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Introduction: Accurate contour extraction in ultrasound images is of great interest
for image-guided organ interventions and disease diagnosis. Nevertheless, it
remains a problematic issue owing to the missing or ambiguous outline
between organs (i.e., prostate and kidney) and surrounding tissues, the
appearance of shadow artifacts, and the large variability in the shape of organs.

Methods: To address these issues, we devised a method that includes four stages.
In the first stage, the data sequence is acquired using an improved adaptive
selection principal curve method, in which a limited number of radiologist defined
data points are adopted as the prior. The second stage then uses an enhanced
quantum evolution network to help acquire the optimal neural network. The third
stage involves increasing the precision of the experimental outcomes after
training the neural network, while using the data sequence as the input. In the
final stage, the contour is smoothed using an explicable mathematical formula
explained by the model parameters of the neural network.

Results:Our experiments showed that our approach outperformed other current
methods, including hybrid and Transformer-based deep-learning methods,
achieving an average Dice similarity coefficient, Jaccard similarity coefficient,
and accuracy of 95.7 ± 2.4%, 94.6 ± 2.6%, and 95.3 ± 2.6%, respectively.

Discussion: This work develops an intelligent contour extraction approach on
ultrasound images. Our approach obtainedmore satisfactory outcome compared
with recent state-of-the-art approaches . The knowledge of precise boundaries of
the organ is significant for the conservation of risk structures. Our developed
approach has the potential to enhance disease diagnosis and therapeutic
outcomes.
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1 Introduction

Medical image segmentation techniques have been essential for
the early diagnosis of clinical disease. They have primarily been used
to discover the region of interest (ROI) in medical images. Due to its
ability to generate real-time images and its low cost, ultrasound
imaging has been one of the most commonly used imaging
techniques for early disease detection. However, the precise
segmentation of organs in ultrasound images remains
challenging, as 1) the boundaries of organs (i.e., prostate and
kidney) are ambiguous or have unseen regions owing to the low
contrast of ultrasound images, and 2) the shapes of organs vary
between different patients.

Medical image segmentation has become a considerable
research field. Lei et al. (Lei et al., 2021) devised an improved
deep convolution network to segment multiple organs
(i.e., bladder, prostate, rectum, and urethra) in the male pelvic
region, where an anchor-free-based module assisted the proposed
model to precisely capture the relationship of both locations and
shapes among multiple organs. However, the capability of this
technique depends on the number of training images. In
addition, a validation set was not used, so the selection of the
hyper-parameters (i.e., learning rate and optimal epoch) of the
model was not allowed. Due to the limited amount of ultrasound
data for training, Amiri et al. (Amiri et al., 2020) used the pre-trained
Unet model for ultrasound image segmentation. The pre-trained
Unet model was trained on the XPIE dataset (Xia et al., 2017), which
includes 10,000 natural images. In addition, the newly added deep
and shallow layers can potentially be used to search for the best
scheme for the transfer learning model. However, the final
segmentation performance is affected by the correlation between
the two datasets. In the ultrasound image segmentation task, Xu
et al. (Xu et al., 2021) added a vector-based attention layer to the
convolutional neural network to balance spatial and channel
attention so that it can better highlight the salient features. In
addition, the geometric priors of specific organs were used to
improve the accuracy of detection. However, a validation set was
not used for the estimation of hyper-parameters in the learning
algorithms. Among the different types of segmentation methods,
contour extraction methods are known for their ability to extract
realistic shapes of organs in medical images.

A region expression or curve description model has been the
primary goal of the contour extraction models developed to express
realistic contours of tissues. Zhang et al. (Zhang et al., 2020)
designed a multiple-channel, atrous-based neural network (NN)
to segment ultrasound slices. In this model, the multiple-channel
convolution layer and the atrous-based module were used to
accurately collect multi-scale knowledge. Mishra et al. (Mishra
et al., 2019) developed a deeply supervised network for
segmentation in ultrasound images, in which a fusion layer was
used to improve the flexibility of the network so that it could
automatically choose the best features for further refinement.
However, the accuracy of the network was influenced by the size
of the input images. He et al. (He et al., 2021) proposed a synergistic
image-level and voxel-level segmentation network, where the model
used a contour-aware module for sampling to potentially increase
the precision of delineation of the prostate outline. Panigrahi et al.
(Panigrahi et al., 2019) used the multi-scale Gaussian fuzzy

clustering algorithm to roughly segment the ROIs in ultrasound
images. A multi-scale vector field convolution algorithm was then
used to fine-tune the accuracy of the ROI. However, too many
referred parameters of the proposed network were potentially
required to be manually initialized. Liu et al. (Liu et al., 2021)
introduced threshold segmentation into a deep-learning framework
to generate the S-Mask R-CNN + Inception-v3 model to detect
disease, but the Dice similarity coefficient (DSC) (Peng et al., 2018a)
of the testing results was approximately 0.87.

In this work, we summarize the technical contributions of our
segmentation approach in the ultrasound image segmentation field,
as described below:

1) As the accurate contour extraction of organs in ultrasound
images is a difficult task, the DSCs of fully-automatic methods
are approximately 0.9 (Girum et al., 2020; Wang et al., 2019).
Therefore, here, we present a semi-automatic contour extraction
framework using radiologist-defined data points as the prior,
resulting in a DSC of 0.957.

2) Due to their satisfactory performance at handling noisy input,
principal curve (PC) techniques are widely adopted for
distinguishing abnormal tissues from other surrounding
regular tissues (Peng et al., 2018a). However, the number of
vertices needs to be pre-determined by the users. Our method
proposed herein addresses this problem.

3) As the contours of PC-based techniques consisting of segments
are not smooth (Biau and Fischer, 2012), our method was
developed, which used an interpretable mathematical formula
to smooth the experimental contour.

In summary, the detailed advantages of the proposed approach
compared with current approaches are as follows:

1) Differing from standard PC-based methods (Peng et al., 2018a),
the adaptive selection principal curve (ASPC) method combines
the neutrosophic-set-based mean shift (NSMS) method with the
PC-based projection step. The advantage of the ASPC method is
that it automatically determines the number of cluster vertices
and then obtains the data sequence.

2) Differing from the mean shift clustering (MSC) method (Cheng,
1995), our NSMS method was able to achieve more robust
outcomes, as it includes the natural capability of the
neutrosophic set (NS) to study the neutralities’ nature to
handle indeterminate information, especially noise, well.

