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The renin-angiotensin-aldosterone system (RAAS) is one of the key players in the

regulation of blood volume and blood pressure. Dysfunction of this system is

connected with cardiovascular and renal diseases. Regulation of RAAS is under

the control of multiple intracellular mechanisms. Cyclic nucleotides and

phosphodiesterases are the major regulators of this system since they control

expression and activity of renin and aldosterone. In this review, we summarize

known mechanisms by which cyclic nucleotides and phosphodiesterases

regulate renin gene expression, secretion of renin granules from

juxtaglomerular cells and aldosterone production from zona glomerulosa cells

of adrenal gland. We also discuss several open questions which deserve

future attention.
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1 Introduction

The renin-angiotensin-aldosterone system is one of the key players in the regulation of

blood volume and blood pressure. Dysfunction of this system is connected with

cardiovascular and renal diseases (1, 2). The main regulatory mechanism responsible for

the activity of RAAS is a cascade of proteolytic enzymes that cleaves circulating

angiotensinogen by renin to generate angiotensin I (Ang I), followed by subsequent

cleavage of Ang I by angiotensin converting enzyme (ACE) to angiotensin II (Ang II).

Angiotensinogen, the only precursor of all biologically active angiotensin peptides, is

predominantly produced by the liver and its production is controlled by several hormones

including estrogens, steroids, and thyroid hormones (Figure 1) (3). Historically, Ang II

acting through Ang II receptors (AT-Rs), which belong to the G protein coupled receptor

family (GPCR) was considered as a main regulator of RAAS system. This concept was

revisited after discovery of angiotensin converting enzyme type 2 (ACE2) which generates
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Ang-(1-7). This short peptide acts at its specific GPCR called Mas

receptor and counterbalances the vasoconstrictor role of Ang II

(4–6).

Renin activity is a rate-limiting step controlling the activity of

the RAAS. Juxtaglomerular (JG) cells located at afferent arterioles of

the kidney glomeruli are the main source of renin secretion into the

blood stream (7, 8). Generally, renin production from JG cells is

controlled by renal perfusion pressure, the tubular sodium chloride

concentration sensed by macula densa cells and negative feedback

loops involving blood pressure, sodium balance and Ang II

concentration (9). At the cellular level, cyclic nucleotides, 3’,5’-

cyclic adenosine monophosphate (cAMP) and 3’,5’-cyclic

guanosine monophosphate (cGMP) are strongly involved in the

regulation of renin gene expression and release from JG cells.

Aldosterone is the next important player of RAAS which is

synthesized and released by zona glomerulosa (ZG) cells of adrenal

gland (Figure 1). Aldosterone, in addition to Ang II, is involved in the

hemostatic regulation of blood pressure by controlling plasma sodium

and potassium concentrations which are the main determinants of

blood volume. Two classical pathways are involved in the regulation

of aldosterone synthesis and release. Firstly, adrenocorticotropic

hormone (ACTH) binds to the Gs-coupled melanocortin type 2

receptor (MC2R) and initiates cAMP synthesis. Secondly, Ang II

and potassium concentrations in the plasma by different mechanisms

can increase intracellular calcium (10–12).
2 Cyclic nucleotide signaling
and phosphodiesterases

In mammalian cells, cAMP is synthesized from ATP by

adenylate cyclases (ACs) from 10 different families, regulated by
Frontiers in Endocrinology 02
G-protein coupled receptors (GPCRs), intracellular calcium and

bicarbonate. cGMP is produced from GTP by two types of

guanylate cyclase. The first one is the nitric oxide (NO) sensitive

or the so-called soluble guanylate cyclase (sGC), which is directly

activated by NO. The second one is a family of particulate guanylyl

cyclases (pGCs) which are membrane receptors for natriuretic

peptides (13–15). cAMP acts in cells primarily by activating

cAMP dependent protein kinase (PKA), exchange protein directly

activated by cAMP (Epac), or cyclic nucleotide gated (CNG)

channels. cGMP can activate cGMP dependent proteins kinase

(PKG) or CNG channels. PKA and PKG phosphorylate multiple

substrates regulating various intracellular processes (Figure 2).

