
(Table 1).

2.2. Inclusion criteria

 A. Randomized controlled trials (RCTs);
 B. Inclusion of people with spinal cord injury; and
 C. Patients using robot-assisted gait training as the main treatment 

or robot-assisted gait training with regular treatment 
comparing with regular treatment is also acceptable.

2.3. Exclusion criteria

 A. There is no single variable;
 B. observational studies; and
 C. lack of sufficient information on baseline

TABLE 1 The search strategy of Medline (Ovid).

Search order Search strategy

#1 Exp spinal cord injuries/

#2 Exp spinal cord ischemia/

#3 Exp central cord syndrome/

#4 [myelopathy adj3 (traumatic or post-traumatic)].ab,ti.

#5 [(spine or spinal) adj3 (fracture$ or wound$ or trauma$ 

or injur$ or damag$)].ab,ti.

#6 [spinal cord adj3 (contusion or laceration or transaction 

or trauma or ischemia)].ab,ti.

#7 Central cord injury syndrome.ab,ti.

#8 Central spinal cord syndrome.ab,ti.

#9 Exp cervical vertebrae/in (Injuries)

#10 Exp spinal cord/

#11 SCI.ab,ti.

#12 Exp paraplegia/

#13 Exp quadriplegia/

#14 (paraplegia* or quadriplegia* or tetraplegia*).ab,ti.

#15 or/1–14

#16 Exp robot-assisted/

#17 Exp robot/

#18 Exp robot-assisted gait training/

#19 Or/16–18

#20 15 and 19

Abbreviations: 6MWT, 6-min walk test; 10MWT, 10-meter walk test; PT, physical 

therapy; RAGT, robot-assisted gait training; RCTs, randomized controlled trials; 

TUG, timed up and go.
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2.4. Primary outcome

Any changes of gait distance and gait speed.

2.5. Secondary outcomes

Any changes in functions (Such as TUG, Leg strength, 10 MWT).
Any advent events.

2.6. Method of data extraction

Two independent reviewers (LB and XB) extracted data using a 
standardized form that included study demographics, baseline 
characteristics, study design, intervention methods, outcome 
measures, and results. Any disagreements were resolved through 
discussion, and a third review author was consulted if necessary (Sally 
Green, 2011).

2.7. Bias risk assessment

Two authors evaluated the risk of bias in the included study using 
the Cochrane Handbook for Systematic Reviews of Interventions 
Version 6.0 (updated July 2019) risk of bias assessment tool. Any 
discrepancies were resolved through consensus. The assessment tool 
evaluated seven items, including random sequence generation, 
assignment concealment, blinding of participants and personnel, 
blinding of outcome assessment, incomplete outcome data, selective 
reporting, and other bias. The items were categorized as green, yellow, 
and red colors and “+,” “−,” “?,” indicating “low,” “high,” and “unclear” 
risk of bias.

2.8. Publication bias assessment

The RevMan 5.3 software was utilized to conduct funnel plots for 
the assessment of publication bias pertaining to the primary 
outcome measures.

2.9. Statistical analysis

The Review Manager software (RevMan version 5.3, Cochrane 
Collaboration, Oxford, UK) was utilized to conduct statistical 
analyses. The effect quantity used to combine continuous variables in 
the study was Weighted Mean Difference (WMD) and 95% CI.

2.10. Heterogeneity analysis

Heterogeneity between trial results was tested using p value and I2 
statistic. In cases where more than two articles were included, 
heterogeneity was assessed. If the I2 > 50%, the random effect model 
was applied based on Clinical heterogeneity. To evaluate the source of 
heterogeneity, subgroup, sensitivity analysis, and funnel chart were 

employed. The statistical calculation process was carried out using 
RevMan5.3 software.

3. Results

3.1. Literature search

We searched 8 databases including PubMed, Medline (Ovid), Web 
of Science, Cochrane, Embase, Scopus, CKNI, Wang fang, VIP 
database, Sino Med and Clinical Trails until 20th, June, 2023. 1,520 
Records identified through database searching and 12 records 
identified through other sources. 528 records are collected after 
duplicates removed. 22 articles are assessed for eligibility and 11studies 
are finally involved in meta-analysis (Figure 1).

3.2. Characteristics of include studies

11 studies characteristics information are collected in Table 2. The 
difference are discussed by the third author or the whole group.

3.3. Risk of bias

All inclueded are low risk of selection bias. Due to using different 
rehabilitation methods, all the studies are high of performance bias 
and detection bias. All studies are low risk of attritions bias and 
reporting bias. Some studies are unclear of other bias such are lost of 
follow-up (See Figure 2).