3) To the best of our knowledge, the memory-based quantum-
inspired differential evolution (MQDE) method is the first
attempt to facilitate acquiring an optimal fractional-order
backpropagation neural network (FBNNL) (Chen et al., 2020).
Differing from the quantum-inspired differential evolution
(QDE) technique, both a memory-based mechanism (Peng
et al., 2021) and the Cuckoo search algorithm (Cobos et al.,
2014) were used while innovatively designing a new mutation
technique to enhance the ability of the model to handle different
types of multimodal issues and including the newly proposed
global optimum scheme to acquire the appropriate parameters of
the model.

4) Due to the excellent storage and heredity ability of the Caputo-
derivative-based fractional gradient descent algorithm, we used

Frontiers in Physiology frontiersin.org02

Peng et al. 10.3389/fphys.2023.1177351

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1177351


the FBNNL (Chen et al., 2020). In addition, we used the
exponential linear unit (ELU) function (Bernal et al., 2019) to
take the place of the sigmoid function (Bernal et al., 2019) that we
used in our previous study (Peng et al., 2018a) to address the
vanishing gradients issue.

5) To smooth the contours of PC-based methods, we used an
interpretable mathematical model to express the smooth
organ contour, which is denoted by the parameters of the
optimized FBNNL.

A previous study (Peng et al., 2022a) (namely, H-SegMed
method) is related to this current study; however, there are some
differences between the two studies, as indicated below.

1) Compared with the previous study (Peng et al., 2022a), here we
used multiple datasets, including prostate and kidney datasets,
rather than only one prostate dataset to evaluate the performance
of our model.

2) Here, we innovatively used the ASPC method to automatically
decide the number of vertices/clusters, whereas this required
human intervention in the previous study (Peng et al., 2022a).

3) Here, we newly integrated the quantum computing
characteristics into the evolution NN to enhance the
capability of searching between global and local, while
innovatively adding the Cuckoo search algorithm (Cobos
et al., 2014) to improve the ability to select the optimal
parameters.

4) Here, we adopted the ELU activation function (Bernal et al.,
2019) to substitute the Tanh activation function used in the
previous study (Peng et al., 2022a) to handle the gradient
vanishing problem that appeared before. Based on this
change, we developed an ELU-based mathematical model of
organ contour using the mathematical derivation process.

2 Materials and methods

2.1 Problem formulation

Due to the existence of strong artifacts, there are ambiguous
or unseen organ regions in ultrasound images, which makes it

challenging to find the ultrasound organ contour. The DSCs of
most automatic methods (Girum et al., 2020; Wang et al., 2019)
are approximately 0.9. To improve the segmentation accuracy,
we designed a point-guided segmentation model using a few
points as the prior. Several researchers have used the PC
method to identify a PC that can express the general
direction of the data (Kégl et al., 2000). However, the
performance of the PC-based method, which is affected by
the number of segments, is always variable (Biau and
Fischer, 2012; Peng et al., 2021) (shown in Figure 1), as the
number of cluster vertices is pre-decided by the users (Moraes
et al., 2020). Hence, pre-setting the number of vertices/clusters
is critical for the results of PC-based methods. Moreover, the
outcomes of PC-based techniques are composed of segments
(Biau and Fischer, 2012) (shown in Figure 1), and smoothing
the results becomes an important issue.

2.2 Detection model

For accurate contour detection, we developed a hybrid
segmentation method for medical ultrasound images. The
method contains four main stages. In Stage 1, we adopted the
ASPC model to achieve the data sequence D, where D includes
the data point pi and the corresponding projection index t. In
Stage 2, the MQDE was designed to achieve the initial optimal
parameters (i.e., weights and thresholds) of the FBNNL. In Stage
3, the projection index t was used as the determined FBNNL
input, and the coordinates of pi were used as the expected
outcome values for computing the global model error E.
During the training of the FBNNL, the FBNNL’s model
deviation E decreased, and the optimal FBNNL was obtained.
In Stage 4, an interpretable mathematical model of the organ
contour was used to smooth the results. This was expressed by the
model parameters of the optimal FBNNL. Figure 2 presents the
design of our method.

2.2.1 Stage 1: acquire the data sequence
We designed the ASPC method to acquire the data

sequence. This method combines the NSMS algorithm with
the PC-based projection step. Compared with standard PC-

FIGURE 1
Different numbers of segments cause different achievements when using PC-basedmodels. (A) an appropriate number of segments (k), (B) too few
segments, and (C) too many segments.
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based methods (Peng et al., 2018a; Wu et al., 2021), the main
improvement of the proposed ASPC method is the automatic
determination of the vertices/clusters of the PC. Figure 3 shows

a comparison between the standard PC-based method and our
ASPC method.

2.2.1.1 Preprocessing stage
We used Z-score normalization (Kabir et al., 2015) as the outlier

prevention preprocessing technique to detect and remove outliers,
while histogram equalization (Stark, 2000) was used to enhance the
contrast in the images.

2.2.1.2 NSMS method
Cheng et al. (Cheng, 1995) developed the traditional MSC

method to search for the data cluster. However, many previous
studies have demonstrated that the MSC method, with adaptive
bandwidth, can generate more accurate results than the fixed-
bandwidth module (Comaniciu et al., 2001). Furthermore, image
noise, which is one type of uncertain information, may affect
segmentation accuracy (Nguyen et al., 2019). NS has an inherent
ability to study the neutralities’ ability to handle uncertain
information, especially noise, well (Nguyen et al., 2019).
Hence, we introduced an improved NS-related filter into the
MSC method. The workflow of the NSMS method is described
below.

Step 1: Map the original data set Pn into the channels in the
neutrosophic set, in which Tc(Pn), Ic(Pn), and Fc(Pn) indicate the
light, indeterminate, and non-light data pixel sets, respectively.

FIGURE 2
Design of our method. The first stage is to acquire a data sequence via the PC-based method. The second stage is to obtain the smooth and
interpretable organ contour during the evolution-based neural network’s training. After training, the qualitative and quantitative evaluation is adopted for
the experimental results in the third stage. Here are the abbreviations used in the figure: NSMS: neutrosophic-set-based mean shift method; MQDE:
memory-based quantum-inspired differential evolution method; FBNNL: fractional-order backpropagation neural network; CFGD: Caputo-type
fractional gradient descent method; PC: principal curve; DSC: Dice similarity coefficient; OMG: Jaccard similarity coefficient; and ACC: accuracy.