Cyclic nucleotides are degraded by PDEs which are hydrolyzing

enzymes converting cAMP and cGMP to monophosphates. Over

100 PDE isoforms are generated by alternative splicing of more than

20 genes. PDEs have been classified into eleven families based on

substrate specificity and regulatory properties (14–21). This high

versatility leads to very precise regulation of cyclic nucleotide levels

in various organ systems (14, 15). PDEs are also critically involved

in the compartmentalization of cAMP and cGMP signaling in

various subcellular nano- or microdomains which determine

signal output by local substrate regulation (16). The response by

each of the cyclic nucleotides in amplitude, space and time is

controlled by their degradation via respective PDEs (17, 18).

PDEs 4, 7 and 8 are highly specific for cAMP hydrolysis, whereas

PDEs 5, 6 and 9 are cGMP specific. There are also several dual-

specific PDEs such as PDE1, 2, 3, 10 and 11 (19–21).

Some dual-specific PDEs are also involved into the cross-talk

between both cyclic nucleotides. For example, cGMP can activate

PDE2 via an N-terminal regulatory domain, thereby promoting

cAMP degradation and enabling a negative cGMP-to-cAMP cross-

talk. Also, cGMP can bind to the catalytic domain of PDE3 with
FIGURE 1

Overview on the renin-angiotensin-aldosterone System. ACTH secreted by the anterior pituitary gland stimulates aldosterone production from
adrenal gland zona glomerulosa (ZG) cells. Renin secreted by JG cells of the kidney and its activity is a rate-limiting step controlling Angiotensin II
concentrations which also activate aldosterone production. Aldosterone initiates sodium reabsorption from the kidney. This and all other figures
were made using BioRender.
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high affinity causing a negative cGMP-to-cAMP cross-talk and

impaired cAMP degradation (22–26) (Figure 2).

Studies have reported that disruption in the expression of

various PDEs or mutations in the PDE genes can lead to diseases

including cancers, cardiovascular, neuronal, and other pathologies

(18). Therefore, the role of PDEs and integration into the cAMP and

cGMP pathways along with their crosstalk is essential to multiple

physiological systems (27).
3 Regulation of RAAS by cyclic
nucleotides and PDEs

3.1 Renin

Renin concentration in plasma is regulated by the renin gene

expression and release of renin from the renin containing granules

in JG cells (Figure 3). These processes are regulated by second

messengers including cyclic nucleotides and intracellular calcium. It

is generally accepted that cAMP downstream of membrane

receptors such as b1-adrenergic and prostaglandin receptors, is

the main activatory signal for renin expression and release,

whereas increase of calcium concentration inhibits it by so-called

“calcium paradox” (28, 29). The effect of cGMP on JG cells is more

complicated and still not fully understood. Several mediators of

cGMP including PKG I, PKG II (30, 31) PDE2 and PDE3 (32, 33)

are expressed in JG cells and cGMP could stimulate as well as
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inhibit renin gene expression and secretion. Atrial natriuretic

peptide (ANP) cGMP-dependently inhibited renin release from

JG cells (34), whereas inhibition of PDE3 by cGMP activates renin

secretion (for details see below) (Figure 4).
3.2 Regulation of renin gene expression

Renin gene in human and mouse genome is localized in the

chromosome 1. The 5’-flanking noncoding region plays a central

role in regulating renin gene expression (35). Activation of the

renin transcription is mainly mediated by the cAMP/PKA

pathway (36, 37). In contrast, activation of protein kinase C

and increase of intracellular calcium are involved in the

suppression of renin expression (38, 39). cAMP-induced

activation of the renin gene expression is initiated by PKA

dependent phosphorylation of cAMP responsive transcription

factors (CREB, CREM, and ATF1) that in phosphorylated

form bind to CRE sequences in the proximal promoter and

the kidney enhancer region (9). cAMP/PKA pathway is also

critically involved in the control of basal transcriptional level of

renin gene (40, 41). Deletion of Gs coupled receptors strongly

decreased renin expression in mouse models (9, 37, 42). The

question whether and how cGMP is involved in the regulation

of the renin gene expression is still open. cGMP by inhibition of

PDE3 enhances cAMP effect which in turn activates renin

expression. Deletion of PKG II, but not PKG I, in mouse
FIGURE 2

Crosstalk of cyclic nucleotide signaling pathways in cells. cGMP is synthesized by two independent pathways including transmembrane guanylate
cyclases (GC-A) stimulated by ANP and sGC stimulated by NO. Adenylate cyclase (AC), which is activated by Gs coupled seven transmembrane
receptors, is the main source of cAMP in the cells. cGMP by binding to PDE2 accelerates cAMP hydrolysis and by binding to PDE3 inhibits cAMP
hydrolysis. Binding of cGMP to PKG and cAMP to PKA activates the kinases which phosphorylate multiple substrates regulating various intracellular
processes. In addition, cAMP can directly bind to exchange protein activated by cAMP (Epac) that also has multiple targets in the cells. Cyclic
nucleotides gated (CNG) channels are important mediators of cGMP/cAMP signaling in the cells.
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significantly enhanced renin mRNA levels (31). However, the