3.4. Gait distance

4 studies mentioned gait distance. The forest plot weight mean 
difference WMD = 16.05, 95% CI (−15.73, 47.83), I2 = 69%. The funnel 
plot shows that asymmetric. It may have publication bias. Sensitivity 
analysis is conducted and show that values included in the literature 
are all within a reasonable range (Figure 3).

3.5. Gait speed

8 studies mentioned gait speed. Subgroud group analysis are used 
to distinguish different variables. The forest plot weight mean 
difference (RAGT vs. regular treatment) WMD = 0.01, 95% CI (−0.04, 
0.05), I2 = 43%. The forest plot weight mean difference (RAGT vs. no 
intervention) WMD = 0.07, 95% CI (0.01, 0.12), I2 = 0%. The funnel 
plot shows that asymmetric. It may have publication bias. Sensitivity 
analysis is conducted and show that values included in the literature 
are all within a reasonable range (Figure 4).

3.6. Leg strength

6 studies mentioned leg strength. The forest plot weight mean 
difference WMD = 0.59, 95% CI (−1.22, 2.40), I2 = 29%. The funnel 
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plot shows that asymmetric. It may have publication bias. Sensitivity 
analysis is conducted and show that values included in the literature 
are all within a reasonable range (Figure 5).

3.7. Timed up and go

3 studies mentioned TUG. The forest plot weight mean difference 
WMD = 9.25, 95% CI (2.76, 15.73), I2 = 74%. The funnel plot shows 
that asymmetric. It may have publication bias. Sensitivity analysis is 
conducted and show that values included in the literature are all 
within a reasonable range (Figure 6).

3.8. 10 MWT

2 studies mentioned 10 MWT. The forest plot weight mean 
difference WMD = 0.01, 95% CI (−0.15, 0.16), I2 = 0%. The funnel plot 
shows that asymmetric. It may have publication bias (Figure 7).

3.9. 6 MWT

2 studies mentioned 6 MWT. The forest plot weight mean 
difference WMD = 1.79, 95% CI (−21.32, 24.90), I2 = 0%. The funnel 
plot shows that asymmetric. It may have publication bias (Figure 8).

3.10. Safety

No studies have reported the occurrence of adverse events.

4. Discussion

1,520 records were found by searching the database, and 11 studies 
were finally selected for the meta-analysis. All studies included were 
deemed to have low risk of selection bias. However, due to the use of 
various rehabilitation methods, physicians inevitably know the 
differences in intervention methods used. All studies were found to have 
a high risk of performance bias and detection bias. Additionally, all 

FIGURE 1

Flowchart of study selection.
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TABLE 2 Characteristics of included studies.

Study Participants (N) Intervention Study design Outcome measures Level of injury

Exp. Con. Exp. Con.

Hornby et al. (2005) 10 20 RAGT + Usual PT Usual PT RCT leg strength ASIA B, C, D Level of injury: above 

T10

Field-Fote and Roach (2011) 14 50 RAGT + Usual PT Usual PT RCT Gait speed; gait distance; leg 

strength

ASIA C, D Level of injury: At or 

above T10

Alcobendas-Maestro et al. 

(2012)

37 38 RAGT + Usual PT Usual PT RCT Gait speed; gait distance; leg 

strength

ASIA C, D Level of injury: C2 to T12

Esclarín-Ruz et al. (2014) 41 42 RAGT + Usual PT Usual PT RCT Gait speed; gait distance; leg 

strength

ASIA C, D Level of injury: C2 to L3

Labruyere and van Hedel 

(2014)

5 4 RAGT + Usual PT Usual PT RCT Gait speed leg; strength ASIA C, D Level of injury: C4 to T11

Niu et al. (2014) 20 20 RAGT No intervention RCT Gait speed; TUG ASIA B, C, D Level of injury: above 

T10

Shin et al. (2014) 27 26 RAGT + Usual PT Usual PT RCT Leg strength ASIA D Level of injury: UMN

Tang et al. (2014) 15 15 RAGT + Usual PT Usual PT RCT Gait speed ASIA D Level of injury: T8 to L3

Varoqui et al. (2014) 15 15 RAGT No intervention RCT Gait speed; TUG; 10MWT; 6WT ASIA C, D Level of injury: above T10

Lam et al. (2015) 8 5 RAGT + Usual PT Usual PT RCT 10MWT; 6WT ASIA C, D Level of injury: lesion 

level below T11 or lower 

motoneuron injury was excluded

Duffell et al. (2015) 27 29 RAGT No intervention RCT Gait speed; gait distance; TUG ASIA C, D Level of injury: above T10

https://doi.org/10.3389/fnins.2023.1252651
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bin et al. 10.3389/fnins.2023.1252651