FIGURE 3
Difference between the original PC-based method (Peng et al.,
2018a; Wu et al., 2021) and the proposed adaptive selection principal
curve method. Here are the abbreviations used in the figure: PC:
principal curve; NSMS: neutrosophic-set-based mean shift
method; ASPC: adaptive selection principal curve.
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TC x, y( ) � g x, y( ) + g min

g max − g min
(1)

IC x, y( ) � Gd x, y( ) + Gd min

Gd max − Gd min
(2)

and

FC x, y( ) � g max − g x, y( )
g max − g min

(3)

where g(x, y) indicates the intensity value and Gd(x, y) indicates the
gradient value in the location p(x, y).

Step 2: Compute all of the channels according to the uncertain
filter.

σI x, y( ) � aIC x, y( ) + b (4)
and

GIc u, v( ) � 1
2πσ2I

exp −u
2 + v2

2σ2I
( ) (5)

where σI represents the standard deviation that fixes the feature of
the kernel function, and GIc represents the kernel function of the
indeterminacy filter.

Step 3: Calculate the uncertain outcomes of the channels in the
neutrosophic set

Tc′ x, y( ) � ∑y+m/2
v�y−m/2

∑x+m/2

u�x−m/2

Tc x − u, y − v( )GIc u, v( ) (6)

where Tc’represents the outcome using an uncertain filter on Tc, and
m represents the size of the filter.

Step 4: Use the randomly picked ungrouped point pi to calculate
the bandwidth h.

h x, y( ) � Icavg x, y( ) max Tc′( ) −min Tc′( )( ) (7)
where Icavg shows the mean uncertain value of the recent cluster
point.

Step 5: Calculate the mean shift vector m(p).

m p( ) � ∑n
i�1
pi × L p−pi

h

���� ����2( )
∑n
i�1
L p−pi

h

���� ����2( ) − p (8)

Step 6: Transfer pi in the direction m(p), and it obeys the rule that
pi = pi + m(p).

Step 7: Jump to Step 5 when stop condition ∇f(p) � 0 is satisfied.

Step 8: Use the average value of the current cluster in uncertain
domain to compute the bandwidth h.

Step 9: Jump to Step 5 when the current cluster point is stable.

Step 10: Jump to Step 4 when all data points are classified.

Step 11: The cluster points are achieved after the loop ends.

2.2.1.3 The PC-based projection step
After completing the NSMS method, we obtained the vertices/

clusters and then determined the PC f. Hastie et al. (Hastie and
Stuetzle, 1989) first proposed a “self-consistent” PC passing through
the “middle” of the data cloud. We assumed that f shows a polygon
connected with vertices v and line segments s. During the PC-based
projection step, we scanned the PC f near the data point pi, projected pi
to the nearest neighborhood sets (vertices set Vi or segments set Si),
and then acquired the projection index t (Kégl et al., 2000) of pi. The
corresponding projection indices of the remaining points were also
obtained using this method. Figure 4 shows the partition results
according to the vertices and segments of the PC.

2.2.2 Stage 2: finding the optimal NN
As the NN is easily trapped into the local minimum during

training, the MQDE method was used to help search for the optimal
initial FBNNL.

2.2.2.1 Improvements of our MQDE method
There are drawbacks to the use of gradient-optimization-based NNs

due to the trend of being trapped into the local optimum.Wedesigned an
MQDEmethod to search for the best configuration variables (i.e., weights
and thresholds) of the NN. Differing from the QDEmethod (Draa et al.,
2011), we developed the MQDE method by including some
improvements, such as 1) a memory-based mechanism (Peng et al.,
2021), 2) a newmutation technique, 3) the Cuckoo search (CS) technique,
and 4) a global optimum scheme. The pseudo-code of the basic QDE
method (Draa et al., 2011) is presented in Supplementary Appendix S1.

1) Memory-based mechanism (Peng et al., 2021): The purpose of
this mechanism is to deposit the optimal average mutation factor
(uF) and crossover rate (uCR) from the last iteration and use
them as the initialization of the next iteration. The architecture of
the memory-based MQDE method is presented in this section.

FIGURE 4
Optimal partition results according to the vertices and segments
of the PC. For better visualization, we set the color of points pi
projecting to vertices vi as blue and those projecting to segments si as
orange. PC: principal curve.
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2) New quantum mutation method: We have listed some well-
known mutation strategies of the QDE method in
Supplementary Appendix S2. These strategies are appropriate
for dealing with different optimization issues. DE/rand/1 and
DE/rand/2 are known to focus on exploration; thus, they are
suitable for dealing with multimodal issues. Meanwhile, both
DE/best/1 and DE/best/2 focus on exploitation and are therefore
appropriate for handling unimodal issues (Li et al., 2016; Cui
et al., 2018). Hence, we developed a new quantum mutation
scheme named DE/superior/1, which combines the advantages
of the DE/rand/1 and DE/best/1 quantum mutation schemes, as
shown by:

vecgi � αgbase + F × αgi2 − αgi3( ) (9)
and

αgbase � λ × αgi1 + 1 − λ( ) × αgsup erior (10)

where integers i1, i2, i3 are randomly selected within [1, NP], and are
different from i. αgsuperior is randomly chosen from the superior
individuals randomly, including the top math.floor(α*NI)
individuals in the current population. math.floor(α) is a rounding
function, which returns the largest integer not greater than its
argument α. The base vector αbase is influenced by the
adjustment parameter λ, where αbase is close to a randomly
selected superior individual. Different values of λ determine the
selection of different quantum mutation schemes. If λ = 1, DE/
superior/1 tends to be DE/rand/1, and if λ = 0, DE/rand-superior/
1 tends to be DE/superior/1. Hence, the selection of λ balances both
exploration performance and exploitation performance of the
quantum mutation scheme.

λ � g max − g

g max
( )2

(11)

3) CS method (Cobos et al., 2014): The CS method is a nature-
inspired algorithm that is commonly used to find ROIs. During the
process of the CS method, all candidates were randomly obtained.
Let the i-th solution in the (g+1)-th generation be αbase

g+1, and a Levy
flight is performed as follows:

αgbase � αg−1base + Levy ap( ) (12)
where ap is the adjusted parameter. Levy flight essentially supplies a
random walk when random steps are drawn from a Levy
distribution for a big step.