molecular mechanisms of renin gene activation, whether it

relates to the phosphorylation of the transcription factors by

PKG II, or some other mechanisms are not clear. Nitric oxide

(NO) by activation of soluble guanylate cyclase supports
Frontiers in Endocrinology 04
recruitment of renin producing cells to the glomerular arteriole

(43), however the molecular mechanisms underlying these

processes also not clear.

cGMP exerts dual effect on renin secretion (Figure 4).

Activation of PKG II by 8-pCPT-cGMP, which is specific for
FIGURE 3

Renin synthesis and secretion in JG cells. Translation of renin mRNA at the rough endoplasmic reticulum (RER) gives rise a 48 kDa protein
(preprorenin) from which the pre-(signal)-peptide is enzymatically cleaved in the Golgi-apparatus, and enzymatically inactive prorenin is then
glycosylated and stored in the renin granules. Within the granules, prorenin (43 kDa) is proteolytically cleaved to yield enzymatically active renin (41
kDa). cAMP stimulated both renin gene expression and release of renin granules.
FIGURE 4

Regulation of renin release from JG cells by cyclic nucleotides. Stimulation of adenylate cyclase (AC) by Gs coupled receptors, such as b1-adrenergic
receptor (b1-AR) and prostaglandin receptors, increases cAMP levels that activate PKA which enhances renin release from the granules. NO and ANP
by stimulation of sGC and GC-A, respectively, increase cGMP which has dual effect on renin release. PKG II and PDE2 are involved in the inhibition
of renin secretion, whereas cGMP mediated inhibition of PDE3 prevents cAMP degradation and stimulates renin secretion.
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PKG II and does not stimulate PDE3 (44) inhibited basal cAMP-

stimulated renin secretion (30). Using PKG I and PKG II knock-

out models (45) it was concluded that in mice, cGMP and PKG are

involved in the acute regulation of renin release but not in the long-

term regulation of renin gene expression and secretion (45). ANP

increases cGMP in JG cells and inhibits renin release without

affecting intracellular calcium concentration (34). Similarly, in

several publications, inhibition of renin secretion by NO was

demonstrated (46–48). On the other hand, some authors found a

stimulatory role of NO on renin secretion (49–51) which is

mediated by inhibition of PDE3 (7, 32, 52). The controversial

results concerning effects of NO/sGC/cGMP pathway on renin

secretion could be partly explained by different sources of NO

that activate sGC in these cells. Increase of cGMP because of

endothelial NO synthase (eNOS) activation by elevated renal

perfusion and shear stress is probably involved in the inhibition

of renin release by the activation of PKG II (31). Another source of

NO for JG cells is the neuronal NO synthase (nNOS). nNOS is

expressed in macula densa cells and upregulated by sodium

restriction (52–55) that could be involved in activation of renin

secretion by inhibition of PDE3 activity. Such controversies also

exist in the remodeled microdomains of diseased hearts having

altered cAMP compartmentalization (56). Since PDEs control the

amplitude and the duration of cyclic nucleotide responses (17, 18),

even small alterations in their activities can lead to dramatic

remodeling (17, 27, 57–60). However, whether similar

mechanisms are present in JG cells where cGMP downstream of

particulate guanylate cyclase (activated e.g. by ANP) or NO derived

from different NOS isoforms (eNOS, nNOS) remains to

be elucidated.
3.3 Regulation of renin secretion by PDEs

From eleven PDE enzyme families, expression of only PDE1,

PDE2, PDE3 and PDE4 was detected in JG cells (7). Although

expression of PDE5 and PDE9 has not been directly demonstrated

in JG cells, inhibition of PDE5 by sildenafil in two groups of

normotensive humans with and without sodium intake restriction

elevated renin secretion (61). Similarly, in patients with liver

cirrhosis and ascites, sildenafil increased renin plasma levels (62).