Frontiers in Neuroscience 06 frontiersin.org

studies were found to have a low risk of attrition bias and reporting bias. 
However, some studies had unclear risks of other biases, such as lost 
follow-up. The result showed that gait distance [WMD = 16.05, 95% CI 
(−15.73, 47.83), I2 = 69%], gait speed (RAGT vs. regular treatment) 
[WMD = 0.01, 95% CI (−0.04, 0.05), I2 = 43%], gait speed (RAGT vs. no 
intervention) [WMD = 0.07, 95% CI (0.01, 0.12), I2 = 0%], leg strength 
[WMD = 0.59, 95% CI (−1.22, 2.40), I2 = 29%], TUG [WMD = 9.25, 95% 
CI (2.76, 15.73), I2 = 74%], 10 MWT [WMD = 0.01, 95% CI (−0.15, 
0.16), I2 = 0%], and 6 MWT [WMD = 1.79, 95% CI (−21.32, 24.90), 
I2 = 0%]. Robot-assisted gait training appears to be  beneficial in 
enhancing TUG for patients with spinal cord injuries. However, it may 
not have an impact on gait distance, gait speed, leg strength, 10 MWT, 
and 6 MWT. The quality of the evidence level is not high because the 
included articles have high bias of risks.

According to the current results, the lack of significant aid from 
machine-assisted rehabilitation can be  attributed to several factors 
(Bowman et al., 2021) Firstly, the current technology for machine-assisted 
rehabilitation is not advanced enough to fully replace human rehabilitation 
(Hayes et  al., 2018). The equipment’s functions and applicability are 

limited, making it difficult to cater to the rehabilitation needs of all 
patients. Secondly, each person’s physical state and rehabilitation 
requirements are unique, and machine-assisted rehabilitation equipment 
cannot provide customized plans tailored to individual circumstances 
(Aguirre-Güemez et al., 2019). Thirdly, professional medical personnel are 
required to provide guidance and supervision for machine-assisted 
rehabilitation, and a lack of professional guidance can result in inadequate 
outcomes (Haji Hassani et al., 2022). Finally, long-term monitoring and 
evaluation are necessary for the rehabilitation effect of machine-assisted 
rehabilitation equipment, and the absence of such monitoring can lead to 
less significant rehabilitation outcomes (Alen et al., 2014).

Although in current research, the effectiveness of robot assisted 
rehabilitation therapy is not significant. There is still room for research in 
its development. With the continuous development of technology, the 
application of robots in the medical field is becoming increasingly 
extensive. In rehabilitation therapy, robots can provide accurate and 
precise motion control to assist patients in their recovery training. Robot-
assisted rehabilitation therapy has advantages such as providing 
personalized treatment, enhancing patient engagement, improving 

FIGURE 2

(A) Risk of bias graph; (B) Risk of bias summary.
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FIGURE 3

gait distance (A) forest plot, (B) funnel plot, and (C) sensitivity analysis.

FIGURE 4

Gait speed (A) forest plot, (B) funnel plot, and (C) sensitivity analysis.
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FIGURE 5

Leg strength (A) forest plot, (B) funnel plot, and (C) sensitivity analysis.

FIGURE 6

TUG (A) forest plot, (B) funnel plot, and (C) sensitivity analysis.
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treatment outcomes, and reducing the burden on healthcare professionals, 
making it an important trend in the field of rehabilitation therapy.

Our research has several strengths. While previous Cochrane 
Reviews have shown that the effect of spinal cord injury, they did not 
analyze the impact on spinal cord injury (Boldt et  al., 2014). 
Additionally, other meta-analyses have been limited by their use of 

English-language studies only. In contrast, our systematic review 
includes studies in Chinese, making it a more comprehensive and 
up-to-date analysis of the role of robot-assisted gait training for 
patients with spinal cord injury. However, our study also has some 
limitations. Firstly, most of the studies we  included did not use 
blinding methods and had a high risk of bias. Secondly, we  were 

FIGURE 7

10 MWT (A) forest plot and (B) funnel plot.

FIGURE 8

6 MWT (A) forest plot and (B) funnel plot.
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unable to assess the specific type of usually PT used in each study due 
to a lack of randomized controlled trials.

This study has important implications for future research in the 
field of clinical rehabilitation. To further advance our understanding 
of the benefits of Tai Chi, it is recommended that future studies 
include longer-term follow-up periods, as well as more randomized 
controlled trials and mechanism research. Additionally, many of the 
studies included in our analysis either inadequately reported or did 
not clearly report important methodological details such as 
randomization/allocation concealment and blinding methods. To 
improve the quality of reporting in future trials, we recommend that 
researchers adhere to the Consolidated Standards of Reporting Trials 
(CONSORT) statement (Schulz et al., 2010).
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