Levy ap( ) � g−ap, 1≤ ap≤ 3 (13)
When combining the CS method (Eqs. 12, 13) into the new

quantummutation method of theMQDEmethod (Eqs. 9, 10), a new
mutant vector nveci

g can be generated in Eq. 21.

nvecgi � rand 0, 1[ ] × αgbase + 1 − rand 0, 1[ ]( ) × vecgi (14)
4) Global optimum scheme: Based on the newly proposed global

optimum scheme, themutation factor F and crossover factor CRwere
updated. The global optimum scheme is used in two scenarios: 1)
when f(nvecig) is smaller than or equal to f(αbase

g+1), we let nveci
g

equal αi
g, and 2) when f(vecig) equals f(αi

g), the previous individual
qi

g is set to the next individual qi
g+1.

2.2.2.2 Pseudo-code of our MQDE method
We used a memory-based scheme to save the optimal mutation

factor F and the crossover rate CR from the former iteration, and
then used them as the initialization for the next iteration. Based on
this scheme, we were able to find the optimal candidate. The pseudo-
code of our MQDE method is shown in Algorithm 1.

01:Generate a uniformly distributed random initial

population containing NP solutions, which include NI

variables according to αi
0 = αmin + rand[0, 1] * (αmax -

αmin) (i∈[1, NI]). Due to its DE/rand/1 scheme (shown in

Eq. 26), NI is equal to 3. We initialized the current

iteration number g = 1, defined g < gmax (maximum

iteration number), and set the initial F and CR as ∈(0,
1]. The population size NP was obtained according to NP =

(I +1) *H + (H + 1) *K, where I denotes the number of input

neurons in the NNs, H is the number of hidden neurons in

the NN, and K is the number of output neurons in the NN.

02:while g < gmax
03:for i = 1 to NP//memory-based mechanism

04:Generate three random indices r1, r2, and r3 with r1 ≠ r2
≠ r3 ≠ i//new quantum mutation

05:λ = ((gmax - g)/gmax)2

06:αsuperiorg = math.floor (αig * NI)

07:αbaseg = λ * αi1
g + (1-λ) *αsuperiorg

08:vecig = αi1
g + F * (αi2g -αi3g)// end new quantum mutation

09:if i > 2 //CS method

10: Levy(ap) = g-ap

11: αbase
g = αbase

g-1 +Levy (ap)

12: nvecig = rand[0, 1] *αbaseg + (1- rand[0, 1]) * vecig

13:else

14: nvecig = rand[0, 1] *αbaseg + (1- rand[0, 1]) * vecig //

end CS method

15:if rand[0, 1] ≤ CR // quantum crossover

16: uig+1 = nvecig

17:else

18: ui
g+1 = αbase

g

19:end if // end quantum crossover

20:if f(uig) ≤ f(αbaseg) // quantum selection

21: αbase
g+1 = uig

22:else

23: αbase
g+1 = αbase

g

24:end if

25:if f(uig+1) ≤ f(αbaseg)

26: qig+1 = uig+1

27:else

28: qig+1 = αbase
g+1

29:end if // end quantum selection

30: if f(vecig) = = f(αig) // global optimum scheme

31: qig+1 = qig

32:if f(nvecig) ≤ f(αbaseg+1)

33: αi
g = nvecig // end global optimum scheme

34:Update F and CR according to Eqs. 15–18

35:end for

36:g = g + 1 // end memory-based mechanism

37:end while

Algorithm 1. MQDE algorithm.
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The workflow of the MQDE method is shown below:

Step 1: Initialize the MQDE method.

Step 2: Obtain the newly generated mutant individual nveci
g+1

based on the new quantum mutation technique and the CS
method in the quantum mutation step, as shown in Eqs. 9–14.

Step 3: Based on Eq. 30, the experimental individual ui
g+1 is

achieved in quantum crossover step.

Step 4: Using Eqs. 31, 32, update αbase
g+1 and qi

g+1 in the quantum
selection step.

Step 5: The global optimum scheme should be met, as shown in
Section 2.2.2.1.

Step 6: During the updating process, renew both F and CR
according to Eqs. 15, 16.

F � 1 − val( ) × F + rand 0, 1[ ] × meanL SF( ) (15)
and

CR � 1 − val( ) × CR + rand 0, 1[ ] × meanL SCR( ) (16)
where SF and SCR represent the successful mutation and crossover
probabilities, respectively. The adjustment parameter val is
randomly selected within (0, 1]. The Lehmer mean meanL(•)
(Cui et al., 2018) is applied to renew the values of F and CR
according to Eq. 17 and Eq. 18.

meanL SF( ) � ∑F∈SFF
2

∑F∈SFF
(17)

meanL SCR( ) � ∑CR∈SCRCR
2

∑CR∈SCRCR
(18)

Step 7. Update both F and CR based on the storage-based
mechanism (Chen et al., 2020).

When g < gmax, and g = g + 1, then step (2) is executed, in which
the optimal uF and uCR in the current iteration are used for the next
iteration; if g ≥ gmax, it proceeds to the next step.

Step 8. Determine the optimal individual.

2.2.3 Stage 3: training
In the backpropagation neural network (BPNN), the gradient

descent method is often used to decrease the deviation between the
actual and desired outputs (Peng et al., 2022b). We used the FBNNL
(Chen et al., 2020), which inherits the storage and heredity abilities
of the Caputo-type fractional gradient descent method (Xiao et al.,
2015) but also inherits the ability to combat overfitting without
revising the network architecture from L2 regularization. As a three-
layer NN is able to approximate various nonlinear functions with
any expected precision (Peng et al., 2022a), we used a three-layer
FBNNL. Furthermore, the sigmoid and ELU functions (Peng et al.,
2022c) were used in the forward propagation step. Two units were
included in the output layer, i.e.,Output(x) andOutput(y), which are
regarded as the expression functions Output(x(t)) and Output(y(t)),
respectively, on the projection index t.