Inhibition of PDE5 by zaprinast in a rat model increased plasma

renin activity six-fold without any effects on blood pressure and

renal blood flow (33). On the other hand, in wild type and eNOS

knock-out mice, inhibition of PDE5 by zaprinast did not change

plasma renin concentration in both phenotypes (55). Inhibition of

PDE9 by low concentrations of PDE9-I and PF-04749982 had no

effect, and high concentrations of PDE9 inhibitors acutely increased

plasma renin activity in sheep (63). However, all these data were

obtained in vivo on human and animal models. Therefore, the

question whether the effects of PDE5 and PDE9 inhibitors are

connected with a direct action on JG cells or are mediated by

systemic kidney or blood pressure responses is still open. In the

literature, we could not find any direct indications that PDE5 and

PDE9 are expressed in JG cells, and this question still needs

further clarification.
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Calcium-calmodulin-dependent PDE1 family, which includes

PDE1A, PDE1B and PDE1C subfamilies, is expressed in different

cells (21). The PDE1A and PDE1B have a higher affinity for cGMP

than for cAMP, whereas PDE1C has an equal affinity for both

cAMP and cGMP (64). PDE1C is the only subfamily expressed in

JG cells. Elevated intracellular calcium by activation of PDE1C and

inhibition of AC5 and AC6 leads to a decrease in cAMP and renin

secretion (65).

Expression of PDE3A, PDE3B and PDE4 in JG cells was

demonstrated at the mRNA level. Inhibition of PDE4 by rolipram

significantly enhanced basal and forskolin induced renin secretion

from isolated JG cells, suggesting an important role of this PDE

family. PDE3A mRNA levels were higher than those of PDE3B

and PDE4 in freshly isolated cells (7). Supporting this result,

functional significance of PDE3, as a cGMP-inhibited PDE family,

for the regulation of renin gene expression and secretion was

demonstrated by numerous other reports reviewed in detail

elsewhere (8).

In summary, cyclic nucleotides cAMP, and cGMP, along with

their downstream protein kinases and several PDEs, play a crucial

role in the regulation of renin gene expression and renin secretion

from JG cells. However, there are many open questions especially

concerning compartmentalization of cyclic nucleotide signaling in

these cells and specific PKA/PKG substrates which are responsible

for renin regulation.
4 Aldosterone

In mammals, aldosterone biosynthesis occurs mainly in the

ZG cells of adrenal gland. Cholesterol is a common precursor for

synthesis of all steroid hormones including aldosterone. Synthesis

of the steroid hormones starts from mobilization of cholesterol

esters from intracellular lipid droplets and their enzymatic

hydrolysis to free cholesterol by cholesterol ester hydrolase

(CEH). Aldosterone is synthesized by a series of enzymatic

reactions that involve three cytochrome P450 enzymes and

hydroxysteroid dehydrogenase. For initiation of the aldosterone

synthesis, free cholesterol is transported to the outer

mitochondrial membrane. Cholesterol then moves from the

outer mitochondrial membrane, across the aqueous intra-

membranous space, to the inner mitochondrial membrane

where the side-chain cleavage enzymes system is localized. The

movement across aqueous space is a rate-limiting step in

aldosterone synthesis which is regulated by the expression and

phosphorylation of steroidogenic acute regulatory protein (StAR)

(66–69). In StAR knock-out mice, stimulation of the steroid

hormone producing cells induced progressive accumulation of

lipids within the steroidogenic cells and ultimately causing their

death (70). Several mechanisms including cyclic nucleotides,

intracellular calcium and potassium concentrations, activity of

many protein kinases are involved in the regulation of

aldosterone synthesis and production (12, 71). In this review,

we focus mainly on the mechanisms of cyclic nucleotide and PDE

dependent regulation of aldosterone synthesis.
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4.1 Regulation of aldosterone by
cyclic nucleotides