2.2.4 Stage 4: interpretable model-based contour
extraction

After obtaining the optimal FBNNL, we first developed a smooth
and interpretable mathematical definition of the organ contour,
which is denoted by the parameters of FBNNL, as shown below:

f t( ) � x t( )( ), y t( ))
� 2 × Output x t( )( ) + 1

2 × Output x t( )( ) + 2
,
2 × Output y t( )( ) + 1
2 × Output y t( )( ) + 2

( ) (19)

where x(t) and y(t) were used to show the x-axis and y-axis
coordinates of the points of the resulting contour, respectively.
Output(x(t)) and Output(y(t)) are shown as below:

Output x t( )( ), Output y t( )( )( )
� e

∑K

j�1
1

1+e∑H

i�1− tw1i−ai( )
w2j,1−bj,1

− 1
2

,
e
∑K

j�1
1

1+e∑H

i�1− tw1i−ai( )
w2j ,2−bj,2

− 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

where K and H denotes the number of output and hidden neurons,
respectively; bj (j = 1, 2) is the output threshold of the j-th neuron at the
output layer; and w1 and w2 are the hidden and output weights,
respectively. In addition, for better understanding, we have
introduced the architecture of BPNN and FBNNL in Supplementary
Appendix S3, S4, respectively. Meanwhile, the procedure of achieving
Eqs. 19, 20 are shown in Supplementary Appendix S5.

2.3 Materials

Two datasets, namely, a transrectal ultrasound prostate set and
a trans-abdominal ultrasound kidney set, were used in our
experiments. Here, we mainly illustrate the details of these
datasets.

2.3.1 Jiangsu province hospital of chinesemedicine
prostate dataset (JPHCM)

This prostate dataset contains 393 slices. All of the prostate
images were obtained using the ultrasound imaging workstation
VINNO 70LAB and an ultrasound probe with a frequency of
4–8 MHz. The size of each slice was 1,200 × 900 pixels.

2.3.2 Suzhou municipal hospital kidney
dataset (SMH)

This kidney dataset was collected using the Mindray DC-8
diagnostic ultrasound system (Mindray Medical International
Limited, Shenzhen, China), with an integrated low-resolution
linear transducer with a frequency of 1.3–5.7 MHz. The device
parameters comprised a mechanical index of 1.3, a probing depth
of 200 mm, and an amplifier gain within 3–33 dB. The resolution of
this SMH set was also 1,200 × 900 pixels.

Table 1 shows the distribution of the images from both datasets.
The two datasets (i.e., JPHCM and SMH) were used to generate a
new dataset called the combined dataset for evaluation. Due to the
limited amount of training data in the JPHCM dataset, we randomly
rotated the training data within [-15°, 15°], where each original
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image was rotated three times. All of the ultrasound slices were
resampled to a unified resolution of 600 × 450 pixels. Based on our
previous research (Peng et al., 2018b), we set 10 hidden neurons and
1,000 epochs for the FBNNL to simplify the complexity of the NN
model and prevent overfitting. We used the DSC, Jaccard similarity
coefficient (OMG), and accuracy (ACC) (Peng et al., 2020) as the
evaluation metrics. All of the ground truths were labeled and verified
by three physicians. The algorithm ran on a Windows 10 desktop
with an Intel Core i7-8750H CPU (3.9 GHz with six cores) and a
GTX 1070 with Max-Q design GPU.

3 Results

We first assessed the capability of our method on multiple
datasets (Section 3.1), and then assessed the robustness of our

method on a testing set with various degrees of corruption
(Section 3.2). Next, we determined the influence of each
component of our method using an ablation experiment (Section
3.3). Finally, we compared our method with current state-of-the-art
algorithms (Section 3.4).

3.1 Model selection

3.1.1 Evaluation of our method with and without
preprocessing

As shown in Table 2, three metrics (i.e., DSC, OMG, and ACC)
were used to investigate whether using a preprocessing stage affected
the testing performance of our method. We used the ELU activation
function, one hidden layer, and stochastic gradient descent (SGD).
From the data presented in Table 2, we can see that the use of a
preprocessing stage consisting of Z-score normalization and
histogram equalization schemes improved the performance
(i.e., precision and robustness) of our method (Preprocess). For
the following experiments, the preprocessing stage was included in
all of the methods.

3.1.2 Training process on various optimizers
Here, we investigated the influence of different optimizers,

such as the SGD technique (Amari, 1993) and Adam optimizer
(ADAM) (Bock and Weis, 2019), and we used one hidden layer
and the ELU activation function. The experimental outcomes in

TABLE 1 The distribution of images of both datasets.

Total set Training set (raw + augmentation) Validation set Testing set

JPHCM 393 215 (raw) + 645 (aug) 70 108

SMH 1380 960 (raw) 144 276

Combined dataset - 1820 214 384

TABLE 2 Evaluation of our method with and without preprocessing process.

Method DSC (%) OMG (%) ACC (%)

Our method (not Preprocess) 95.6 ± 2.5 94.5 ± 2.7 95.3 ± 2.6

Our method (Preprocess) 95.7 ± 2.4 94.6 ± 2.6 95.3 ± 2.6

FIGURE 5
Comparison of validation mean square errors for various
optimizers.

TABLE 3 Evaluation of different hidden layers.

Layers DSC (%) OMG (%) ACC (%) Testing time (s)

1 95.7 ± 2.4 94.6 ± 2.6 95.3 ± 2.6 7

2 95.7 ± 2.4 94.7 ± 2.5 95.3 ± 2.6 10

3 95.9 ± 2.4 94.9 ± 2.5 95.4 ± 2.5 15

4 95.4 ± 2.7 94.3 ± 2.7 95.1 ± 2.8 22

5 95 ± 3.1 93.8 ± 3.2 94.7 ± 3.1 31

TABLE 4 Evaluation between our method with and without preprocessing
process.

Activation function DSC (%) OMG (%) ACC (%)

Tanh 95.1 ± 2.8 93.7 ± 3.2 94.6 ± 3.1

ReLU 95.4 ± 2.5 94.3 ± 2.9 95.2 ± 2.6

ELU 95.7 ± 2.4 94.6 ± 2.6 95.3 ± 2.6
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terms of the mean square error (MSE) with different epochs using
various optimizers (i.e., SGD and ADAM) were determined on
the validation dataset. At various epochs, the validation MSE
values of various optimizers (i.e., SGD and ADAM) are indicated
in Figure 5. From the data presented in Figure 5, it can be seen
that during the training stage, the ADAM optimizer approached
stability at approximately 500 epochs, while the SGD continued
training until 1,000 epochs. Compared with the model using
ADAM, the one using SGD obtained a lower validation MSE with

more accurate results. Therefore, we used the SGD technique as
the optimizer.