4.1.1 cAMP pathways
ACTH by binding to its Gs-coupled MC2R increases cAMP

concentration in ZG cells (Figure 5). Several AC families including

the calcium activated AC-1 and AC-3, calcium inhibited AC-5/6,

and the bg- and PKC-sensitive AC-2/AC-4 are expressed in these

cells (72). In addition to these AC families, soluble AC (sAC) is

expressed in ZG cells and its activation enhanced cAMP in

mitochondria and aldosterone production (73). Direct increase of

the mitochondrial cAMP was demonstrated by mitochondria-

targeted fluorescent biosensor, and knockdown or inhibition of

sAC reduced mitochondrial cAMP and angiotensin II-induced

aldosterone production (74). Activation of AC-1 and AC-3 by

cAMP/PKA-mediated phosphorylation of L-type calcium

channels is also involved in cAMP rise in ZG cells (75, 76). Ang

II alone strongly stimulates aldosterone secretion via elevation of

intracellular calcium (77, 78). This pathway can cross-talk to cAMP

signaling in different ways including calcium activated and calcium

inhibited ACs mentioned above. For example, elevation of

intracellular calcium concentration by Ang II potentiated ACTH-

mediated cAMP increase in ZG cells (79). However, in some

reports, reduction of ACTH-induced cAMP production by Ang II

(80–82) as well as no effect on cAMP (83) were also shown. In

bovine ZG cells, stimulation by Ang II was not sufficient to increase

cAMP and activate PKA (78). This discrepancy could relate to

differences in intracellular mechanisms of cAMP synthesis in

different species (human, bovine, rat ZG cells, human H295R

adrenocortical cell line) and different experimental settings.

cAMP mediated activation of PKA is important for aldosterone
Frontiers in Endocrinology 06
synthesis. PKA, by phosphorylation and activation of CEH,

regulates the availability of free cholesterol, the initial substrate

for aldosterone biosynthesis, which catalyzes the hydrolysis of

stored cholesterol esters into free cholesterol and a fatty acid (84,

85). Phosphorylation of the transcription factor CREB by PKA

activates transcription of enzymes responsible for aldosterone

synthesis and StAR gene expression (Figure 5). Activation of

StAR gene expression is under the control of multiple factors,

including several protein kinases and transcription factors

activated by PKA (86, 87). Transcription of StAR mRNA is also

regulated by PKA. cAMP/PKA activation induces transcription of

longer but less stable StAR mRNA, whereas under basal conditions,

a shorter but more stable mRNA is transcribed (88, 89). Activity of

StAR itself is stimulated by PKA phosphorylation. StAR protein

contains two consensus PKA phosphorylation sites (S56/57, RRGS

or RRSS, and S194/195 with RRGS motive) that are conserved

among mammals (84). At least two PKA isoforms (PKA I and PKA

II) are expressed in steroidogenic cells, and differential activation of

these kinases by specific analogs revealed that activation of StAR

gene expression is more dependent upon type I PKA, while the

phosphorylation of StAR is mainly mediated by PKA II activation

(90). From numerous A-kinase anchoring proteins (AKAPs) only

two, namely AKAP121 and Optic Atrophy 1 (OPA1) were

described in steroidogenic tissues. AKAP121 forms a complex

with PKA R II subunit and StAR mRNA during the increase of

intracellular cAMP levels, and this complex is important for

translocation of StAR mRNA into mitochondria and for the

prevention of StAR mRNA from degradation (90, 91). OPA1 in

aldosterone producing cells is localized in mitochondria and in the

cytosol. However, direct involvement of OPA1 in regulation of

steroidogenesis has not been reported (92).
FIGURE 5

Regulation of aldosterone production in ZG cells by cyclic nucleotides. ACTH binding to the Gs coupled MC2R increases cAMP and activates PKA.
Phosphorylation of cholesterol ester hydrolase (CEH), StAR, and several transcription factors stimulates aldosterone production. Ang II binds to Gq/11

and Gi/o coupled AT1R that activates phospholipase C and increases cytosolic Ca2+ concentrations, thereby triggering aldosterone production. ANP
by binding to GC-A increases cGMP that can inhibit aldosterone production by binding to PDE2 and reducing cAMP. Alternatively, cGMP can
stimulate aldosterone production by activating PKG II. ANP inhibits not only ACTH/cAMP stimulated but also Ang II stimulated aldosterone
production by a still unknown mechanism. The two question marks indicate that the exact pathways inhibiting aldosterone directly via cGMP and via
ANP stimulated GC-A are still unknown.
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In addition to PKA, exchange proteins activated by cAMP

(Epac1 and 2) and their effectors, small GTPases Rap1 and Rap2,

are expressed in ZG cells (93). Epac mediated activation of Rap1

and 2 by ACTH, as well as direct Epac activation by specific

cAMP analog 8-pCPT-2’-O-Me-cAMP had no effect on

aldosterone production in bovine ZG cells (78). The lack of

Epac effect on aldosterone production was confirmed in murine

adrenocortical tumor cells (Y1) and in human H295R cell line. It

was shown that the activation of Epac in these cells is involved in

cytoskeleton integrity and cell migration but not aldosterone

production (94). On the other hand, it was shown that Epac is

downstream of mitochondrial sAC and mitochondrial cAMP,

suggesting that Epac plays an essential role in the control of

initial calcium uptake. It may also contribute to maintaining

elevated mitochondrial calcium level. However, whether this

function of Epac is directly related to the aldosterone

production is not clear (73) and the question about possible

direct effects of Epac activation on aldosterone production from

ZG cells remains open.