3.1.3 Selection of the optimal number of hidden
layers

For the neural network (the NN), the option of the number of
hidden layers has a significant influence on the training accuracy and
computational efficiency. Table 3 presents the evaluation at different
hidden layers, with the SGD and ELU activation functions adopted for

FIGURE 6
Qualitative evaluation. The blue arrow indicates the missing or unclear boundaries of the organs. The blue arrow indicates the weak edge region
(i.e., missing or unclear boundaries) of the organs. The weak edge region in the prostate image (left two images) is caused by the surrounding tissues and
involves intestinal gas. In addition, in the kidney image (right two images), the front weak edge region is caused by the influence of the liver, and other
weak edge regions are caused by intestinal gas. The blue and red curves represent the experimental results and ground truth (GT), respectively.

TABLE 5 Results using different SNRs of the salt and pepper noise. We use the format with “mean value ± standard deviation (%)” to denote each evaluationmetric.
In addition, the results on different SNRs (i.e., 0.6, 0.7, and 0.8) indicate that our method used images corrupted by different levels of noise for testing. However,
the result on SNR = 1 shows that our method was evaluated on raw/clean data.

DSC ±SD (%) OMG ±SD (%) ACC ±SD (%)

Clean data (SNR = 1) 95.7 ± 2.4 94.6 ± 2.6 95.3 ± 2.6

SNR = 0.8 94.6 ± 2.7 93.1 ± 3.3 94.2 ± 2.8

SNR = 0.7 93.5 ± 3.2 92.2 ± 3.7 93.2 ± 3.5

SNR = 0.6 91.6 ± 4.4 90.7 ± 4.5 91.2 ± 4.4

SNR, signal-to-noise ratio; DSC, dice similarity coefficient; SD, standard deviation; OMG, jaccard similarity coefficient; ACC, accuracy.
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our model. From 1 to 3 hidden layers, the DSC slightly increased by
0.2%, but the testing time was more than twice as long. When the
number of hidden layers continued to grow, the DSC did not continue
to increase but decreased. Meanwhile, the testing time increased. The
possible cause of this phenomenon is that more hidden layers make
the network more complex, which leads to an increase in the

computational efficiency of the network and the appearance of
overfitting. Overall, we used the NN containing one hidden layer.

3.1.4 Selection of the optimal activation function
In this subsection, we assessed the effect of various activation

functions, including Tanh, ReLU, and ELU, while using one hidden

FIGURE 7
Three cases are randomly chosen fromboth datasets for evaluation. The first two-three rows indicate the experimental results from JPHCMprostate
data, and the last three rows represent the experimental results from the SMH kidney dataset. The first, fourth, and seventh rows show the comparison
between the experimental result and ground truth, where the blue and red curves show the experimental result and ground truth, respectively. The
second, fifth, and eighth rows indicate the histogram overlap between the clean image and noise image. The last three rows (i.e., third, sixth, and
ninth rows) show the zooming display of the region of interest. The experimental outcomes are shown at various signal-to-noise ratios (SNRs; i.e., 0.6,
0.7, and 0.8). Thus, testing images damaged by different levels of noise were used to evaluate the capability of our method. The experimental outcome at
an SNR of 1 demonstrated that our method was assessed on raw/clean testing data. Here are the abbreviations used in the figure: SNR: signal-to-noise
ratio; DSC: Dice similarity coefficient; SD: standard deviation; OMG: Jaccard similarity coefficient; ACC: Accuracy.
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layer and an SGD optimizer. Table 4 presents the evaluation of
different activation functions. As shown in Table 4, our method
using ReLU and ELU activation functions performed better than the
method using the Tanh function model. The main reason for this
phenomenon is that both activation functions were able to solve the
gradient vanishing issue. Our method using the ELU function had
more satisfactory performance than the method using the ReLU
function. Hence, we used the ELU function for subsequent
experiments.

3.2 Segmentation performance on multiple
datasets

Figure 6 shows four ultrasound results (Image 1-Image 4)
randomly selected from the total testing outcomes for qualitative

evaluation. The first two columns show randomly chosen results
from the prostate dataset (JPHCM dataset), and the second two
columns show results stochastically selected from the kidney dataset
(SMH dataset). The first three rows present the raw data, its
corresponding heatmap, and ground truth (GT), respectively. The
last two rows show the experimental results and compared results,
respectively. The “compared results” in the fifth row represent the
comparison between the segmentation result and the GT. It can be
seen from Figure 6 that the experimental outcomes acquired
satisfactory similarities with the GTs.

3.3 Evaluation of robustness of our model

To evaluate the robustness of our model, we used different
signal-to-noise ratios (SNRs) of salt and pepper noise to corrupt

TABLE 6 Ablation results. The description format of each result is “mean value ± standard deviation (%)”. All themethods have contained the preprocessing stage.

Model Results

AS1 MSC + projection + QDE + BPNN (baseline) DSC = 91.6 ± 4.3

OMG = 90.2 ± 5

ACC = 91.2 ± 4.4

AS2 NSMS + projection + QDE + BPNN DSC = 93.1 ± 3.5

OMG = 91.4 ± 4.5

ACC = 92.6 ± 3.8

AS3 NSMS + projection + MQDE + BPNN DSC = 94.8 ± 2.6

OMG = 93.5 ± 3.2

ACC = 94.2 ± 2.9

Our method (AS4) NSMS + projection + MQDE + FBNNL DSC = 95.7 ± 2.4

OMG = 94.6 ± 2.6

ACC = 95.3 ± 2.6

AS, ablation study; MSC, mean shift clustering; NSMS, neutrosophic-set-based mean shift method; QDE, Quantum-inspired differential evolution; MQDE, memory-based quantum-inspired

differential evolution; BPNN, backpropagation neural network; FBNNL, Fractional-order backpropagation neural network; DSC, dice similarity coefficient; SD, standard deviation; OMG,

jaccard similarity coefficient; ACC, accuracy.

TABLE 7 Corresponding quantitative result of each qualitative result in Figure 8, where different metrics (i.e., DSC, OMG, and ACC) are used for evaluation.