Several isoforms of Calcium/Calmodulin-dependent Protein

Kinases (CaMKs) are expressed in ZG cells and are strongly

involved in the regulation of aldosterone production (95). By

using in vitro kinase assays and experiments with intact bovine

and rat ZG cells it was shown that cAMP directly stimulated

CaMK activity which was independent of PKA and Epac/Rap1

signaling systems. These data suggests that in ZG cells, some other

target(s) of cAMP might be involved in the regulation of CaMK

activity (78).

4.1.2 cGMP pathways
Synthesis of cGMP is mediated by activation of natriuretic

peptide receptors and soluble NO-sensitive guanylate cyclase.

ANP by the activation of its receptor (GC-A) significantly

increases cGMP level in ZG cells, whereas the expression and

activity of sGC in these cells was not directly shown. NO donors

inhibited aldosterone production in bovine ZG and H295R cells

without increasing intracellular cGMP, and the sGC inhibitor

ODQ did not prevent this NO effect. Additional proof that

cGMP is not involved in NO-mediated aldosterone production

was based on the data that membrane permeable cGMP analogs

had no effect on aldosterone production (96, 97). However, it

should be mentioned that ZG cells are full of lipid granules and

cGMP analogs are highly lipophilic, therefore higher

concentrations of analogs have to be used in ZG cells. For

example, much lower concentrations of cGMP analogs are

already active in JG cells and platelets (30, 98) than in ZG cells

(99). In several cell types, including vascular smooth muscle cells,

endothelial cells and neurons, extensive cross-talk between Ang II

and NO signaling has been described. Ang II, by several

intracellular mechanisms including intracellular calcium can

activate eNOS leading to increased NO production. On the

other hand, elevated NO levels can downregulate AngII AT1-

receptor mRNA and protein expression (100, 101). eNOS

expression in sheep and rhesus ZG cells was demonstrated by

immunohistochemistry (102), suggesting that this mechanism

could potentially operate in adrenal cells and modulate
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aldosterone secretion. However, the question whether eNOS is

expressed in ZG cells of other species including mice, rats and

humans, and the relevance of this crosstalk between Ang II and

NO is ZG cells deserve further investigation.

PKG I and PKG II are expressed in rat adrenal cortex. PKG I

expression is restricted only to the capsule of the adrenal gland and

blood vessels, whereas PKG II is expressed solely in ZG cells. Low

sodium intake in rats induces hyperplasia and hypertrophy of ZG

cells (103) and upregulates PKG II expression in these cells without

changes in PKG I expression. This indicates that PKG II is

important for functional activity of ZG cells. cGMP generated

upon activation of GC-A is a well-known inhibitor of aldosterone

production which is mediated by the stimulation of PDE2 (see

below). To demonstrate the effects of PKG II on aldosterone

production, selective PKG activator (8-pCPT-cGMP) and

inhibitor (Rp-8-pCPT-cGMPS) in concentrations that do not

affect PDEs (104) were used. Activation of PKG II stimulated

basal as well as ACTH and Ang II-stimulated aldosterone

production, and inhibition of PKG II significantly reduced it.

These effects were not detected in H295R cells which do not

express PKG II. Overexpression of PKG II by adenovirus in rat

ZG cells strongly enhanced its effect on activation of aldosterone

production. StAR protein was phosphorylated by PKG II in vitro.

However, whether it could be phosphorylated in vivo is still not

known. In contrast to the PKA effect, activation of PKG II did not

induce StAR gene expression, and it was concluded that PKG II

activity is important for maintaining basal level of aldosterone

production in rats (99). PKG II is also expressed in mouse ZG

cells, and the authors did not find similar function of this kinase in

the regulation of aldosterone production by using PKG II knock-out

mouse model. Basal plasma aldosterone levels were similar in wild-

type and PKG II knock-out mice. The authors made an interesting

observation that in vivo injection of ANP decreased ACTH-

stimulated aldosterone secretion in wild-type mice and had no

effect in PKG II knock-out mice, but the molecular mechanism of

this effect is not clear (105). However, the results on mice and rats

are not comparable because rat experiments were performed in

isolated ZG cells (99), whereas mouse experiments were conducted

in vivo (105), and other factors could influence the effects of PKG II

on aldosterone production. PKG II is not expressed in H295R cells

(see above), and there are no data whether this kinase is expressed

in other aldosterone producing cells (bovine, human) or in other

cell types used for analysis of intracellular mechanisms of regulation

of aldosterone production. Therefore, the question whether this

kinase is involved in regulation of aldosterone production in other

species except mouse and rat remains open.