AS1 AS2 AS3 Our method (AS4)

DSC = 89.3% OMG = 87.6%
ACC = 88.8%

DSC = 91.7% OMG = 90.3%
ACC = 91.2%

DSC = 94.1% OMG = 92.8% ACC = 94% DSC = 97% OMG = 95.9% ACC = 96.7%

DSC = 91.3% OMG = 90.2% ACC = 91% DSC = 93.3% OMG = 91.6%
ACC = 92.9%

DSC = 94.6% OMG = 93.3%
ACC = 93.9%

DSC = 97.1% OMG = 95.9%
ACC = 96.8%

DSC = 92.8% OMG = 91.6%
ACC = 92.3%

DSC = 93.2% OMG = 91.6%
ACC = 92.6%

DSC = 93.4% OMG = 92.1%
ACC = 93.2%

DSC = 97.1% OMG = 95.4%
ACC = 96.6%

DSC = 90.9% OMG = 89.9%
ACC = 90.6%

DSC = 94.1% OMG = 92.8%
ACC = 93.5%

DSC = 95.9% OMG = 94.4%
ACC = 95.6%

DSC = 97.8% OMG = 96.6%
ACC = 97.3%

DSC = 93.3% OMG = 91.9%
ACC = 92.6%

DSC = 94.9% OMG = 93.8%
ACC = 94.3%

DSC = 95.7% OMG = 94.2%
ACC = 95.5%

DSC = 97.6% OMG = 96.6%
ACC = 97.3%

DSC = 92.4% OMG = 90.7% ACC = 92% DSC = 93.8% OMG = 92.2%
ACC = 93.1%

DSC = 94.1% OMG = 92.9%
ACC = 93.8%

DSC = 95.9% OMG = 94.3%
ACC = 95.4%
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the testing image set, and the damaged testing images were then
used to assess the capability of our model. We set the values of
SNR to 1, 0.8, 0.7, and 0.6. The testing outcomes of our method are
described in Table 5, while Figure 7 shows the qualitative

outcomes of our method in three randomly selected cases.
Meanwhile, the overlapped region (overlap) (Ali and
Madabhushi, 2012) was used as another evaluation metric,
calculated as:

FIGURE 8
Qualitative results using different ASs. The blue and red curves show the experimental results and ground truth, respectively. From AS1 to AS4, the
performance increased progressively. AS4 represents our method. All of the methods (AS1-AS4) included the preprocessing stage. AS: ablation study.

TABLE 8 Results of all the methods.

References Method Model DSC (%) OMG (%) ACC (%)

He et al. (2017) Mask-RCNN Deep learning 90.4 ± 6.3 89.4 ± 6.1 90.2 ± 6.4

Zhou et al. (2020) Unet++ Deep learning 90.7 ± 5.7 89.1 ± 6.5 90.1 ± 5.8

Gao et al. (2021) Transformer-based UTNet Deep learning 91 ± 5.2 89.7 ± 6.4 90.4 ± 5.4

Hatamizadeh et al. (2022) Transformer-based UNETR Deep learning 91.1 ± 5.2 90.1 ± 6.1 90.8 ± 5.3

Peng et al. (2019) Hull-CPL Hybrid 94.1 ± 2.9 92.7 ± 3.3 93.7 ± 3

Peng et al. (2022a) H-SegMed (IJCV-2022) Hybrid 95.2 ± 2.5 94.1 ± 2.8 95 ± 2.7

Our method - Hybrid 95.7 ± 2.4 94.6 ± 2.6 95.3 ± 2.6

DSC, dice similarity coefficient; SD, standard deviation; OMG, jaccard similarity coefficient; ACC, accuracy; CPL, closed polygonal line method; Mask-RCNN,mask region-based convolutional

neural network method.
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overlap � cleanG ∩ noiseG| |
cleanG

(21)

where overlap indicates the proportion of overlap between the gray
values of the clean image (cleanG) and the noisy image (noiseG).

As shown in Table 5, as the SNR was reduced from 1 to 0.6, the
mean values of DSC, OMG, and ACC decreased by 4.47%, 4.29%,
and 4.49%, respectively. When the SNR equaled 0.6, our model had
the lowest performance, with DSC = 91.6 ± 4.4 (%), OMG = 90.7 ±
4.5 (%), and ACC = 91.2 ± 4.4 (%). Figure 7 shows that our method
achieved a similar performance in both the prostate and kidney
datasets. Therefore, we mainly discuss the performance of our
method in the prostate dataset. As the SNR reduced from 0.8 to
0.6, the overlap rate reduced from 0.78 to 0.67, while the mean values
of DSC, OMG, and ACC decreased by 2.32%, 2.93%, and 2.78%,
respectively.

Overall, the mean values of all the metrics, including the DSC,
OMG, and ACC, were greater than 90.5%, which further
demonstrated that our method was able to handle noisy data well.

3.4 Ablation study

In this section, we report the quantitative and qualitative
evaluation of the performance of our method using an ablation
study (AS). The results of the AS are shown in Table 6. The AS was
mainly used to evaluate whether the capability of our method was
affected when several components of the method were replaced or
removed (Cashman et al., 2019). The principal components of our
approach contained MS-based, DE-based, and NN-based modules.
As shown in Table 6, using AS1 as the baseline achieved the lowest
DSC, OMG, and ACC values of 91.6% ± 4.3%, 90.2% ± 5%, and
91.2% ± 4.4%, respectively. Based on AS1, we used another
component (i.e., NSMS, MQDE, or FBNNL), and the mean DSC,
OMG, and ACC values increased by 1.63%-4.47%, 1.33%-4.87%,
and 1.53%-4.49%, respectively.

Our model (AS4) had the optimal results, with DSC, OMG, and
ACC values of 95.7% ± 2.4%, 94.6% ± 2.6%, and 95.3% ± 2.6%,
respectively. Figure 8 presents a visual comparison of three
randomly selected segmentation outcomes. The first three rows
show the results of randomly chosen prostate cases, and the last
three rows show the results of kidney cases. Table 7 represents the
corresponding quantitative outcome of each qualitative outcome in
Figure 8, where various evaluation metrics, including DSC, OMG,
and ACC are adopted for assessment.

3.5 Comparison with state-of-the-art
methods

Table 8 shows the quantitative outcomes obtained after
comparisons with multiple state-of-the-art methods: Hull-CPL
(Peng et al., 2019), H-SegMed (Peng et al., 2022a), Mask-RCNN
(He et al., 2017), Unet++ (Zhou et al., 2020), UTNet (Gao et al.,
2021), and UNETR (Hatamizadeh et al., 2022). These methods are
grouped into two categories: hybrid methods (Hull-CPL (Peng et al.,
2019) and H-SegMed (Peng et al., 2022a)) and deep-learning
methods (Mask-RCNN (He et al., 2017); Unet++ (Zhou et al.,

2020); and two Transformer-based architectures, UTNet (Gao
et al., 2021) and UNETR (Hatamizadeh et al., 2022)).