Shortly after discovery of ANP (106), several reports described

its inhibitory effect of ANP on aldosterone production from ZG

cells (Figure 5) (107–112). cGMP-independent inhibition of

aldosterone production was initially postulated in all these reports

based on the lack of inhibitory effect of cGMP analogs (8-Br-cGMP,

Db-cGMP). Similarly, inhibition of StAR gene expression by ANP

was not mimicked by cGMP analogs (113) (please see also above for

the information regarding the problem for use of cGMP analogs in

ZG cells). In 1991, high expression of PDE2 in bovine ZG cells was

described. It was shown that the inhibitory effects of ANP on
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cAMP-stimulated aldosterone production is mediated by activation

of PDE2 and strong decrease of cAMP concentration (114). After

this, the predominant role of cGMP stimulated PDE2 as a mediator

of ANP inhibitory effects in ZG cells was confirmed by several

studies (see next chapter).
4.2 Regulation of aldosterone by PDEs

From all known PDE families, only PDE2 expression has

been described in aldosterone producing cells. Expression of

PDE2 is very high in adrenal ZG cells, and increase of cGMP

can strongly inhibit aldosterone production (Figure 5) (114). For

real time in situ monitoring of PDE2 activity in bovine ZG cells,

a genetically encoded fluorescent cAMP biosensor was used.

ANP-induced increase of cGMP activated PDE2 and induced a

rapid decrease of intracellular cAMP within a few seconds.

Moreover, the kinetics of ANP-stimulated PDE2 activity was

much faster than the speed of ACTH-induced cAMP synthesis

in these cells, revealing high catalytic activity and fast action of

PDE2 in regulating cAMP levels in ZG cells (115). The same

cAMP sensor was used in H295R cells to show the predominant

role of PDE2 in the inhibition of aldosterone production (2).

In humans, mutations of PDE2A and PDE3B variants were

associated with familial primary aldosteronism and bilateral

adrenal hyperplasia. However, high aldosterone concentrations

were detected only in patients with PDE2A mutation, whereas

patients with PDE3B mutation had abnormal cortisol levels

(116). Cushing syndrome, adrenal tumors, and hyperplasia of

adrenal glands in humans are also associated with the mutations

in PDE8 and PDE11 genes (117–120). Different isoforms of

PDE8 (121) and PDE11 (117, 120) are strongly expressed in

adrenal zona fasciculata cells and we could not find in the

literature whether any other PDEs apart from PDE2 are

expressed and directly involved in the regulation of aldosterone

production in ZG cells.
5 Conclusions

Regulation of RAAS is under the control of multiple

intracellular mechanisms. Cyclic nucleotides and PDEs serve as

the major regulators of this system by controlling expression/

activity of renin and aldosterone production. In general, it is

accepted that cAMP/PKA pathway is a positive regulator of

RAAS, whereas cGMP is mainly regarded as a negative regulator,

inhibitory pathway. However, there are still many open questions

which deserve further investigation. In JG cells, phosphorylation of

transcription factors by PKA activates renin gene expression but the

substrates involved in renin granule release are mostly unknown.

Regulation of gene expression by PKG II was described for other cell

types (37, 122), however, whether PKG II is also involved in

regulation of renin gene expression is not known. In JG cells,

PKG II is localized in renin containing granules and its activation

inhibits renin secretion (30). However, it is still unknown which
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substrates are phosphorylated by PKG II in these cells. Discrete

subcellular microdomains confine cyclic nucleotide signaling which

is highly compartmentalized. This gives freedom to the PDEs to

control local kinase activities such as phosphorylation of specific

PKA and PKG substrates. Not only does this limit the activity but

also allows the cross talk between the signaling pathways, which is

well understood in cardiomyocytes but still under investigation in

many other cell types (57). Compartmentalization of cyclic

nucleotides is an important regulator of their function in other

cell types, but there is no information about compartmentalization

of cAMP/cGMP in JG cells. Also, information concerning Epac and

AKAPs in these cells is very scarce. Similar questions could be

addressed in aldosterone producing cells. In addition, very little is

known concerning the expression and function of different PDEs

(except PDE2) in ZG cells. Whether other PDEs are expressed and

involved in the regulation of aldosterone production is still

not known.
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Compartmentation of cyclic nucleotide signaling in the heart. Circ Res (2006) 99:816–
28. doi: 10.1161/01.RES.0000246118.98832.04

58. Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic
nucleotide phosphodiesterases: Important signaling modulators and therapeutic
targets. Oral Dis (2015) 21:e25–50. doi: 10.1111/odi.12275

59. Zaccolo M. Spatial control of cAMP Signalling in Health and Disease. Curr Opin
Pharmacol (2011) 11:649. doi: 10.1016/J.COPH.2011.09.014

60. Lorigo M, Oliveira N, Cairrao E. PDE-mediated cyclic nucleotide
compartmentation in vascular smooth muscle cells: from basic to a clinical
perspective. J Cardiovasc Dev Dis (2021) 9:4. doi: 10.3390/JCDD9010004

61. Chiu YJ, Reid IA. Effect of sildenafil on renin secretion in human subjects. Exp
Biol Med (Maywood) (2002) 227:620–5. doi: 10.1177/153537020222700810

62. Thiesson HC, Jensen BL, Jespersen B, Schaffalitzky DeMuckadell OB, Bistrup C,
Walter S, et al. Inhibition of cGMP-specific phosphodiesterase type 5 reduces sodium
excretion and arterial blood pressure in patients with NaCl retention and ascites. Am J
Physiol Renal Physiol (2005) 288:F1044–52. doi: 10.1152/AJPRENAL.00142.2004

63. Scott NJA, Rademaker MT, Charles CJ, Espiner EA, Richards AM. Hemodynamic,
hormonal, and renal actions of Phosphodiesterase-9 inhibition in experimental heart
failure. J Am Coll Cardiol (2019) 74:889–901. doi: 10.1016/J.JACC.2019.05.067

64. Goraya TA, Masada N, Ciruela A, Willoughby D, Clynes MA, Cooper DMF.
Kinetic properties of Ca2+/calmodulin-dependent phosphodiesterase isoforms dictate
intracellular cAMP dynamics in response to elevation of cytosolic Ca2+. Cell Signal
(2008) 20:359–74. doi: 10.1016/J.CELLSIG.2007.10.024

65. Ortiz-Capisano MC, Ortiz PA, Harding P, Garvin JL, Beierwaltes WH. Adenylyl
cyclase isoform v mediates renin release from juxtaglomerular cells. Hypertension
(2007) 49:618–24. doi: 10.1161/01.HYP.0000255172.84842.D2

66. Clark BJ, Pezzi V, Stocco DM, Rainey WE. The steroidogenic acute regulatory
protein is induced by angiotensin II and K+ in H295R adrenocortical cells. Mol Cell
Endocrinol (1995) 115:215–9. doi: 10.1016/0303-7207(95)03683-0

67. Hattangady NG, Olala LO, Bollag WB, Rainey WE. Acute and chronic
regulation of aldosterone production. Mol Cell Endocrinol (2012) 350:151–62.
doi: 10.1016/j.mce.2011.07.034

68. Bollag WB. Regulation of aldosterone synthesis and secretion. Compr Physiol
(2014) 4:1017–55. doi: 10.1002/CPHY.C130037

69. Abdellatif AB, Fernandes-Rosa FL, Boulkroun S, Zennaro MC. Vascular and
hormonal interactions in the adrenal gland. Front Endocrinol (Lausanne) (2022)
13:995228/BIBTEX. doi: 10.3389/FENDO.2022.995228/BIBTEX

70. Caron KM, Soo SC, Wetsel WC, Stocco DM, Clark BJ, Parker KL. Targeted
disruption of the mouse gene encoding steroidogenic acute regulatory protein provides
insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci U.S.A. (1997)
94:11540–5. doi: 10.1073/PNAS.94.21.11540/ASSET/C567B100-0125-4067-9DEC-
12C29192A988/ASSETS/GRAPHIC/PQ2172765004.JPEG

71. Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in
cellular signaling pathways. Physiol Rev (2004) 84:489–539. doi: 10.1152/
PHYSREV.00030.2003
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