In this comparison, the hybrid methods are three-layer-based
frameworks, where the sigmoid and ELU functions are used in
hidden and output layers, respectively. Meanwhile, the methods
used the SGD scheme (Qian et al., 2015) as an optimizer, in which
the initial learning rate, momentum value, and the maximum
number of epochs were 0.4, 0.9, and 1,000, respectively. In
addition, all of the deep-learning methods used the Dice loss
function during training, where the initial value of the learning
rate was set to 10e-3 and reduced to a plateau with patience of 50 and
a maximum number of epochs of 1,000. All of the models used the
same training, validation, and testing datasets. The proportions of
the datasets used are described in Section 2.3.

As shown in Table 8, the hybrid models differed from the deep-
learning models, as they had more correct segmentation outcomes
with less training data. This illustrates that the combination of PC-
based and NN-based models is good at data fitting. Overall, our
proposed method is promising.

4 Conclusions and discussion

Due to blurry boundaries and the existence of shadow artifacts in
ultrasound images, accurate ultrasound organ segmentation is
challenging. We developed a hybrid segmentation network for
ultrasound images. Differing from previously reported models, our
model has four main metrics and contributions. First, current medical
segmentation models are principally classified into two groups: fully
automatic and semi-automatic models. Due to the challenges associated
with ultrasound organ segmentation, the mean DSC of fully automatic
methods is approximately 0.9 (Girum et al., 2020; Wang et al., 2019),
while our proposed framework achieved a mean DSC as high as 0.957
(shown in Table 8). Therefore, the number of images in the training
datasets for several deep-learning-based segmentation methods is more
than 4,000 slices, with a DSC of 0.92 (Lei et al., 2019), but we used fewer
images for training and achieved a higher DSC. The primary reason is
that our method introduced the characteristics of the PC by fitting the
center of the dataset automatically while using only a few points as the
prior. Second, standard PC-based methods cannot determine the
number of cluster vertices automatically; rather, it is pre-decided by
the users. Hence, these methods achieve variable outcomes based on
different pre-set numbers of cluster vertices (shown in Figure 1). Due to
this issue, we used the ASPC model to decide the number of cluster
vertices automatically without prior knowledge. Third, we used
modified quantum-inspired differential evolution to assist FBNNL to
find the optimal model so that we could avoid FBNNL trapping into the
local optimum during training. Fourth, considering that the outcomes
of standard PC-based methods are not smooth (shown in Figure 1), we
designed an explicable mathematical formula to smooth the organ
contour, which is expressed by the parameters of the FBNNL. In this
section, we analyze the entire study from various views.

4.1 Effect of noise (noise level)

To determine the robustness of our method, we used corrupted
testing data for evaluation, as described in Section 3.2. Over the past
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several years, the influence of SNR on salt and pepper noise has been
discussed after multiple trials. For example, Tang et al. (Tang et al.,
2020) added salt and pepper noise to their testing data to evaluate the
robustness of their method, producing SNRs in the range of [0.8,
0.95]. In addition, Benaichouche et al. (Benaichouche et al., 2013)
designed an improved fuzzy clustering segmentation algorithm,
including medical brain images, where the SNR was set to 0.9. A
smaller SNR is known to cause more damage to the image (Tang et al.,
2020). In our study, a higher level of damage to the testing images was
used, with SNRs set as low as 0.6, making it more difficult to achieve a
precise result. Nevertheless, our method achieved excellent results (all
metrics > 90.5%, Table 5) with various degrees of salt and pepper
noise, illustrating the robustness of our model.

4.2 Degree of damage to the image by noise
(histogram)

Ultrasound images are gray-scale images, in which the primary
region is the black pixel region (gray value = 0). Thismakes it challenging
to separate the ROI in ultrasound images according to black pixels.
Considering the distribution of pixels in ultrasound data, we chose the
number of pixels within the range [0, 10,000]. As the SNR reduced from
1 to 0.6, an increasing amount of white noise was added, resulting in
fewer raw image pixels. In other words, the raw image was seriously
damaged bywhite noise (gray label = 255). Overall, themean values of all
the metrics were greater than 90.5% (shown in Table 5), demonstrating
that even the outlines with vague regions were detected accurately.

4.3 Large amount of bias between prostate
and kidney histograms

As shown in Figure 7, there was a large amount of bias when
comparing the histogram overlap of the transrectal prostate image
(second and fifth rows in Figure 7) and the trans-abdominal kidney
image (eighth row in Figure 7). Although damaged by the same degree of
salt and pepper noise, the value of histogram overlap of the prostate was
close to double that of the kidney. The primary cause of this result is that,
due to the short penetration distance between the rectum and the
prostate, the process of detection of a transrectal prostate image can
be completed quickly. Therefore, the detection process may be less
influenced by neighboring tissues, and the pixel value in the
ultrasound image changes steadily. Nevertheless, during the detection
of trans-abdominal kidney images, the detectionprobe is inserted through
the abdomen by radiologists. As the abdominal cavity is a hollow organ, it
causes a long penetration distance.When imaging the kidney, the serious
attenuation of ultrasonic waves is affected by the long penetration
distance, and the mutual influence of different organs is larger.

4.4 Degree of difficulty degree with
multi-organ ultrasound tasks

As presented in Section 3.4, both hybrid models (our current
model and our previous H-SegMed model) obtained excellent

segmentation results. Nevertheless, compared with the current
model, the former H-SegMed model (Peng et al., 2022a) had
0.52%, 0.53%, and 0.31% lower DSC, OMG, and ACC values,
respectively. Using a larger training dataset increased the
robustness of the H-SegMed model. Meanwhile, there were
two reasons for the reduced accuracy of the H-SegMed
model. First, in the recent task, the H-SegMed model used
various datasets with different organs for training, which
increased the difficulty of the segmentation task. Second, a
larger image resolution was used, which increased the
difficulty of the segmentation task (Candemir et al., 2014).

Our method obtained excellent results, but some aspects
could be optimized to further improve its capability. First,
there are three cascaded stages in our method, which increases
the memory burden during the segmentation task. Hence,
squeezing the memory of the model needs to be considered in
the future. Second, the robustness and accuracy of our method
could be evaluated in different situations. For example, unusual
or changeable motion of the organs (i.e., prostate and kidney)
would influence our model’s performance. Moreover, the
precision of our model may be significantly altered for
different age groups or sexes. Third, in the future, the
capability of our method will be further evaluated for various
imaging modalities such as computed tomography and magnetic
resonance imaging. Fourth, we aim to convert the semi-
automatic model to a fully automatic model, which will be
more suitable for real-time clinical applications.
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